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1. Introduction 

 

The rapid development of nano science and nano 

technology is phenomenal as echoed with an increase of its 

application in scientific research. Carbon nanotubes (CNTs) 

is such discovery by Iijima (1991), that may be used in a 

variety of fields like material reinforcement, aerospace, 

medicine, defense and microelectronic devices (Sosa et al. 

2014, Soldano 2015, Fakhrabadi et al. 2015, Mouffoki et al. 

2017, Bouadi et al. 2018). Owing the striking mechanical 

properties through the cylindrical mechanism CNT hold 

purposeful role in conveying fluid and gas. With a vast area 

of potential innovation, however CNTs demands more 

understanding to investigate its mechanical properties. Free 

vibration analysis of CNTs have been influential aspect in 

dynamical science for the last one decade. Vibration 

characteristics are investigated using thin shell theory by 

Yakobson et al. (1996), beam theory by Wang et al. (2006) 

and nonlocal beam theory (Zermi et al. 2015, Youcef et al. 

2018). An eminent study found in based upon ring theory by 

Vodenitcharova and Zhang (2003) whereas theories of 

continuum models developed by Li and Chou (2003) in 

literature. Well known two main classes of models used to 

analyze the theoretical aspects of CNTs have been atomic 

model and other is continuum model. The classical 

molecular dynamics (MD) has shown to exceed those of 

other techniques such as tight-binding molecular dynamics 

and ab initio method included in class of atomic modeling  
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(Iijima et al. 1996, Yakobson et al. 1997, Hernandez et al. 

1998, Sanchez et al. 1999, Qian et al. 2002). 

The main reason continuum mechanics (Yoon et al. 2003, 

Fu et al. 2006, Kuang et al. 2009, Ansari et al. 2011) turned 

noticeable tool is its computational capability to generate 

results of large range system in nanometer range. The 

nonlocal elasticity introduced by Eringen (1983, 2002) 

becomes a turning point as small scale effect was inculcated 

in to fundamental equations as simply material parameter. 

Therefore, scientific community now propose to apply 

nonlocal continuum models to investigate nano-structured 

materials (Sudak 2003, Wang et al. 2006, Pradhan and 

Phadikar 2009, Ansari et al. 2010, Hao et al. 2010, Amara 

et al. 2010, Shen and Zhang 2010). The first ever work 

presented on use of nonlocal elasticity was by Peddieson et 

al. (2003). Prominent computational competence and 

accuracy makes nonlocal models an attractive choice for 

further advancements in field. Donnell (1996) and Flügge 

(1962) have been two substantial shell theories practiced 

extensively in study of static and dynamic characteristics of 

CNTs. Flügge shell theory takes promising place to 

generate remarkably accurate developments to examine the 

CNTs. In another paper, Natuski et al. (2006) carried out the 

vibration analysis of nested CNTs in elastic matrix. Flügge 

shell theory again had been engaged to establish 

administrative shell equations while proposed method was 

wave propagation. Natuski and Qing et al. (2007) 

investigated single and double-walled CNTs filled with 

fluids by adopting wave propagation approach. Flügge shell 

theory was proposed to form governing equations of motion 

for CNTs. Rouhi and Ansari (2012) executed the axial 

buckling of double-walled CNT subject to various layer-

wise conditions by using Rayleigh-Ritz based upon 
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nonlocal Flügge shell theory. Their study showed that the 

number of different layer-wise boundary conditions 

dominates the choice of values for nonlocal parameter. 

Usuki and Yogo (2009) formed beam equations again based 

on Flugge shell theory, they concluded that if nonlocality 

and refined model are ignored then the generalized Beam 

theory and Flügge theory produce alike results. Further 

Wang and Zhang (2007) examined the bending and 

torsional stiffness of single-walled CNT applying the 

Flügge shell equations. They presented three-dimensional 

model of single-walled CNT in their work with effect of 

thickness. Ansari and Rouhi (2013) summarized the effect 

of small scale, geometrical parameter and layer-wise end 

conditions of double-walled CNT by adopting Flügge shell 

model (FSM). They depicted that the continuum model 

considering the nonlocal effect compels the short double-

walled CNT more flexible.   

