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1. Introduction 

 

Since the discovery of graphene by Novoselov et al. 

(2004), numerous investigations have been published in the 

literature on the vibration, buckling and wave propagation 

of graphene sheets. Graphene is a monolayer disposed in a 

honeycomb network with a unique series of “unprecedented 

structural”, mechanical and electrical characteristics (Basua 

and Bhattacharyya 2012). Nanostructural elements include 

nano-tubes, nano-beams, nano-plates, nano-sheets and 

nano-cones. Nanostructure components have many 

applications in micro/nano electromechanical systems 

(MEMS / NEMS), nano sensors, electric batteries, 

biomedical,bioelectric, compositereinforcement, etc. (Lim 

et al. 2010, Ghorbanpour Arani et al. 2014, Sakhaee-Pour et 

al. 2008, Wang et al. 2012, Li et al. 2011, Pantelic et al. 

2012, Eltaher et al. 2013, Eltaher et al. 2016, Ebrahimi  

and Barati 2017a,b, Akbaş 2016, 2018, Eltaher et al. 2018, 

Hamidi et al. 2018, Belmahi et al. 2018, Dihaj et al. 2018, 

Bensattalah et al. 2018ab, Mohamed et al. 2019, Eltaher et 

al. 2019, Belmahi et al. 2019, Bensattalah et al. 2019, 

Barati et al. 2019 , Forsat et al. 2020). Because of their 
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potential, graphene sheets are used in nanotechnology, 

particularly in recent years. 

In order to investigate the mechanical response of 

nanoscale structures, it has been shown that the small-scale 

impact should play a considerable role in nanostructures, 

but this small-scale impact was ignored when adopting the 

classical local continuum theory (Xu et al. 2013). Recently, 

different size-dependent continuum models such as “couple 

stress theory” (Reddy 2011), “strain gradient elasticity 

theory” (Akgöz and Civalek 2013a, b, Lam et al. 2003, 

Karami and Janghorban 2019, Karami and Karami 2019), 

“modified couple stress theory” (Ke et al. 2012, Akgöz and 

Civalek 2011, Akgöz and Civalek 2013c, Yang et al. 2002, 

Akgöz and Civalek 2012) and “nonlocal elasticity theory” 

(Eringen and Edelen 1972, Eringen 1983, 2002, 2006) are 

developed.  These theories include information on 

interatomic forces and internal lengths introduced as a 

small-scale effect in non-local elasticity theory (Eringen 

2006). 

In this regard, Pradhan and Murmu (2009) investigated 

the small-scale influence on stability analysis of biaxially-

compressed single-layered graphene sheets (SLGSs) 

employing non-local continuum mechanics. Sakhaee-Pour 

(2008) studied the elastic buckling response of flawless 

SLGS using an atomistic modeling formulation. Farajpour 

et al. (2013a) studied the nonlinear buckling properties of 
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MLGS under non-uniformly varied in-plane load across the 

thickness. Farajpour et al. (2013b) studied the axisymmetric 

stability analysis of circular SLGS by uncoupling basic 

constitutive equations based on the Eringen non-local 

theory. Ansari and Sahmani (2013) studied the biaxial 

stability response of SLGS. They introduced Eringen's non-

local elasticity equations into different plate models to 

account for the size effects in the analysis. Mohammadi et 

al. (2014) studied the stability response of an orthotropic 

rectangular nanoscale plate. They implemented the non-

local elasticity theory to study the shear buckling of 

orthotropic SLGS in a “thermal environment”. 

The literature shows that research on integrated SLGS or 

MLGS in an elastic medium is becoming more common for 

more accurate design and investigation of micro and 

nanostructures. Pradhan and Murmu (2010) studied the 

SLGS buckling behavior integrated in an elastic medium by 

implementing the theory of nonlocal elasticity based on 

“classical plate theory”. Samaei et al. (2011) examined the 

effect of the length scale on the buckling response of an 

integrated SLGS in a Pasternak elastic medium using non-

local Mindlin plate theory. Radic et al. (2014) presented the 

buckling of double orthotropic nanoplates based on the 

theory of nonlocal elasticity. They assumed that two 

nanoplates are bound by an internal elastic medium and 

surrounded by an external elastic base. Anjomshoa et al. 

