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Abstract. In this research, a simple four-variable trigonometric integral shear deformation model is proposed for the static
behavior of advanced functionally graded (AFG) ceramic-metal plates supported by a two-parameter elastic foundation and
subjected to a nonlinear hygro-thermo-mechanical load. The elastic properties, including both the thermal expansion and
moisture coefficients of the plate, are also supposed to be varied within thickness direction by following a power law distribution
in terms of volume fractions of the components of the material. The interest of the current theory is seen in its kinematics that
use only four independent unknowns, while first-order plate theory and other higher-order plate theories require at least five
unknowns. The "in-plane displacement field" of the proposed theory utilizes cosine functions in terms of thickness coordinates
to calculate out-of-plane shear deformations. The vertical displacement includes flexural and shear components. The elastic
foundation is introduced in mathematical modeling as a two-parameter Winkler-Pasternak foundation. The virtual displacement
principle is applied to obtain the basic equations and a Navier solution technique is used to determine an analytical solution. The
numerical results predicted by the proposed formulation are compared with results already published in the literature to
demonstrate the accuracy and efficiency of the proposed theory. The influences of "moisture concentration”, temperature,
stiffness of foundation, shear deformation, geometric ratios and volume fraction variation on the mechanical behavior of AFG

plates are examined and discussed in detail.
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1. Introduction

Advanced functionally graded material (AFGM) is a
mixture of ceramic and metal with a targeted change in the
volume fractions of two materials between the two faces of
any structure. Unlike fibrous composite laminated plates,
these are often affected by delamination and stress
concentration influences. As a result, advanced functionally
graded materials (AFGMs) are widely employed in many
"engineering structures"” that are subject to a severe thermal
environment because of their attractive characteristics. Vel
and Batra (2002), Chen et al. (2003) and Alibeigloo (2010)
conducted three-dimensional (3D) investigations of
"functionally graded plates” in a thermal environment.
However, solutions of 3D equations are very difficult when
a power law is considered for the gradation of the properties
of materials. Therefore, various researchers have developed
several two-dimensional "approximate shear deformation
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theories" to predict the bending behavior of mechanically or
hygro-thermally loaded functionally graded plates. The
conventional plate theory (CPT) established by "Kirchhoff”
in 1850 for the bending of thin structures subjected to
mechanical or "hygro-thermal" loading neglects the
influence of "transverse shear deformation”. Therefore, it
cannot be employed for thick plate in which the effects of
shear deformation are greater. Chi and Chung (2006ab)
presented CPT-based works to obtain a mathematical
solution for functionally and "exponentially graded plates".
Using the classical beam theory, Civalek and Oztiirk (2010)
analyzed the free vibration of tapered beam-column with
pinned ends embedded in Winkler-Pasternak elastic
foundation. Eltaher et al. (2018) employed a classical beam
theory and a modified porosity model for analyzing of FG
porous nanobeams. Mindlin (1951) developed a new theory
called "first-order shear deformation theory” (FSDT) which
considers the influence of shear deformation. In this model,
the transverse shear/strain repartition is supposed to be
constant across the structure thickness and therefore a shear
coefficient is needed (Nguyen et al. 2008, Benferhat et al.
2016, Avcar 2016, Avcar and Mohammed 2018, Avcar
2019). The shortcomings of CPT and FSDT led to the
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development of "higher order shear deformation theories"
(HSDTs) in order to overcome the use of shear correction
coefficients and to ensure the traction free boundary
conditions at the upper and lower faces of the structure. The
"third-order shear deformation theory" is one of those
HSDTs used by Reddy (2000) for FG plate analysis. An
analytical solution for the bending of FG plates was
obtained by Zenkour (2006) by applying the well
known"sinusoidal shear deformation theory”. Gulshan Taj
et al. (2013) proposed a "finite element model'taking into
account seven degrees of freedom for each node for the
bending analysis of rectangular and asymmetric FG plates
based on the theory of third order shear deformation. Aliaga
and Reddy (2004) developed a "finite element model" based
on the theory of third order shear deformation to investigate
the linear and nonlinear thermo-mechanical behavior of FG
plates. Yaghoobi et al. (2014) presented an analytical study
on post-buckling and the nonlinear dynamic response of FG
beams resting on a nonlinear elastic foundation and
subjected to thermo-mechanical loadings. Zidi et al. (2014)
presented the flexural analysis of FGM plates resting on an
elastic base and subjected to hygro-thermo-mechanical
loading by employing a four-variable "trigonometric shear
deformation theory". Kar and Panda (2015) exploited the
free vibration behavior of temperature-dependent FG
curved panels under a thermal environment. Daouadji et al.
(2016) discussed the bending behaviour of an imperfect
FGM plates under hygro-thermo-mechanical loading with
analytical validation. Sayyad and Ghugal (2017a) have
developed a unified theory of shear deformation for the
static analysis of FG plates and beams. Sayyad and Ghugal
(2015, 2017b) have reviewed various refined and advanced
models of beams and plates available in the scientific
literature. Fazzolari (2016) also employed hierarchical
refined plate theories to study the modal properties of FG
plates composed of temperature-dependent materials and
subjected to a "temperature gradient”. Chavan and Lal
(2017) studied the dynamic bending response of SWCNT
reinforced composite plates subjected to hygro-thermo-
mechanical loading. Bouderba (2018) conducted a study on
the bending of FGM rectangular plates resting on non-
uniform elastic foundations in thermal environment using
an accurate theory. Recently, Sayyad and Ghugal (2019)
studied the effects of nonlinear hygro-thermo-mechanical
loading on the bending of FG rectangular plates resting on
an elastic foundation using a four-unknown plate theory.
Other HSDTs can be found in the literature review where
are used to study several mechanical behaviors of structures
(Mahapatra and Panda 2015, Mahapatra et al. 2016a,
Sharma et al. 2018 and 2019, Salah et al. 2019). In addition,
it should be noted that in general, two types of
methodologies are adopted for the analysis of hygrothermal
modelling as is found in the literature (Mahapatra et al.
2016bc).