In recent studies double-walled carbon nanotubes 

(DWCNTs) have been intensively attracted as that of single- 

walled CNT due to its effectively applicable thermal, 

mechanical and electronic features. Hu et al. (2008) 

reported a study on the transverse and torsion waves based 

on nonlocal shell model for single-walled and double-

walled CNTs. Xu et al. (2008) modeled the nested tubes of 

double-walled CNT as separate elastic beam. Their work 

revealed that double-walled CNT had no change for a 

particular invariable frequency subject to distinct edge 

conditions. Using nonlocal Timoshenko beam theory, Ke et 

al. (2009) investigated free nonlinear vibrations of double-

walled CNT and applied differential quadrature technique to 

derive frequency equations. Khosrozadeh and Hajabasi 

(2012) carried out vibration analysis of double-walled CNT 

subject to nonlinear van der Waals forces. The length of the 

tube with surrounding elastic medium was found with 

nonlocal parameters. Rouhi and Ansari (2013) adapted new 

numerical approach with nonlocal Donnell shell theory to 

inquire the small-scale effect on double walled-CNT 

depending on boundary conditions. Moreover, Benguidiab 

et al. (2014) explored the mechanical buckling features of 

zigzag double-walled CNT. A comprehensive research 

presented by Salvatore Brischetto (2015) to analyze the 

vibration characteristic of double-walled CNT by 

considering shell continuum model. The findings of article 

were evolved around effects of van der Waals interaction in 

terms of frequency ratio. . Further Rouhi et al. (2015) 

investigated the vibration analysis of the multi-walled CNT 

by developing nonlocal FSM and presented the frequency 

spectrum against layer wise boundary conditions.  

Arani et al. (2016) used the nonlinear buckling of 

SWCNTs resting on elastic foundation. The mixture rule 

was employed for buckling analysis of embded CNTs with 

Euler and Timoshenko beam model. The influence of 

geometrical parameter and elastic foundation with different 

boundary conditions was investigated. Ehyaei and Daman 

(2017) investigated the vibration characteristics of 

SWCNTs and DWCNTs using initial perfection and 

continuum mechanics approach. The general equation of 

motion was obtained by Hamiltonian principle and energy 

equivalent model. The numerical frequencies of DWCNTs 

and SWCNTs were determined by Navier method and finite 

element method. Bilouei et al. (2016) and Zamanian et al. 

(2017) studied the buckling behavior of concrete columns 

with nanofiber reinforced polymer and SiO2 nano-particles. 

By using the strain-displacements, Hamilton’s principles 

and Mori- Tanka approach, the governing equation was 

derived. Numerical results were presented with the variation 

of elastic foundations. Madini et al. (2016) investigated the 

vibration of embedded FG-CNT-reinforced piezoelectric 

cylindrical shells using differential quadrature method 

(DQM). The mixture rule of four different types of 

distribution was used in the thickness direction. Kolahchi 

and Reza (2017) and Kolahchi et al. (2017c, d) studied the 

bending and buckling of viscoelastic and non-viscoelastic 

sandwich nanocomposits using DQM, zigzag theory and 

Grey Wolf algorithm. Numerical results for volume 

fraction, and piezoelectric layers for the role of actuator and 

sensor. Avcar (2019) presented the vibration of FG beam 

and effect of rotary inertia of beam by the process of 

manufacturer. The thickness was controlled by the rule of 

mixture with volume fraction law. The governing equation 

was derived by classical theory with power law. The 

frequencies for span to depth ratio with varying volume 

fraction index were examined in detail. Semmah et al. 

(2019) investigated the buckling analysis of zigzag single 

walled boron nitride based on Winkler foundation. The 

governing equation was taken into account with the shear 

deformation theory. Effect of different nonlocal parameter 

was investigated with closed form solution. Recently 

Hussain and Naeem (2019a, b, c, d) performed the vibration 

of SWCNTs based on  wave propagation approach and 

Galerkin’s method. Many material researchers used various 

methods for new results of nanocomposits (Akbaş 2015, 

Farahani and Barati 2015, Moradi-Dastjerdi 2016, Hussain 

and Naeem 2017, Hussain et al. 2017, Nikkar et al. 2017, 

Zarei et al. 2017, Kumar 2018, Hajmohammad et al. 2018a, 

Amnieh et al. 2018, Hajmohammad et al. 2018a, Fakhar et 

al. 2018, Hussain and Naeem 2018b, Hosseini et al. 2018, 

Jassas et al. 2019, Fatahi-Vajari 2019).  