(2014) developed a finite element formulation based on 

non-local elasticity theory for buckling analysis of 

nanoscale MLGS incorporated into a polymer matrix. 

Golmakani and Rezatalab (2015) studied the non-uniform 

biaxial buckling analysis of integrated orthotropic SLGS in 

an elastic medium of Pasternak using the nonlocal Mindlin 

plate model to derive equilibrium equations for nanoplates 

in terms of generalized displacements. Karlicic et al. (2015) 

presented the analysis of the thermal stability and vibration 

of multilayered graphene sheets modeled as a multi-

nanoplates system integrated in an elastic medium using the 

non-local plate theory of Kirchhoff-Love to deduce the 

basic equations and determine their exact analytical 

solutions for non-local frequencies, “critical buckling 

loads”, and “critical buckling temperature” using Navier 

method. Zhang et al. (2016) discussed the "critical buckling 

loads" of SLGSs by using the “element free kp-Ritz 

method”. Zenkour (2016) investigated the buckling 

response of a SLGS embedded in visco-Pasternak’s 

medium using nonlocal first-order theory. Liu et al. (2016) 

studied bending, buckling and vibration of 

graphenenanosheets using on the nonlocal theory. Recently, 

Safaei et al. (2019) presented a non-classical plate model 

for SLGS for axial buckling. Based on nonlocal elasticity 

theory, Soleimani et al. (2019) examined the effect of out-

of-plane defects on the postbuckling behavior of graphene 

sheets. 

Despite extensive research on buckling behaviors of 

SLGSs utilizing non-local elasticity theory, there are few 

studies taking into account non-local visco-elastic systems. 

However, to our knowledge, no work has been found in the 

literature on the non-uniform buckling analyzes of graphene 

sheets incorporated into a viscoelastic medium via non-

local high shear deformation theory. Motivated by these 

findings, in order to improve the design of the coupled nano 

system, our objective is to investigate the buckling analysis 

of the visco SLGSs system based on the higher order shear 

deformation theory. This model has a displacement field 

with integral terms which includes the effect of transverse 

shear deformation without using shear correction factors 

SLGS carry viscous fluids and are coupled by visco-

Pasternak’s medium. The analytical solutions are 

determined to demonstrate the characteristic parameters of 

coupled visco-SLGSs. The results of this work should be 

used to design this type of nano-devices. 

 

 

2. Theoretical formulation 
 

In this work, a SLGS of length a , width b  and 

uniform thickness h  is considered as shown in Fig. 1. The 

SLGS is supposed to be subjected to distributive 

compressive in-plane edge loads 1S  and 2S  per unit 

length. The foundation model is characterized by the linear 

Winkler’s modulus wK , the Pasternak’s (shear) foundation 

modulus pK , and the damping coefficient tC  of the 

viscoelastic medium. 

 

2.1 The four-unknown integral model 
 

The four-unknown integral model is employed for the 

examined SLGS. The displacement field is expressed as 

 

 

 

 

Fig. 1 Continuum plate model of a SLGS sheet 

embedded in a viscoelastic medium 
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The integrals defined in the above equations shall be 

resolved by a Navier type method and can be written as 

follows 
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Where the coefficients 'A  and 'B  are expressed 

according to the type of solution used, in this case via 

Navier. Therefore, 'A , 'B , 
1k  and 

2k  are expressed as 

follows 
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Where  and   are defined in expression (20). 