In this research, a simple four-variable trigonometric
integral shear deformation theory containing undetermined
integral terms in the kinematic, is proposed for the bending
behavior of simply supported advanced functionally graded
(AFG) ceramic-metal plates under non-linear hygro-
thermo-mechanical loading and resting on an elastic

foundation. The ‘"in-plane displacement field” uses
undetermined integral terms with cosine functions in terms
of the z-coordinate to calculate out-of-plane shear
deformations. The theory verifies tensile boundary
conditions on the upper and lower faces of the structure
without the use of problem-dependent shear correction
coefficients. The material properties of the structure are
assumed to be varied in the z-direction by following a
simple power law distribution in terms of volume fractions
of the constituents of the material. The virtual displacement
principle is used to derive the basic equations. The
foundation is introduced in a mathematical formulation as a
two-parameter model "Winkler—Pasternak foundation”. A
simply supported AFG ceramic-metal plate under a
nonlinear hygro-thermo-mechanical load across the
thickness is considered and the Navier solution is used for
the '"detailed numerical study”. The numerical results
computed by the proposed theory are compared to theories
available in the literature to demonstrate its efficiency and
accuracy. The influences of "moisture concentration”,
temperature, stiffness of foundation, shear deformation,
geometric ratios and volume fraction variation on the
mechanical behavior of AFG plates are examined and
discussed in detail.

2. A simple four-variable trigonometric integral plate
theory

In this article, the kinematics uses trigonometric
functions in z coordinates to take into account the shear
strains out of the plane. Unlike the conventional HSDTs and
FSDT, the current theory has a simple displacement field
that considers undetermined integral terms and only four
variables

u(x,y,z,t):uo(x,y,t)—z%+klf(z)j@(x,y,t)dx (1a)

V(X Y,2) =v, (X, y,t) - z%+ k, f (Z)I@(X, y,t)dy (1b)

W(X,Y,z,t) =w,(x,y,t) (1c)

here, Uy, V,, W, and & ,are the displacement functions of
the median surface of the plate. The constants k;, and k,

depend on the plate's geometry. In this work, the shear
strain shape function is given by

z| z+2cos(zz/h
2+
The linear strain expressions derived from the

kinematics of equations (1), are as follows
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By using the Navier type method, the integrals
considered in the above equations can be treated via the
following expressed:
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with A and g are defined in Eq. (16).

