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1. Introduction 

 

Nanomaterials and nanostructures have attracted many 

researchers for more investigations on the various aspects of 

them in different conditions and geometries. Experimental 

results on the structures in nano and micro scales indicate 

that the classical size-independent theories have not 

capability to simulate various behaviors of structures in 

small scales. To model the structures in micro and nano 

scales, some size-dependent theories have been developed 

by various researchers to account size-dependency. The 

literature review indicates that analysis of nanomaterials 

and nanostructures needs new theories to account small 

scale effects of discontinuities. Various non-classical 

theories have been developed by many authors for better 

simulation of mechanical behaviors of nanostructures in 

small scales. To justify originality and importance of the 

present paper, a deep literature survey is presented based on 

the previous studies. 

Ansari et al. (2016) investigated nonlinear buckling and 

post-buckling analysis of cylindrical nanoshell subjected to 

axial loads based on a size-dependent analysis. Surface 

elasticity was included in governing equations based on 

theory of Gurtin and Murdoch. They developed the 

kinematic relations based on the Donnell’s shell theory. The 

geometric nonlinearity was accounted based on the von 

Kármán's relations. The numerical results have been 

presented with and without surface stress to show that this 

component has significant influence on the responses.  
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Alibeigloo and Jafarian (2016) studied bending and free 

vibration analysis of cylindrical shell reinforced with 

carbon nanotubes based on exact theory of elasticity. 

Various distributions of reinforcement were defined along 

thickness direction. The results were calculated for simply-

supported boundary condition based on Fourier series 

solution. The effect of other boundary conditions was 

investigated based on DQM. Exact solution and elastic 

analysis of FG cylindrical and spherical shells was studied 

by Tutuncu and Ozturk (2001). Jabbari et al. (2009) used 

two-dimensional thermo-elasticity relations for stress and 

deformation analysis of cylindrical pressure vessels with 

short length. FSDT was employed for size-dependent 

buckling analysis of FG piezoelectric cylindrical nanoshell 

by Mehralian et al. (2016). Size dependency was accounted 

based on modified couple stress theory. The equilibrium 

equations were derived based on principle of virtual work. 

The numerical results were presented to discuss on the 

influence of micro length scale parameter, length, thickness, 

external electric voltage and in-homogeneous index on the 

critical loads. Zhang et al. (2015) studied free vibration 

analysis of a functionally graded cylindrical micro shell 

based on four unknown shear deformation theory and strain 

gradient theory. After evaluation of effective material 

properties using Mori–Tanaka homogenization technique, 

the governing equations of motion have been derived based 

on Hamilton’s principle. Size-dependent magneto-electro-

elastic vibration analysis of cylindrical nano shell resting on 

Winkler’s foundation was studied by Ke et al. (2014a) 

based on nonlocal Love's shell theory. Thermo-electro-

mechanical vibration analysis of cylindrical nano shell 

made of piezoelectric materials was studied by Ke et al. 

(2014b) based on Love’s thin shell theory for various 

boundary conditions. It is a well-established fact that 
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computational methods are capable of dealing with a wide 

application range. Some advanced computer-based 

numerical methods for analysis of mechanical and 

mathematical problems were proposed by various 

researchers (Guo et al. 2019, Anitescu et al. 2019, Niu et al. 

2019). 

Shao (2006) investigated the thermoelastic analysis of a 

thick-walled cylinder under the mechanical and thermal 

loads. Transient thermo-elastic analysis of a FG hollow 

cylinder was presented by Ootao and Tanigawa (2006). 

Arefi et al. (2016) presented two-dimensional thermo-

elastic analysis of functionally graded cylindrical shell 

subjected to fix and variable thermal and mechanical 

loadings, respectively. Shen and Xiang (2012) studied large 

amplitude vibration analyses of nanocomposite cylindrical 

shells reinforced by SWCNTs based on the higher-order 

shear deformation theory and nonlinear von Kármán-type of 

kinematic relations. Various patterns of reinforcements were 

defined for functionally graded nanocomposite materials. 

Sun et al. (2013) studied free vibration characteristics of 

rotating cylindrical shells with arbitrary edges based on 

Sanders shell theory. Shakeri et al. (2006) studied dynamic 

analysis of FG thick hollow cylinders under dynamic load 

using Galerkin finite element and Newmark methods. To 

solve the problem, the cylinder was divided to some sub 

cylinders and continuity condition was satisfied between 

adjacent layers for displacements and stresses. 

First-order shear deformation theory (FSDT) was used 

to derive governing equations of motion and free vibration 

responses of moderately thick FG conical, cylindrical shells 

and annular plates by Tornabene (2009). Generalized 

Differential Quadrature (GDQ) method was used to convert 

governing equations of motion to a standard linear 

eigenvalue problem. Thermo-elastic free vibration and 

buckling analyses of FG piezoelectric cylindrical shell were 

studied by Sheng and Wang (2010). They used Hamilton's 

principle and quadratic variation of electric potential to 

derive governing equations of motion based on FSDT. Free 

vibration analysis of a two-dimensional functionally graded 

cylindrical shell with finite length was studied by Asgari 

and Akhlaghi (2011) based on three-dimensional equations 

of elasticity. Malekzadeh and Heydarpour (2012) 

investigated free vibration analysis of rotating FG 

cylindrical shells subjected to thermal loads based on the 

FSDT. They included influences of centrifugal and Coriolis 

forces due to rotation of the shell. The natural frequencies 

were presented in terms of various parameters such as 

angular velocity and various boundary conditions. Wave 

propagation analysis of carbon nanotubes was studied based 

on nonlocal elastic shell theory by Wang and Varadan 

(2007). For studying effect of various input parameters on 

the outputs of a mathematical problem, a statistical scrutiny 

may be taken into account. For example, simple MATLAB 

codes were provided for sensitivity analysis of 

computationally expensive models by Vu-Bac et al. (2016). 