The governing equations of SLGS resting on visco-

Pasternak’s medium under distributive compressive in-

plane edge loads may be deduced on the basis of the 

“stationary potential energy” (Reddy 1984). The governing 

equations are determined as 
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2.2 The nonlocal elasticity model for SLGS 

 

Based on Eringen’s nonlocal elasticity theory (Eringen 

1972), the stress state at a point inside a body is considered 

to be a function of strains of all points in the neighbor 

regions. For homogeneous elastic solids, the nonlocal 

stress-tensor components ij  at each point x  in the 

solid can be expressed as 

 


 )'()'(  ,')( xdxtxxx ijij   (10) 

where ( ')ijt x  are the components available in local stress 

tensor at point x  which are related to the strain tensor 

components kl  as 

klijklij Ct   (11) 

The concept of Eq. (10) is that the nonlocal stress at any 

point is a weighting average of the local stress of all near 
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points, and the nonlocal kernel  ' ,  x x   considers 

the effect of the strain at the point 'x  on the stress at the 

point x  in the elastic body. The parameter   is an 

internal characteristic length (e.g., lattice parameter, 

granular distance, the length of C–C bonds). Also 'x x  

is Euclidean distance and   is a constant value as follows 

l

ae0  (12) 

which defines the relation of a characteristic internal length, 

and a characteristic external length, l  (e.g., crack length 

and wavelength) by employing a constant, 0e ,dependent 

on each material. Eringen (1972, 1983) numerically obtain 

the functional form of the kernel. By appropriate selection 

of the kernel function, Eringen shown that the nonlocal 

constitutive equation given in integral form (see Eq. (13)) 

can be represented in an equivalent differential form as 
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In which 
2  is the Laplacian operator. Hence, the 

scale length 0e a  considers the effects of small size on the 

behavior of nanostructures. Thus, the constitutive relations 

of nonlocal theory for a SLGS can be written as 
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Integrating Eq. (14) over the plate’s cross-section area 

yields the force–strain and the moment–strain of the 

nonlocal refined SLGS as follows 
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The nonlocal equations of stability of SLGS in terms of 

the displacement can be obtained by substituting Eqs. (16), 

into Eqs. (7) as follows 
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3. Solution procedures 

 
In this section, an analytical solution based on the 

646



 

Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model 

Navier method is employed to solve the nonlocal governing 

equations of a simply supported SLGS. The displacement 

variables are adopted to be of the form 
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where ( mnU , mnV , mnW , mnX ) are the unknown Fourier 

coefficients.with 

am /   and bn /   (20) 

Inserting Eq. (19) into Eqs. (18), leads to 
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(22) 

Assuming that there is a given ratio between these 

forces such that 1 0S   and 2 0 S    ; 2 1/S S 

(here  is non-dimensional load parameter) 

Thus, we get the buckling equation by setting the

 det 0K  . Solving this equation, we shall find that the 

assumed buckling of the SLGS is possible only for definite 

values of 0 . The smallest of these values determines the 

desired critical value. 

In the case where the forces 1S  and 2S  are not 

constants, the problem becomes more involved, since Eq. 

(21) has in this case variable coefficients, but the general 

conclusion remains the same. Let, for example 

(Timoshenko and Gere 1961) 

1 0 21 , 0
y

S c S
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 

 (23) 

where c  is a buckling factor. If 0c  the compressive 

force is uniformly distributed ( 1 0S   , 2 0S  ) and if 

2c   we obtain the case of pure bending. All other values 

give a combination of bending and compression ( 2c  ) or 

tension ( 2c  ). 

 

 

4. Numerical results and discussions 

 
In this work, the “buckling loads” for the considered 

SLGSs are calculated with and without the consideration of 

scale coefficient  . The following non-dimensional 

quantities are used 
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(24) 

It should be noted that, we get the “buckling equation” 

of the SLGSs by employing the theory of local elasticity by 

taking 0   in Eq. (16).  