2.1 Material properties of AFG plate and constitutive
equations:

The material characteristics of the AFG plate, like
"Young’s modulus" E |, "shear modulus" G , "thermal
expansion coefficient” * and "moisture expansion
coefficient" [, are expressed according to the volume
fraction of the "constituent materials". According to the
power-law variation, these mechanical properties are given
by

p
E(z)=Em+(EC—Em)(222;hJ (7a)
G(z):Gm+(GC—Gm)(222:lhjp (7b)

2z+h\P
a(z) = ap +(a. —ay) (7¢)
2h
2z+h
p@= a5 20| a4
where E., G, o, and . are the corresponding

mechanical properties of metal and E,, G, o, and S,

are the corresponding ones for metal. p is the gradient

index and p=>0. The lower surface of the AFG plate is

ceramic rich and the upper surface is metal rich.

The examined AFG plate is subjected to the "mechanical
load" and variations in temperature and moisture
concentration. Thus, the "stress—strain relationship” for the
AFG plate is as follows

Oy Chy C, 0 0 0 |&x—aAT-pAC

oy C, Cp O 0 0 ||& —aAT —pAC
Twe=| 0 0 Ci 0 O Txy (®)
Ty 0 0 0 Gy O Yz

Ty, 0 0 0 0 Cyu4 Yy

where ( 0y, Oy, Ty, Ty, Ty, ) and (&, €y Vyys Viar Vyz )
are the stress and strain components respectively;
AT =T-T, and AC=C-C,, where T, is the initial
temperature and C; is the initial moisture concentration.

The temperature and moisture field variations across the
thickness are assumed to be

ATy D =T+ ST+ 2T xy) o

AC(Y.2) =G D+ Colx Y) + 2 (x,y)  (9b)

where T, , T, and T; are thermal loads; and C;, C,
and C, are hygro loads. The stiffness coefficients Cj; are

expressed as

Cu(2) = cnur—an qxn—van (10a)
E
Ce6(2) =Cs5(2) =Cys(2) = 2(1(3/) (10b)

2.2 Governing equations

The governing equations can be deduced by employing
the principle of "virtual displacements", which is
analytically given by



514 Abdelouahed Tounsi et al.

h/2

I I[GX§ E+0,0 6,470 7 +7,0 7, +7,0 7sz dQdz
-hi2Q (11)
-[@-1,)swd Q=0

Q

where €2 is the top surface, and q is the "applied
transverse load". f, is the density of the reaction force of

foundation. For the "Winkler-Pasternak foundation model"
f, is given by

o*w(x, y) o*w(x, y)
feszW(X,y)—kpl o —kp2 6y2 (12)

where K, is the Winkler parameter and kp is the shear

parameter.

The governing equations are derived from Eq. (11) by
integrating the displacement gradients by parts and setting
the coefficients of Ju,, oVy, ow, and 06 to zero

separately
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where ( Ny, Ny, N, ) denote the total in-plane force
b b b s s

resultants, (M, My, M), (Mg, M; ,Mjy) are the total

moment resultants and (Q,, ,Qyz) are the transverse shear

stress resultants and they are expressed as
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2.3. Analytical solution

In the current work, the Navier solution method is
utilized to obtain an analytical solution for simply supported

AFG rectangular plates. The unknowns variables are
expressed as

U, U,cos(4 x)sin(x y)
A V,sin(4 x)cos(u y)
W, B W,sin(4 x)sin(x y)
0 Gysin(A x)sin(x y)

(15)

whereU,, Vy, Wy and 6, are arbitrary parameters to be
determined, with

A=rmla, u=xlb (16)

The following trigonometric form is supposed for the
hygro-thermo-mechanical loads (q, T, T,, T;, C;,

C,, C3)

Q)  [asin(A ¥)sin(u y)
T, t,sin(A x)sin(u y)
T, t,sin(4 x)sin(u y)
T, t=1tsin(A x)sin(x y) (17)
C c,sin(A x)sin(u y)
C, c,sin(A x)sin(u y)
C, c,sin(4 x)sin(x y)

where ¢y, %, t,, t3, C, Cyand Cjare the "Fourier

coefficients" of hygro-thermo-mechanical loads.