Vibration analysis of armchair DWCNTs are rarely done 

in recent past. A limited number of researchers performed 

analysis first time to investigate the vibration of DWCNTs  

(Wang et al. 2006, Natuski et al. 2007, Kuang et al.  2009, 

Shen and Zhang 2010, Ansari and Rouhi 2012, Ansari and 

Arash 2013). So far as reviewed from the literature, 

vibration response of armchair double-walled CNT using 

wave propagation approach based on nonlocal Flügge shell 

model (FSM) has not been investigated/assumed. Many 

material researchers calculated the frequency of CNTs using 

different techniques, for example, structural mechanics 

approach (Li and Chou 2003, Tahouneh 2017, Moradiand 

Payganeh 2017, Shafiei and Setoodeh 2017), non-local 

theory of elasticity (Kolahchi et al. 2019), differential 

quadrature method (Azmi et al. 2019), shear deformation 

theory (Arefi et al. 2018, Lei and Zhang, 2018), nonlocal 

continuum models (Sudak, 2003, Wang et al. 2006, Pradhan 

and Phadikar 2009, Ansari et al. 2010, Hao et al. 2010, 

Amara et al. 2010, Shen and Zhang 2010, She et al. 2019, 

Hussain et al. 2019, Asghar et al. 2019)), stress and strain 

theory (Karami et al. 2018), quasi-3D beam  (Tlidji et al. 

2019), shell theory (Yakobson et al. 1996), Mori-Tanak 
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(MT) homogenization technique (Selmi and Bisharat 

(2018), beam theory (Wang et al. 2006), Flügge’s shell 

model (Hussain et al. 2019b), atomic modeling (Iijima et al. 

1996, Yakobson et al. 1997, Hernandez et al. 1998, Sanchez 

et al. 1999, Qian et al. 2002), Rayleigh-Ritz (Ansari and 

Rouhi 2012), Galerkin method (Do et al. 2019), isotropic 

truncated conical shell (Sofiyev et al. 2009) and axially 

loaded double beam system (Xiaobin et al. 2014, Sharma et 

al. 2019)). Moreover, the existing novel theoretical model 

contributes inventive computational outputs for the 

vibration of CNTs as compare to prior models presented 

(Iijima et al. 1996, Qian et al. 2002, Peddison et al. 2003, 

Sudak 2003, Natuski et al. 2006, Shen and Zhang 2010, 

Ansari and Rouhi, 2012). 

The foremost intension of this paper to investigate 

vibrations characteristics of armchair double-walled CNT 

by means of nonlocal elasticity shell model. The nonlocal 

shell model is established by inferring the nonlocal 

elasticity equations into Flügge shell theory, which is our 

particular motivation. The suggested method to investigate 

the solution of fundamental eigen relations is wave 

propagation, which is a well-known and efficient technique 

to develop the fundamental frequency equations. It is 

keenly seen from the literature, no evidence is found 

concerning current model where such problem has been 

studied so it gave impetus to conduct present work. The 

specific influence of four different end supports based on 

nonlocal FSM such as clamped-clamped (FSM-CC), 

clamped-simply supported (FSM-CS), simply supported-

simply supported (FSM-SS) and clamped-free (FSM-CF) 

with assorted values of nonlocal parameter and distinguish 

inner tube radii is examined in detail. 

 

 

2. Formation of nonlocal Flügge shell equations 

 
Eringen (1983, 2002) acquainted the nonlocal elasticity 

theory as the stress on a given reference point is a function 

of strain field at each point in the body. This is how simply 

scale effect is treated as material parameter in fundamental 

equations of problem. On the other hand, because of unique 

dependence of stress state on strain state, classical elasticity 

cannot be useful for the scale effect. According to nonlocal 

elasticity theory, the stress at a reference point 𝑥is taken as 

a function of strain field at all other points 𝑥/ of the body. 