In the first part, the calculated results are compared to those 

of the buckling analysis of the SLGSs just embedded in an 

elastic medium (Samaei et al. 2011, Golmakani and 

Rezatalab 2015), without any elastic foundations (Pradhan 

and Murmu 2009, Ansari and Sahmani 2013, Hosseini-

Hashemi et al. 2015) or embedded in a viscoelastic medium 

(Zenkour 2016). 

In the first example, mechanical properties of SLGS are 

taken as E = 1 TPa and  = 0.16. Also, the thickness and 

the scale influence are taken as h = 0.34 nm and  = 1.81 

nm2. The calculated results for the uniform nonlocal biaxial 

“buckling load” 0  (nN) of an isotropic square SLGS are 

compared with those of molecular dynamic (MD) as 

provided by Ansari and Sahmani (2013), of differential 

quadrature method (DQM) reported by Golmakani and 

Rezatalab (2015) and of the FSDT given by Zenkour (2016) 

in Table 1. It can be observed that there is a very good 

agreement with the results of other similar works. The 

present model does not use the shear correction factor as is 

considered by Zenkour (2016). It should be indicated that 

the current model use only four variables, which is even 

less than the FSDT of Zenkour (2016). As presented in 

Table 1, it is clear that 0  is reduced with increasing the 

“dimension of the SLGS”. 
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We define in this study the “buckling load ratio” as 

/NL L   where NL  is the “buckling load” obtained by 

employing the nonlocal theory and L  is the “buckling 

load” obtained by employing the local theory. In Tables 1 

and 2, we are taking 0t w pC k k   . The values of 

“Young’s modulus” 630 10 PaE   and “Poisson’s ratio” 

0.3   are considered to compute the numerical values. 

  

 

 

 

 

 

 

 

Table 2 presents a comparison on the “critical buckling  

load” ratios determined by the present analytical solution  

( =1) and the solutions of Pradhan and Murmu (2009), 

Zenkour (2016) and Hosseini-Hashemi et al. (2015) for a 

square SLGS with various side lengths and scale 

parameters. A very good agreement can be shown between 

the calculated results and the corresponding ones. It is 

observed that the non-dimensional “critical buckling load” 

  decreases with decreasing the side length and 

increasing the scale parameter  . 

 

Table 1 Comparison of critical biaxial buckling load 0  
of nonlocal square SLGSs with those of MD (Ansari and 

Sahmani 2013) and of DQM (Golmakani and Rezatalab 2015) 

a (nm) 

MD  

(Ansari and  

Sahmani 2013) 

DQM 

 (Golmakani and  

Rezatalab 2015) 

0
 

Zenkour (2016) 

FSDT 

Present  

CPT 

Present  

FSDT 

Present  

HSDT 

4.990 1.0837 1.0749 1.07103 1.09440 1.07103 1.07107 

8.080 0.6536 0.6523 0.65143 0.65685 0.65143 0.65144 

10.77 0.4331 0.4356 0.43529 0.43732 0.43528 0.43529 

14.65 0.2609 0.2645 0.26436 0.26503 0.26436 0.26436 

18.51 0.1714 0.1751 0.17509 0.17537 0.17509 0.17509 

22.35 0.1191 0.1239 0.12383 0.12396 0.12383 0.12383 

26.22 0.0889 0.0917 0.09167 0.09174 0.09167 0.09167 

30.04 0.0691 0.0707 0.07068 0.07073 0.07068 0.07068 

33.85 0.0554 0.0561 0.05613 0.05616 0.05613 0.05613 

37.81 0.0449 0.0453 0.04526 0.04528 0.04526 0.04526 

41.78 0.0372 0.0372 0.03724 0.03725 0.03724 0.03724 

45.66 0.0315 0.0313 0.03128 0.03129 0.03128 0.03128 

Table 2 Comparison of dimensionless critical buckling load β and critical buckling load ratio of nonlocal square SLGSs  

( / 0.1h a  )

 

   


 

/NL L 
 

Present  

CPT 

Present  

FSDT 

Present  

HSDT 

Zenkour 

(2016) 