Substitution of Eqgs. (15) and (17) into the governing
Egs. (13) leads to the following system of algebraic
equations

[Cl{a}={F} (18)

where {A}={U,V,W,,6,}' and [C]

matrix given by
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in which the elements of stiffness matrix [C] are as

follows
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and stiffness components AJ— , Bij ,.., are given as

(A.B,.D;.E;.F,.G; )= lf/zcij(l,z,f(z),zZ,zf(z),f(z)Z)dz, 10

(i.i)=(126)
A :l};qj 9(2dz, (i, )= (4.5) (21b)

and{ }={R.F,.FR,F }t is a generalized force vector given

= 2[[Ag+Bth +BlTst] [Ac +%Cc +Bcscsjj,

h
0 (AL AL
[ uhw))tﬁ(wﬁu;wz»tal
Fa:_{(Blc(f+,12))01+(Df(1;+ﬂ2))cz+(Dfs(i;+”2))ca}+qﬁ (22)
PRI 2L SN
” +{(k,+BK,)B?) c1+((Avk”Evk2)Dfs) c2+((Akl+ikz)Hf) ¢,

with stiffness components are given as

(A'.B/,D/,B",D" H)= j a(2)C; (12,2, 1(2).2 f(2), f(2)?)dz (23a)

-h/ 2

(A°.B,DF,B*, D H) = I,B(Z)C,J(lzz f(2),21(2),1(2)?)dz (23b)

3. Numerical results

In this section, the influences of the temperature,
moisture and foundation parameters on the deflection and
stresses of simply supported AFG plates resting on
Pasternak foundations are examined and discussed. The
AFG rectangular structures resting on Pasternak
foundations are considered to be fabricated from ceramic
(Zirconia) and metal (Titanium) with the following
mechanical material properties:

e Metal (Titanium, Ti-6Al-4V): E, =66.2GPa,

v=033 4 =103x(10°/°C), ,=0.33
e Ceramic (Zirconia, ZrO,): E; =117 GPa,

= _6 0,
v=033 4 =711x(10°/°C), B, =

The initial temperature and humidity concentration are
considered as 25°C and 0%, respectively. Numerical results
are employed in terms of non-dimensional quantities

(stresses and deflection). The following non-dimensional
quantities are utilized to define the computed results

_ 100D (a b _ 1 abh
W:_4W _,_,0 ,GX: GX PN
ga \22 100g, "\2 22

_ 1 hy_ 1 b
=1y 00— ,TXZ=—Z'XZ[0,—,Z ,
10, 3 109, “\ "2

T
24
ak, o ak, bk, 24
KW = D 1 pl = D ' sz = D '
3
and D :i
12(1-v%)

The non-dimensional quantities of deflections and
different types of stresses are presented in Tables 1-4.
Numerical values obtained using the present simple four-
variable trigonometric integral shear deformation theory are
compared with those predicted by theories of Zidi et al.
(2014), Reddy (2000), Touratier (1991), Sayyad and Ghugal
(2019), FSDT of Mindlin (1951), and classical plate theory
(CPT).