The basic expression in terms of the nonlocal stress 

tensor  𝜎 is written as follows 

/ / /( ) ( , ) ( ) ( ).
V

x x x t x dV x x V   = −   
(1) 

where ( , )x x − stands for nonlocal modulus or 

attenuation function whose arguments are the Euclidean 

distance and 𝑡 for macroscopic stress tensor. In 𝜇 = 𝑒0𝑎 𝑙⁄  

as 𝑎 is the internal characteristic length (e.g., length of C-

C bond, lattice parameter, granular bond), 𝑙 an external 

characteristic length (e.g., crack length, wave length) and 

𝑒𝑜𝑎 be pertinent material parameter. The equivalent of the 

Eq. (1), in two-dimensional nonlocal elasticity theory can 

be written in differential form as 

2 2(1 ( ) )oe a t−  =  (2) 

The term 𝑒0𝑎 describes the characteristic length known 

as nonlocal parameter. For stress tensor, the generalized 

Hook’s law is used as 

𝑡 = 𝑆: 𝜖  (3) 

Here 𝑆 reads as fourth order elasticity tensor and “:” as 

double dot product.Thus, the relationship between stress 

and strain is expressed as 

 

(4) 

here E symbolizes Young modulus of the material and    

known as Poisson ratio, x  and   are longitudinal and 

angular circumferential coordinates. Whereas ,xx   and 

x  are normal and shear stress terms, 
xx ,

 and 
x

present the normal and shear strains. DWCNTs comprised 

of two embedded tubes in which each tube is regarded as 

autonomous cylindrical shell assumes radius 𝑹, length 𝑳 

and thickness h  shown in Fig. 1. 

The displacement components
xu ,

yu and 
zu in three 

directions ,x  and z, according to classical shell theory are 

as 

( , , , ) ( , , ) ( , , )x

w
u x z t u x t z x t

x
  


= −


 (5a) 

( , , , ) ( , , ) ( , , )y

w
u x z t v x t z x t  




= −

  

(5b) 

( , , , ) ( , , )zu x z t w x t =
 

(5c) 

 

 

 

 

Fig. 1 A geometrical diagram of double-walled CNT 
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Whereu ,v
 

and z signify surface displacements. The 

relations of middle surface strains and middle surface 

curvatures are symbolized as 

2 2 2

2 2 2

1 2
, ( ), ( )xx x

w w v w v
k k k

x R R x x
 

  

    
= − = − − = − −

     
 

(6) 

The kinematics expressions are written as
 

o zk   = +
 

o

xx xx xxzk = +
 

o

x x xzk   = +  

(7) 

The stress and moment resultants are established using 

the stress components in Eq. (4) and formulated in terms of 

kinematic relation in Flügge shell theory (Benguediab et al. 

2014).
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(8) 

Here D stands for effective bending rigidity. The governing 

equations established on Flügge shell theory are written as 

(Ansari and Arash 2013). 

2
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+ =

  

    
+ + + =

    

   
+ + − + =

    

 
(9) 

Where p denotes the exerted pressure on i tube through 

van der Waals (vdW) interaction forces. The proposed vdW 

model accounts the effects of interlayer interactions 

between the tubes of double-walled CNT. 

2 2

1 1

i ij ij j

j j

p w c c w
= =

= − 

  

( 1,2)i =  (10) 

ijc
 

is vdW coefficient, depicting the pressure increment 

contributing from ith  to jth tube. 

 

12 6
13 7

4 4

1001 1120

3 9
ij ij ij jc E E R

a a

  
= − 
 

 (11) 

Here C-C bond length is given by 1.42a A= ,depth of 

potential by ,  as parameter concluded by  equilibrium 

distance,
jR as radius of 

thj tube and m

ijE be as elliptic 

integral which is given as 
2

2 2

0

( )
(1 cos )

m m

ij j i m

ij

d
E R R

K






−= +
−  (12) 

being m as integer and coefficient ijK is defined  by 

2

4

( )

j i

ij

j i

R R
K

R R
=

+
 (13) 

By incorporating Eq. (8) into Eq. (9), developed the set 

of partial differential equations written in terms of three 

field variables , , ( 1,2)i i iu v w i = for the ith tube of 

double-walled CNT. 

(1) 1 (1) 1 (1) 1 (1) 2 (1) (1)
11 12 13 2

1

1
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 (14a) 
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where ( , 1,2,3)pqg p q= = are the partial operators can 

be seen in Appendix-I. 