Present 

 CPT 

Present

  

FSDT 

Present

  

HSDT 

Zenkour 

 (2016) 

Pradhan 

and Murmu 

(2009) 

Hosseini- 

Hashemiet 

al. (2015) 

5 

0.5 16.4852 15.6051 15.6070 15.6051 0.8351 0.8351 0.8351 0.8352 0.8350 0.8350 

1.0 11.0302 10.4413 10.4426 10.4413 0.5588 0.5588 0.5588 0.5588 0.6500 0.5590 

1.5 7.1093 6.7298 6.7306 6.7298 0.3602 0.3602 0.3602 0.3602 0.3610 0.3600 

2.0 4.7470 4.4935 4.4941 4.4935 0.2405 0.2405 0.2405 0.2405 0.2420 0.2410 

10 

0.5 18.8109 17.8067 17.8088 17.8067 0.9530 0.9530 0.9530 0.9530 0.9540 0.9530 

1.0 16.4852 15.6051 15.6070 15.6051 0.8351 0.8351 0.8351 0.8351 0.8360 0.8350 

1.5 13.6686 12.9388 12.9404 12.9388 0.6925 0.6925 0.6925 0.6925 0.6930 0.6920 

2.0 11.0302 10.4413 10.4426 10.4413 0.5588 0.5588 0.5588 0.5588 0.5600 0.5590 

25 

0.5 19.5846 18.5390 18.5413 18.5390 0.9922 0.9922 0.9922 0.9922 0.9930 0.9920 

1.0 19.1349 18.1133 18.1155 18.1133 0.9694 0.9694 0.9694 0.9694 0.9700 0.9690 

1.5 18.4296 17.4457 17.4478 17.4457 0.9337 0.9337 0.9337 0.9337 0.9350 0.9310 

2.0 17.5252 16.5896 16.5916 16.5896 0.8878 0.8878 0.8878 0.8878 0.8890 0.8880 
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Table 3 presents a comparison of the non-dimensional 

“critical buckling load”   and “critical buckling load 

ratio” /NL L   determined by the present solution ( =1), 

the solution of Hosseini-Hashemi et al. (2015) and the 

solution of Zenkour (2016) for a rectangular SLGS. The 

effects of different values of non-dimensional scale 

parameter ( ), geometric ratios (a/b and h/a) on the non-

dimensional “buckling loads” and “buckling load ratios” are 

studied. The computed results are the same as those 

predicted in Hosseini-Hashemi et al. (2015). 

In the following, the results are given here (except 

otherwise stated) for 10wk  nN, 5pk  nN, 0.1   

nm2, 0.1  and 0.1tC  nN. The appropriate values of 

the other quantities are fixed as 0.34 nmh  and 10 nmb 

. Also, the “complex angular frequency”   is fixed as 

0.5 0.1 i   . The values of “Young’s modulus” 1E 
GPa and “Poisson’s ratio” 0.3   are utilized to calculate 

the numerical “buckling loads”. 

Table 4 provides the values of   and /NL L   of 

rectangular SLGSs embedded in viscoelastic medium for 

different values of non-dimensional scale parameter  . 

Various values of the visco-elastic medium wk , pk  and  

 

 

 

tC  are also considered in this example. The “critical 

buckling loads” of the SLGS are very influenced by the 

inclusion of the “viscoelastic medium”. It can be confirmed 

that there is an excellent agreement with the results given 

by the FSDT of Zenkour (2016). The “critical buckling 

loads” are decreasing with the decrease of the coefficients 

wk , pk  and tC . Also, the “buckling loads” are increased 

with decreasing the non-dimensional scale parameter. In 

fact, the important critical buckling load appears for higher 

values of   and without the inclusion of the “viscoelastic 

medium”. 