Table 1 provides the non-dimensional deflection of the

square AFG plate resting on "elastic foundations" and
subjected to "sinusoidal mechanical" and hygro-thrmo-
mechanical loadings for different values of the gradient
index. From this example, it can be concluded that the
"Winkler foundation" parameter provides a higher value of
deflection compared to those predicted by considering the
"Pasternak foundation" parameters. The important values of
deflection are found when a structure is subjected to
nonlinear hygro-thrmo-mechanical load whereas the weak
values of deflection are found when a structure is subjected
to only a mechanical load. It is also noted that deflection
increases with increasing the gradient index because of the
reduction in the rigidity of the plate and diminishes with
increasing the geometric ratio (a/h) of the AFG plates.
The variations of deflection versus the geometric ratio a/h
are demonstrated in Figs. 1-3. The results presented in these
figures show the influences of the " Winkler foundation" and
"Pasternak foundation" coefficients on the deflections when
the structure is subjected to a pure "mechanical load", linear
hygro-thermo-mechanical load, and a nonlinear hygro-
thermo-mechanical load, respectively. It can be seen from
these figures that the influences of the foundation
coefficients on the non-dimensional deflection of the AFG
plates are felt more in the thick plates. It is indicated in
Figures 1 to 3 that the deflection of the plate is greater when
it is subjected to a hygro-thermo-mechanical load with
respect to a pure mechanical load. This is due to that the
nonlinear hygro-thermo-mechanical load, which presents
considerable influences on the extensional behavior of the
plate as compared to the flexural behavior. It is also
observed that the deflection is minimum for p=0 and is
maximum for P=o0 in all kinds of loadings.

Table 2 presents the influences of the gradient index
(P) on the non-dimensional deflection and stresses of a

AFG rectangular plate (b=3a) resting on a Pasternak
elastic foundation( K, =100, Kpl =100, sz =100) and
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Table 1 Influence of gradient index on the non-dimensional deflections of AFG square (b=a) plates resting on elastic
foundation and subjected to hygro-thermo-mechanical loading

a/h
5 10 20

p K Kn Kp g 6 & 5 oa o o Present Ref® Present Ref® Present Ref®
0 100 0 0 100 0 O 0 0 0 0 0.2405 0.2350 0.2136 0.2122 0.2066 0.2062
100 0 10 O 0 100 0 1.8330 1.8390 0.6258 0.6251 0.3106 0.3107

100 0 10 10 O 100 100 3.0253 3.4058 0.9354 0.9574 0.3887 0.3894

0 100 100 100 O O 0 0 0 0 0.0437 0.0434 0.0427 0.0426 0.0424 0.0424
100 0 10 O 0 100 0 0.3329 0.3404 0.1251 0.1256 0.0638 0.0638

100 0 10 10 O 100 100 0.5494 0.6305 0.1869 0.1924 0.0798 0.0800

100 100 100 100 O O 0 0 0 0 0.0418 0.0416 0.0409 0.0409 0.0407 0.0407
100 0 10 O 0 100 0 0.3190 0.3262 0.1200 0.1208 0.0612 0.0612

100 0 10 10 O 100 100 0.5265 0.6042 0.1793 0.1845 0.0765 0.0768

1 100 0 0 100 0 O 0 0 0 0 0.2923 0.2862 0.2623 0.2607 0.2544 0.2540
100 0 10 O 0 100 0 2.0862 2.4129 0.7299 0.8115 0.3726 0.3936

100 0 10 10 O 100 100 34318 4.2935 1.0817 1.2118 0.4616 0.4991

0 100 100 100 O O 0 0 0 0 0.0451 0.0450 0.0443 0.0443 0.0441 0.0441
100 0 10 O 0 100 0 0.3221 0.3806 0.1234 0.1383 0.0646 0.0683

100 0 10 10 O 100 100 0.5298 0.7053 0.1828 0.2133 0.0800 0.0866

100 100 100 100 O O 0 0 0 0 0.0432 0.0430 0.0425 0.0424 0.0422 0.0422
100 0 10 O 0 100 0 0.3082 0.3630 0.1181 0.1320 0.0619 0.0654

100 0 10 10 O 100 100 0.5070 0.6749 0.1751 0.2043 0.0766 0.0830

2 100 0 0 100 0 O 0 0 0 0 0.3075 0.3007 0.2750 0.2732 0.2664 0.2659
100 0 10 O 0 100 0 2.1253 2.5118 0.7512 0.8483 0.3869 0.4118