 
 
3. Solution using the wave propagation approach 
 

Over the past several years, various theories of vibration 

of tube/shell structures of various configurations and 

boundary conditions have been extensively studied (Iijima 

et al. 1996, Natuski et al. 2006, Shen and Zhang 2010, 

Ansari and Rouhi 2012, Hussain et al. 2018a). The Wave 

propagation approach is one of the widely and effectively 

used numerical technique by researchers to study the free 

vibrations of plates, shells and single-walled CNTs 

problems (Hussain and Naeem 2018a, Hussain et al. 2018b, 

Hussain et al. 2018c). The three modal displacement 

functions of the shell for ith tube can be regarded as 

( )( ) ( , , ) cos( ) mt k xi

mu x t a n e
   −

=  (15a) 

( )( ) ( , , ) sin( ) mt k xi

mv x t b n e
   −

=

 

(15b) 

( )( ) ( , , ) cos( ) mt k xi

mw x t c n e
   −

=

 

(15c) 

In which , ,m m ma b c define the displacement amplitude 

in ,x  and z directions respectively. The angular 

frequency is denoted by  , circumferential wave number  

by n and 
mk regarded as axial wave number associated 

with end conditions imposed on DWCNTs. Substituting the 

functions and derivatives into the field equations, hence 

obtained a set of simultaneous as follows 

( )

( ) ( ) ( )

11 12 13

2 2 21 ( )

i i i i i i

m m m

i

o m

G a G b G c

e a ha 

+ + =

− − 
 (16a) 

( )

( ) ( ) ( )

21 22 23

2 21 ( )

i i i i i i

m m m

i

o m

G a G b G c

e a hb 

+ + =

− − 
 

(16b) 

( )

( )

2 2
( ) ( ) ( ) 2 2

31 32 33

1 1

2 2 2

1 ( )

1 ( )

i i i i i i i i

m m m o ij m ij m

j j
j i j i

i

o m

G a G b G c e a c c c c

e a hc 

= =
 

 
 + + + −  − =
 
  

− − 

 
 
(16c) 

Where (1,2)i = and the algebraic operators 
( )i

pqG are 

derived using Appendix-II with , (1,2,3)p q = . The 

frequency vibration of double-walled CNT is exhibited 

based on nonlocal FSM subject to four end supports 

clamped -clamped (FSM-CC), clamped-simply supported 

(FSM-CS), simply supported-simply supported (FSM-SS) 

and clamped-free (FSM-CF). 

 

 

 

4. Results and discussion  
 

In this portion of writing, the significance of boundary 

conditions on the vibration behavior of DWCNTs is 

investigated employing wave propagation approach. The 

versatility and accuracy of proposed method is observed by 

numerous studies (Natuski et al. 2006, Natuski et al. 2007) 

to determine natural frequencies in shell and CNTs. This 

study specifically scrutinizes the small scale effect in the 

vibration analysis of double-walled CNT. The numerical 

values of Young modulus, Poisson’s ratio, thickness and 

density are 1 , 0.3, 0.34E TPa h nm= = =  and 

32.3 /g cm =  reported (Ansari and Arash 2013). 

Moreover, distinguished values of inner tube radius together 

with nonlocal parameter signifies the present non-local 

shell-based model to analyze frequency spectra. CNT is 

well known structure in shapes of i) armchair ii) chiral and 

iii) zigzag, here the vibration analysis is carried out of 

armchair CNT subjected to four conditions FSM-CC,FSM-

CS,FSM-SS and FSM-CF. For the convergence rate of CNT, the 

non-dimensional frequency parameters enumerated in the current 

work, i.e., using FSM, are happened to be in a good 

consistency along with the so-called exact results furnished 

by Loy et al. (Loy et al. 1999), those were established by 

working out with the deformation theory provided in Table 

1. The frequencies are described for non-dimensional 

frequency parameters as: 2(1 ) /R E   = −   as 

shown in Table 1 and positive coherence is achieved. 

The percentage difference is negligible as n = 1, 3, 4 are 

0.006%, 0.01%, 0.002% and at n = 2 by 0.0061% and 

present FSM result are lower than equivalent results 

executed by Loy et al. (1999). The frequency parameters 

for circumferential wave numbers n = 5, 6 are same with 

the outcomes of Loy et al. (1999). A non-dimensional 

frequency parameter   is defined for a CNT as: 

2(1 )  /R E   = − . The obtained results are cross-

compared with external data and provide agreement 

between modeling, computation and experimental outcomes 

as shown in Tables 1 and 2. Fig. 2 plots the fundamental 

frequency versus L/d for FSM-CC end condition for 

different modes of vibration. It should be mentioned for 

both cases, the values of L/d varies from 4.67 ~ 35.34. It is 

found that from Fig. 3, that frequencies of first (1, 1) 

 

 

Table 1 Comparison of FSM double-walled CNT 

frequencies with Ref. (Loy et al. 1999). (L/R = 20, h/R = 

0.02) 

Method 
             n 

1 2 3 4 5 6 

Loy et al. 