Fig. 2 presents the variation of the “critical buckling 

load ratio” /HSDT CPT
NL NL   versus the geometric ratio /a h  

of the square SLGS for different values of scale parameters

 . It should be noted that HSDT
NL  is the “buckling load” 

obtained by employing the present theory (the four-

unknown integral model) and CPT
NL  is the “buckling load” 

obtained by employing the classical plate theory (CPT). It is 

seen that the buckling loads computed via the CPT are 

greater than those calculated via the HSDT. This is charged 

to the shear deformation effect which is neglected by the 

CPT. In addition, it is observed that the nonlocal parameter  

Table 3 Critical buckling load   and critical buckling load ratio /NL HSDT L HSDT 
 

of nonlocal rectangular SLGSs 

for various non-dimensional nonlocal parameter / a 

 

/a b
 

/h a
 


 ( / )NL HSDT L HSDT    

Present CPT Present FSDT Present HSDT Zenkour (2016) 
Hosseini-Hashemi 

et al. (2015) 

1 

0.1 

0.0 19.7392  (1.000) 18.6854  (1.000) 18.6877  (1.000) 18.6854  (1.000) 18.6861  (1.000) 

0.1 16.4852  (0.835) 15.6051  (0.835) 15.6070  (0.835) 15.6051  (0.835) 15.6057  (0.835) 

0.2 11.0302  (0.559) 10.4413  (0.559) 10.4426  (0.559) 10.4413  (0.559) 10.4408  (0.559) 

0.3 7.1093  (0.360) 6.7298  (0.360) 6.7306  (0.360) 6.7298  (0.360) 6.7200  (0.360) 

0.4 4.7470  (0.240) 4.4935  (0.240) 4.4941  (0.240) 4.4935  (0.241) 4.4937  (0.241) 

0.01 

0.0 19.7392  (1.000) 19.7281  (1.000) 19.7281  (1.000) 19.7281  (1.000) 19.7281  (1.000) 

0.1 16.4852  (0.835) 16.4759  (0.835) 16.4759  (0.835) 16.4759  (0.835) 16.4916  (0.835) 

0.2 11.0302  (0.559) 11.0239  (0.559) 11.0239  (0.559) 11.0239  (0.558) 11.0136  (0.559) 

0.3 7.1093  (0.360) 7.1053  (0.360) 7.1053  (0.360) 7.1053  (0.360) 7.1030  (0.360) 

0.4 4.7470  (0.240) 4.7443  (0.240) 4.7443  (0.240) 4.7443  (0.241) 4.7506  (0.241) 

0.5 

0.1 

0.0 12.3370  (1.000) 11.9169  (1.000) 11.9177  (1.000) 11.9169  (1.000) 11.9171  (1.000) 

0.1 10.9821  (0.890) 10.6082  (0.890) 10.6089  (0.890) 10.6082  (0.890) 10.6084  (0.890) 

0.2 8.2606  (0.670) 7.9793  (0.670) 7.9798  (0.670) 7.9793  (0.670) 7.9794  (0.670) 

0.3 5.8460  (0.474) 5.6470  (0.474) 5.6473  (0.474) 5.6470  (0.474) 6.7289  (0.576) 

0.4 4.1484  (0.336) 4.0072  (0.336) 4.0074  (0.336) 4.1478  (0.336) 4.0072  (0.336) 

0.01 

0.0 12.3370  (1.000) 12.3327  (1.000) 12.3327  (1.000) 12.3327  (1.000) 12.3327  (1.000) 

0.1 10.9821  (0.890) 10.9783  (0.890) 10.9783  (0.890) 10.9782  (0.890) 10.9782  (0.890) 

0.2 8.2606  (0.670) 8.2577  (0.670) 8.2577  (0.670) 8.2577  (0.670) 8.2577  (0.670) 

0.3 5.8460  (0.474) 5.8439  (0.474) 5.8439  (0.474) 5.8439  (0.474) 7.1052  (0.576) 

0.4 4.1484  (0.336) 4.1469  (0.336) 4.1469  (0.336) 4.1478  (0.336) 4.1478  (0.336) 
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increases the “buckling load ratio” and this effect is more 

pronounced in thick SLGS. 