100 0 10 10 O 100 100 3.4853 4.6982 1.1086 1.3138 0.4774 0.5222

0 100 100 100 O O 0 0 0 0 0.0455 0.0453 0.0447 0.0446 0.0445 0.0444
100 0 10 O 0 100 0 0.3143 0.3786 0.1221 0.1386 0.0646 0.0688

100 0 10 10 O 100 100 0.5154 0.7083 0.1801 0.2147 0.0797 0.0872

100 100 100 100 O O 0 0 0 0 0.0435 0.0434 0.0428 0.0427 0.0426 0.0425
100 0 10 O 0 100 0 0.3006 0.3623 0.1168 0.1327 0.0618 0.0659

100 0 10 10 O 100 100 0.4930 0.6776 0.1724 0.2055 0.0763 0.0835

5 100 0 0 100 0 O 0 0 0 0 0.3075 0.3154 0.2750 0.2854 0.2664 0.2774
100 0 10 O 0 100 0 2.1253 2.6252 0.7512 0.8892 0.3869 0.4308

100 0 10 10 O 100 100 3.4853 4.9469 1.1086 1.3799 0.4774 0.5469

0 100 100 100 O O 0 0 0 0 0.0458 0.0456 0.0450 0.0449 0.0448 0.0447
100 0 10 O 0 100 0 0.3079 0.3800 0.1212 0.1400 0.0646 0.0695

100 0 10 10 O 100 100 0.5034 0.7161 0.1783 0.2173 0.0795 0.0882

100 100 100 100 O O 0 0 0 0 0.0438 0.0436 0.0431 0.0430 0.0429 0.0428
100 0 10 O 0 100 0 0.2944 0.3634 0.1160 0.1340 0.0619 0.0665

100 0 10 10 O 100 100 0.4813 0.6849 0.1706 0.2080 0.0761 0.0844

o 100 0 0 100 0 O 0 0 0 0 0.2405 0.3519 0.2136 0.3224 0.2066 0.3146
100 0 10 O 0 100 0 1.5500 2.9516 0.5526 1.0017 0.2921 0.4872

100 0 10 10 O 100 100 2.5304 5.4908 0.8071 1.5485 0.3564 0.6173

0 100 100 100 O O 0 0 0 0 0.0437 0.0463 0.0427 0.0458 0.0424 0.0456
100 0 10 O 0 100 0 0.2815 0.3888 0.1104 0.1422 0.0600 0.0706

100 0 10 10 O 100 100 0.4596 0.7233 0.1613 0.2198 0.0731 0.0895

100 100 100 100 O O 0 0 0 0 0.0418 0.0443 0.0409 0.0437 0.0407 0.0436
100 0 10 O 0 100 0 0.2697 0.3716 0.1059 0.1360 0.0575 0.0675

100 0 10 10 O 100 100 0.4403 0.6913 0.1547 0.2102 0.0702 0.0856

@ Taken from Sayyad and Ghugal (2019)

under a sinusoidal mechanical load. The computed results
are in excellent agreement with those predicted by other
theories showing that the present simple four-variable
trigonometric integral shear deformation model is able to
investigate the mechanical response of the AFG plate. It
should be noted that, as the gradient index increases for the
AFG plates, the deflection increases.

The inclusion of the basic Winkler parameter gives results
of greater magnitude than those obtained with the inclusion
of Pasternak's basic parameters. The reverse influence of
the gradient index is observed on results of stresses of the
AFG plate. Indeed, the computed stresses are reduced with
increasing the gradient index.
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Table 2 Influence of gradient index on non-dimensional deflections and stresses of AFG rectangular plates
(b/a=3) resting on elastic foundation and under mechanical load (a/A=10, go =100, t,= tr= =0, c1= c2= ¢3=0)