(1999) 

0.0161

02 

0.0093

82 

0.0221

05 

0.0420

95 

0.0680

1 

0.0997

3 

FSM 
0.0161

01 

0.0093

78 

0.0221

03 

0.0420

94 

0.0420

9 

0.0997

3 
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Table 2 FSM frequencies of clamped double-walled CNTs 

(h/R = 0.05, L/R = 2.5) 

m  V N 
Heydarpour 

et al. (2014) 
Present 

0 

0.12 

7 0.6240 0.6228 

9 0.6240 0.6234 

11 0.6240 0.6239 

0.17 

7 0.8157 0.8143 

9 0.8157 0.8152 

11 0.8157 0.8155 

0.28 

7 0.8553 0.8541 

9 0.8553 0.8547 

11 0.8553 0.8550 
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Fig. 2 Frequency comparison of FSM-CC double-walled 

CNTs for 1st and 3rd mode against L/d with FSM and MD 

simulations (Zhang et al. 2009) 

 

 

and third (3, 1) vibration modes decrease and reaches the 

constant values on increasing of L/d. The influence of L/d 

on the frequency of present model has been discussed and 

checked with MD simulation as shown in Fig. 3 for FSM-

CC end condition. The obtained results are well agreed with 

the reported results of MD simulation (Zhang et al., 2009). 

Particularly, the frequencies (THz) of double-walled CNTs 

correspond to L/d = 6.71 are 0.671, 1.565, 2.552, 3.523 for 

present model and 0.681, 1.535, 2.536, 3.588, as given by 

Duan et al. (2007), respectively. The vibrations of FSM-CC 

double-walled CNTs have been investigated both by 

simulations techniques (Li and Chou 2003, Li and Chou 

2004, Zhang et al. 2009) and experimentally (Yakobson et 

al. 1996, Hsu et al. 2008). It is seen that the frequencies 

have a notable effect on the vibration of double-walled 

CNTs with shorter length-to-diameter ratio. 
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Fig. 3. Frequency with respect to nonlocal parameter 

oe a  for aspect ratio 
1/L R = 5, 10, 20. 
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Fig. 4 Influence of distinct boundary condition against 

numerous values of 
oe a = 0.2, 0.35, 0.5 of armchair (5, 

5) double-walled CNTs with
1 0.35R nm=  

 

 

 

 

 

Fig. 3 exhibits the variation of fundamental eigen 

frequencies against values of nonlocal parameter that 

changes within a limit from 0 to 2. Three distinct aspect 

ratio, 
1/ 5,10,20L R = are discussed subject to four 

boundary conditions FSM-CC, FSM-CS, FSM-SS and 

FSM-CF. The radius of inner tube is considered here as 

1 0.35R nm= with all above mentioned numerical estimates 

of physical parameters incorporating also with vdW 

interaction between two tubes of double–walled CNT. The 

graph in figure shows that with a decrease in values of 

nonlocal parameter, frequency corresponding to each 

boundary condition tends to decrease. For lower values of

oe a  there is slight variation in frequencies of FSM-CC, 

FSM-CS, FSM-SS and FSM-CF respectively at the same 

time for lower aspect ratio the observation remains alike. 

Two main findings depicted by graph are, calculated 

frequencies coincide for all boundary condition and 

continue to decline with a rise in aspect ratio. The rooted 

nonlocal elasticity model also produces more significant 

results for minimal radius of tubes.  

The graphs in Fig. 4 compares the fundamental 

frequencies of armchair (5, 5) with three different values of 

nonlocal parameter 0.2,0.35 and 0.5oe a = versus length to 

diameter (L/d2) lies in range of 8 nm to 36 nm. The all other 

numerical estimates are same as quoted above. The curves 

in three graphs shows the validity of small-scale effect as 

the frequencies decreases with an increase of nonlocal 

parameter. Also, it is observed that as length to radius 

expands so the fundamental frequencies for all end 

conditions coincide. The FSM-CC attains highest 

fundamental frequency chased by FSM-CS after that FSM-

SS and at last FSM-CF comes. The graphs in Fig. 5 

included the fundamental frequencies of armchair (7, 7) and 

(9, 9) showing diversity with the 

0.2,0.35 and 0.5oe a = . The all depicted frequencies in 

graphs is according to length to diameter ratio. 