Fig. 3 shows the effect of damping coefficients tC  on 

the variation of the “critical buckling load ratio” 

/HSDT CPT
NL NL  with the geometric ratio /a h  of the square 

SLGS. It is observed that the influence of damping 

coefficients is more pronounced in thick SLGS. The 

“buckling load ratio” increase with increasing the damping 

coefficient and the geometric ratio /a h . 
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Fig. 2 Critical buckling load ratio /HSDT CPT

NL NL  versus 

the side-to thickness ratio /a h of the SLGS for different 

nonlocal parameters   
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Fig. 3 Critical buckling load ratio /HSDT CPT

NL NL  versus 

the side-to thickness ratio /a h  of the SLGS for 

different damping coefficients tC  

 
 
Fig. 4 illustrate the variations of the “critical buckling 

load ratio” /HSDT CPT
NL NL  versus the geometric ratio /a h  

of the square SLGS for different values of Pasternak 

parameters pk . Again /HSDT CPT
NL NL   increase with the 

increase of the “Pasternak parameter”. The effect of pk  is 

more observed when the nanoplate becomes thick. 
Fig. 5 presents the variation of "critical buckling load 

ratio" /HSDT CPT
NL NL   versus the geometric ratio /a h  of 

the square SLGS for different mode numbers m and n . It 

Table 4 Dimensionless critical buckling load   and critical buckling load ratio /NL L 

of nonlocal rectangular SLGSs for various non-dimensional nonlocal parameter 
 

tC  wk  pk  

/NL L   

0.0   0.1   0.2   0.3   0.0   

Present HSDT Present HSDT Present HSDT Present HSDT Present HSDT 

0 0.0 0.0 12.1395  (1.000) 10.8063  (0.890) 8.1283  (0.670) 5.7524  (0.474)  4.0820  (0.336)  

0.1 10.0 

0.0 17.0029  (1.000) 15.6697  (0.922) 12.9917  (0.764) 10.6158  (0.624)  8.9454  (0.526)  

2.0 19.0029  (1.000) 17.6697  (0.930) 14.9917  (0.789) 12.6158  (0.664) 10.9454  (0.576)  

5.0 22.0029  (1.000) 20.6697  (0.939) 17.9917 (0.1818) 15.6158  (0.710) 13.9454  (0.634)  

10.0 27.0029  (1.000) 25.6697  (0.951) 22.9917  (0.851) 20.6158  (0.763) 18.9454  (0.702)  

0.2 10.0 

0.0 21.0557  (1.000) 19.7226  (0.937) 17.0446  (0.809) 14.6687  (0.697) 12.9982  (0.617)  

2.0 23.0557  (1.000) 21.7226  (0.942) 19.0446  (0.826) 16.6687  (0.723) 14.9982  (0.651)  

5.0 26.0557  (1.000) 24.7226  (0.949) 22.0446  (0.846) 19.6687  (0.755) 17.9982  (0.691)  

10.0 31.0557 (1.000) 29.7226  (0.957) 27.0446  (0.871) 24.6687  (0.794) 22.9982  (0.741)  

0.5 10.0 

0.0 33.2143  (1.000) 31.8811  (0.960) 29.2031  (0.879) 26.8272  (0.808) 25.1568  (0.757)  

2.0 35.2143  (1.000) 33.8811  (0.962) 31.2031  (0.886) 28.8272  (0.819) 27.1568  (0.771)  

5.0 38.2143  (1.000) 36.8811  (0.965) 34.2031  (0.895) 31.8272  (0.833) 30.1568  (0.789)  

10.0 43.2143  (1.000) 41.8811  (0.969) 39.2031  (0.907) 36.8272  (0.852) 35.1568  (0.814)  
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is clear to note that /HSDT CPT
NL NL   (m = n = 1) is the 

greatest one. As the mode numbers increase the ratio 

/HSDT CPT
NL NL   is reduced. In additions, as the geometric 

ratio /a h  of the SLGS increases the ratio /HSDT CPT
NL NL   

increases. 