Kw Kp1 K> Theory

w (o} T T

X Xy Xz
0 100 100 100 Present 0.08226 0.04921 0.07008 0.04356
Ref® 0.08227 0.04927 0.07068 0.03700
Zidi et al. (2014) 0.08228 0.04919 0.06972 0.04116
Reddy (2000) 0.08228 0.04919 0.06972 0.04116
Touratier (1991) 0.08227 0.04919 0.06972 0.04246
Mindlin (1951) 0.08228 0.04890 0.06986 0.03293
CPT 0.08201 0.05035 0.07193 -
1 100 100 100  Present 0.08417 0.04575 0.05216 0.03403
Ref® 0.08416 0.04580 0.05181 0.02924
Zidi et al. (2014) 0.08418 0.04574 0.05190 0.03214
Reddy (2000) 0.08417 0.04574 0.05190 0.03214
Touratier (1991) 0.08418 0.04574 0.05191 0.03318
Mindlin (1951) 0.08418 0.04546 0.05198 0.02572
CPT 0.08399 0.04683 0.05353 -
2 100 100 100  Present 0.08456 0.04542 0.04794 0.03131
Ref® 0.08453 0.04549 0.04776 0.02633
Zidi et al. (2014) 0.08457 0.04539 0.04770 0.02951
Reddy (2000) 0.08457 0.04539 0.04770 0.02951
Touratier (1991) 0.08457 0.04540 0.04770 0.03050
Mindlin (1951) 0.08457 0.04515 0.04781 0.02303
CPT 0.08437 0.04655 0.04931 -
5 100 100 100  Present 0.08491 0.04655 0.04573 0.02910
Ref® 0.08487 0.04665 0.04616 0.02450
Zidi et al. (2014) 0.08491 0.04652 0.04549 0.02735
Reddy (2000) 0.08491 0.04652 0.04549 0.02735
Touratier (1991) 0.08492 0.04656 0.04549 0.02832
Mindlin (1951) 0.08491 0.04630 0.04568 0.02085
CPT 0.08471 0.04780 0.04714 -
Metal 100 100 100  Present 0.08583 0.02905 0.04137 0.02572
Ref® 0.08582 0.02909 0.04174 0.02184
Zidi et al. (2014) 0.08584 0.02905 0.04115 0.02428
Reddy (2000) 0.08584 0.02905 0.04115 0.02428
Touratier (1991) 0.08584 0.02906 0.04116 0.02507
Mindlin (1951) 0.08584 0.02888 0.04126 0.01943
CPT 0.08569 0.02978 0.04250 -

@ Taken from Sayyad and Ghugal (2019)

The comparison of the numerical results (deflection and
stresses) of AFG rectangular plates resting on Pasternak
elastic foundation and under mechanical and linear hygro-
thermal loading is presented in Table 3. When the numerical
results of Tables 2 and 3 are compared, it should be noted
that the deflection and the stresses are increased because of
the inclusion of hygro-thermal influences. A very good
agreement is demonstrated between the calculated results
and those given by other researchers for all values of the
gradient index.

The numerical results of the non-dimensional deflection
and the stresses of AFG rectangular plates for nonlinear
hygro-thermo-mechanical loading are reported in Table 4. It
is observed that the deflections and stresses generated in the
AFG plate in the case of the nonlinear hygro-thermo-
mechanical load are more important in comparison with the
case of pure mechanical and linear hygro-thermo-

mechanical loadings. This is due to the expansion of the
structure. The comparison carried out between the
computed results and those given by other theories validates
the efficiency of the proposed theory for predicting the
bending behavior of an AFG plate resting on Pasternak
foundation and subjected to nonlinear hygro-thermo-
mechanical loading.

Fig. 4 presents the variation of the non-dimensional in-

plane normal stress O, across the thickness of the AFG
rectangular plates resting on an elastic foundation( K, =100,
Kpl =100, sz =100). It can be observed from this figure

that the variation of O, is nonlinear for P =2, 5, and 10.