It is noticed that there is uniform increase in frequencies 

of arm chair corresponding to all four conditions FSM-CC, 

FSM-CS, FSM-SS and FSM-CF. Corresponding to 

0.2oe a = , the clamped-clamped (FSM-CC) condition of 

armchair (7, 7) and (9, 9) obtained frequencies 0.054 , 

0.0595and 0.0619 respectively. It is obviously seen 

there is an increasing trend and which remains unchanged 

for all boundary conditions as well as other two values of 

nonlocal parameter possess the identical behavior. 

Moreover, the more accretion in the nonlocal parameter, the 

lower the fundamental frequencies are observed. In Fig. 6, 

the inner tube radius is taken as 
1 1.5R nm= with other 

estimates remained same. The graph 6 represented the 

frequency 0.01245 against the first length to diameter 

ratio for FSM-CC of armchair (5, 5), whereas in Fig. 4(a) it 

was espied as 0.05399.It shows a descent in fundamental 

frequencies with an ascent in the inner tube radius. 

Similarly, in Figs. 5(b) and 5(c) the patter recognized the 

fact. One of the observations, that in long carbon nanotubes 

the difference among end conditions diminishes which  
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(e) (f) 

Fig. 5 Influence of distinct boundary condition against numerous values of 
oe a = 0.2, 0.35, 0.5 of armchair (7, 7) (a)-(c) 

and armchair (9, 9) (d)-(f) double-walled CNTs with
1 0.35R nm=  
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(c) 

Fig. 6 Influence of distinct boundary condition against 

numerous values of 
oe a = 0.2, 0.32, 0.5 of armchair (5, 

5) double-walled CNTs with 
1 1.5R nm=  

 

shows the accuracy of the purposed non-local elastic model 

along with wave propagation technique. Figs. 7 and 8 

illustrates the influence of boundary conditions for armchair 

(7, 7) and (9, 9) respectively considering the 
1 1.5R nm=

.The decline of the curves opposite of length to diameter 

ratio affirms the nonlocal effect. Corresponding to armchair 

(5, 5), (7, 7) and (9, 9), there is seen drop in the frequencies 

as inflates the nonlocal parameter value. 
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Fig. 7 Influence of distinct boundary conditions against 

numerous values of 
oe a = 0.2, 0.35, 0.5 of armchair (7, 

7) double-walled CNTs with
1 1.5R nm=  
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Fig. 8 Influence of distinct boundary conditions against 

numerous values of 
oe a = 0.2, 0.35, 0.5 of armchair (9, 

9) double-walled CNTs with
1 1.5R nm=  

 

However, as enlarges the indices of armchair, the curves 

indicated escalation in frequencies. The expanded values of 

length to diameter ratio exhibits the reality that nonlocal 

effect becomes negligible on boundary conditions. On the 

other hand, the frequency curve showed the difference in 

contrast of the boundary conditions becomes infinitesimal 

with an increase in inner tube radius. The gap presented in 

four boundary conditions is obvious in start of the curves as 

FSM-CF secures the lowest frequency in comparison of 

FSM-SS, FSM-CS and FSM-CC. 

 

 

5. Conclusions 
 

The Flügge shell theory based on nonlocal elasticity 

investigates the vibration characteristics of double-walled 

CNT. Theoretical formation of the nonlocal model involves 

the van der Waals interactions between the tubes and impact 

of small-scale effect subjected to four boundary supports. 

The wave propagation approach is exercised to determine 

eigen frequencies for armchair CNT. The fundamental 

frequencies scrutinized with assorted length to diameter 

ratios. The analysis done with the findings 

 The raised in value of nonlocal parameter 

reduces the corresponding fundamental 

frequency estimates. 

 Due to small scale effect fundamental 

frequency ratio decreases as length to 

diameter ratio increases. 

 Small scale effect becomes negligible on all 

end supports for the higher values of aspect 

ratio. 

 With the smaller inner tube radius double-

walled CNT behaves more sensitive towards 

nonlocal parameter. 

The present study can be appropriate to employ for 

analyzing the vibrations in double-walled CNTs with 

Galerkin and finite element methods. 
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