The influence of “buckling factor” c  on the non-

dimensional buckling load is presented in Figs. 6-8. Values 

of 2c   represent compression “buckling loads” while 

values of 2c   represent tension “buckling loads”. The 

results are computed here for 0.34h  nm and 1n  . Two 

values for the geometric ratio / 5a h   and / 20a h   

are used. 
It can be observed that there is a symmetry between the 

compressive “buckling loads” ( 0,  1c  ) and the 

corresponding tensile “buckling loads” ( 4,  3c  ). Also, the 

magnitudes of the non-dimensional “buckling loads” of the 

SLGS with / 5a h   are smaller than the “corresponding 

ones” with / 20a h  . 
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Fig. 4 Critical buckling load ratio /HSDT CPT

NL NL  versus 

the side-to thickness ratio /a h of the SLGS for different 

Pasternak’s parameters pk  
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Fig. 5 Critical buckling load ratio /HSDT CPT

NL NL  versus 

the side-to thickness ratio /a h  of the SLGS for 

different mode numbers m and 𝑛 
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Fig. 6 Nonuniform critical buckling load HSDT
NL vs the 

nonlocal parameter   of the SLGS for different values of 

c 
 
 
Also, as the buckling factor increases the compressive 

“buckling load” increases while tensile “buckling load” 

diminishes. The compressive “buckling loads” are 

diminishing (the tensile “buckling loads” are increasing) 

with the increase of the scale parameter  , the visco-

Pasternak’s coefficients tC  and pk  as demonstrated in 

Figs. 6-8. 

 
 
5. Conclusions 

 
The stability analysis of a single-layered graphene sheet 

(SLGS) embedded in visco-Pasternak’s medium is 

investigated using nonlocal four-unknown integral model. 

The effect of transverse shear deformation is also 

considered without introducing the shear correction factors. 
The visco-Pasternak’s medium is modeled by introducing 

the damping effect to the classical Winkler-Pasternak elastic 

foundations. The present model is in good agreement with 

others models existing in the literature. 
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Fig. 7 Nonuniform critical buckling load HSDT
NL vs the 

damping coefficient tC of the SLGS for different values 

of c 
 
 
 
In can be concluded that the developed model is accurate 

and efficient to predict the buckling response of the SLGSs 

under compressive in- plane edge loads and clearly shows 

the different parameters influencing the critical buckling 

load. An improvement of the present formulation will be 

considered in the future work to consider other type of 

materials (Sharma et al. 2009, Sofiyev and Avcar 2010, 

Avcar 2016, Kolahchi et al. 2016, Daouadji 2017, Timesli 

et al. 2017, Kolahchi et al. 2017,Ayat et al. 2018, Majeed 

and Sadiq 2018, Behera and Kumari 2018, Hajmohammad 

et al. 2018, Keshtegarand Kolahchi 2018, Hussain and 

Naeem 2018, Avcar and Mohammed 2018, Belkacem et al. 

2018, Moghadam et al. 2018, Panjehpour et al. 2018, 

Eltaher et al. 2018, Shahsavari et al. 2019, Nebab et al. 

2019, Avcar 2019, Mirjavadi et al. 2019, Fadoun 2019, 

Jamali et al. 2019, Selmi 2019, Lal et al. 2017, Narwariya 

et al. 2018, Pascon 2018, Rezaiee-Pajand et al. 2018, Li et 

al. 2018, Othman et al. 2019, Akbas 2019a, b, Katariya et 

al. 2019, Yüksela and Akbaş 2018, 2019, Abdou et al. 2019, 

Eltaher et al. 2020). 
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Fig. 8 Non uniform critical buckling load HSDT
NL vs the 

Pasternak’s parameter pk of the SLGS for different values 

of c 
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