The nonlinearity influence becomes more important as the
plate is subjected to the nonlinear hygro-thermo-mechanical
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Table 3 Influence of gradient index on non-dimensional deflections and stresses of AFG rectangular plates(b/a=3)
resting on elastic foundation and under linear hygro-thermo-mechanical load (a/4=10, go =100, t,= =0, £,=10, c1= ¢3=0,

c2=100)
p K Kpi Ky Theory W o, Ty T,
0 100 100 100  Present 0.17266 0.50297 0.17581 0.40819
Ref® 0.17304 0.50437 0.17493 0.34779
Zidi et al. (2014) 0.17309 0.50498 0.17490 0.38766
Reddy (2000) 0.17309 0.50498 0.17490 0.38766
Touratier (1991) 0.17309 0.50716 0.17495 0.40007
Mindlin (1951) 0.17309 0.50245 0.17351 0.31024
1 100 100 100  Present 0.18457 0.51268 0.15698 0.46946
Ref® 0.18500 0.51459 0.15668 0.40486
Zidi et al. (2014) 0.18504 0.51450 0.15631 0.44545
Reddy (2000) 0.18504 0.51450 0.15631 0.44545
Touratier (1991) 0.18504 0.51476 0.15635 0.45984
Mindlin (1951) 0.18505 0.51084 0.15494 0.35542
2 100 100 100  Present 0.18511 0.50165 0.13522 0.46362
Ref® 0.18559 0.50394 0.13423 0.40012
Zidi et al. (2014) 0.18560 0.50336 0.13451 0.43831
Reddy (2000) 0.18560 0.50336 0.13451 0.43831
Touratier (1991) 0.18560 0.50363 0.13461 0.45337
Mindlin (1951) 0.18567 0.49980 0.13244 0.33958
5 100 100 100  Present 0.18646 0.48782 0.12494 0.46400
Ref® 0.18699 0.49072 0.12515 0.39206
Zidi et al. (2014) 0.18696 0.48940 0.12417 0.43754
Reddy (2000) 0.18696 0.48940 0.12417 0.43754
Touratier (1991) 0.18694 0.48967 0.12431 0.45322
Mindlin (1951) 0.18712 0.48601 0.12125 0.32978
1 100 100 100  Present 0.18791 0.59246 0.12150 0.48443
Ref® 0.18837 0.43102 0.12186 0.41102
Zidi et al. (2014) 0.18840 0.43095 0.12087 0.45993
Reddy (2000) 0.18840 0.43095 0.12087 0.45993
Touratier (1991) 0.18840 0.43117 0.12092 0.47465
Mindlin (1951) 0.18840 0.42794 0.11921 0.36808
@ Taken from Sayyad and Ghugal (2019)
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Fig. 3 Variation of non-dimensional transverse displacement (W ) with respect to aspect ratio (a/k) for square AFG plate
resting on elastic foundations and subjected to nonlinear hygro-thermo-mechanical load

loads. It is also seen that the O . 18 in a compressive state

at the upper face and a tensile state at the lower face. Figs. 5
and 6 present the influences of foundation coefficients and

different loading conditions on the variations of 7, w and

T,, across the plate.

4. Conclusions

In this study, the hygro-thermo-mechanical bending
behavior of advanced functionally graded rectangular plates
based on the two-parameter elastic foundation is
investigated using the theory of four-variable trigonometric
shear deformation. The theory considers the tensile
boundary conditions on the upper and lower surfaces of the
plate without the need for "shear correction factors". The
Navier solution is used to obtain the analytical solutions for

simply supported "boundary conditions". The influences of
foundation stiffness and gradient index on the hygro-
thermo-mechanical behaviors of AFG plates are examined.
The current four-variable model predicts excellent non-
dimensional displacements and stresses over those predicted
using five-variable plate models. The theory accounts for
the nonlinear variation of temperature and humidity
concentration over the entire thickness of the plate. Finally,
this work will help us to design advanced functionally
graded materials to ensure better durability and efficiency
for hygro-thermal environments. An improvement of the
present formulation will be considered in the future work to
consider other type of materials (Kar et al. 2015, Mahapatra
and Panda 2016, Mehar et al. 2017, Sahoo et al. 2016,
2017, Hirwani et al. 2018, Mehar and Panda 2018,
Panjehpour et al. 2018, Shahadat et al. 2018, Faleh et al.
2018, Selmi and Bisharat 2018, Hussain and Naeem 2019,
Fadoun 2019).
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