Ferreira et al. (2007) employed first-order theory of 

Donnell for natural frequencies analysis of doubly curved 

cross-ply composite shells based on multiquadric radial 

basis functions. Application of modified couple stress 

formulation on the vibration analysis of a sandwich 

nano/micro plate with various boundary conditions was 

developed in Reference (Arefi et al. 2017). Ahmadi and 

Najafi (2016) studied stress analysis and inter-laminar stress 

analysis of a rotating thin laminated cylindrical shell based 

on the Layerwise theory. Shokrollahi (2018) employed 

Kirchhoff-Love method and harmonic differential 

quadrature method for deformation and stress analysis of a 

sandwich cylindrical shell. Ahmadi and Foroutan (2019) 

studied resonances of FG porous cylindrical shell under 

two-term excitation based on classical plate theory of shells 

and von-Karman equation. Some important works on the 

functionally graded and laminated cylindrical shells can be 

observed in References (Santos et al. 2009, Loy et al. 1999, 

Pradhan et al. 2000). 

A literature survey on the free vibration analysis, 

nonlocal elasticity theory and FSDT of cylindrical shell was 

performed. Our review indicates that free vibration analysis 

of functionally graded cylindrical nanoshell based on a two-

dimensional analysis has not been studied by researchers 

and is presented for the first time in this paper. Shear strains 

along the axial and radial directions are accounted in our 

analysis based on the first-order shear deformation theory. 

The numerical results are presented based on analytical 

approach to investigate influence of significant parameters 

such as nonlocal parameter, two parameters of  Pasternak 

foundation, mode number and some dimensionless 

geometric parameters such as length to radius, length to 

thickness and radius to thickness of cylinder. 

 

 

2. Governing equations 
 

We consider a functionally graded cylindrical nanoshell 

with thickness ℎ and length 𝐿 defined in polar coordinate 

system. The geometry and coordinate system of a 

cylindrical nanoshell are shown in Fig. 1. Note that 𝑟 is the 

local radius and 𝑧  is measured from middle surface. 

Relation between the local radius and z is expressed as 𝑟 =
𝑅 + 𝑧. 

Hamilton's principle ∫ δ(𝑇 − 𝑈 +𝑊)𝑑𝑡 = 0
𝑡

0
 is used to 

derive governing equations of motion of a functionally 

graded nanoshell in which 𝑈 is the strain energy, 𝑇 is the 

kinetic energy and 𝑊 is the work done by external forces in 

time 𝑡. The variation of strain energy is defined as 

𝛿𝑈 =∭ (𝜎𝑥𝛿𝜀𝑥 + 𝜎𝜃𝛿𝜀𝜃 + 𝜎𝑧𝛿𝜀𝑧 + 𝜏𝑥𝑧𝛿𝛾𝑥𝑧) 𝑑𝑉𝑉
, (1) 

where 𝜎𝑖 , 𝜀𝑖  are stress and strain components satisfied 

differential constitutive relations based on Eringen’s 

nonlocal elasticity theory and three-dimensional Hooke's 

law in the following way 

(1 − 𝜉2∇2)𝜎𝑥 = 𝜆(𝑧)[(1 − 𝜈)𝜀𝑥 + 𝜈(𝜀𝜃 + 𝜀𝑧)], 

(1 − 𝜉2∇2)𝜎𝜃 = 𝜆(𝑧)[(1 − 𝜈)𝜀𝜃 + 𝜈(𝜀𝑥 + 𝜀𝑧)], 

(1 − 𝜉2∇2)𝜎𝑧 = 𝜆(𝑧)[(1 − 𝜈)𝜀𝑧 + 𝜈(𝜀𝑥 + 𝜀𝜃)], 

(1 − 𝜉2∇2)𝜏𝑥𝑧 = 𝑘𝑠
𝐸(𝑧)

2(1+𝜈)
𝛾𝑥𝑧, 

(2) 
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Fig. 1 The geometry and coordinate system of a cylindrical 

FGM nanoshell 

 

 

𝜆(𝑧) = 𝐸(𝑧) (1 + 𝜈)(1 − 2𝜈)⁄  and 𝑘𝑠  is shear stress 

correction factor, 𝜉 is the nonlocal parameter, and ∇2 is 

one-dimensional Laplacian defined as ∇2=
𝜕2

𝜕𝑥2
 due to 

symmetric conditions of cylindrical nanoshell. Eq.2 is 

derived using generized Hooke’s law. It is concluded that 

three normal stress components and one shear stress 

component are assumed in our formulation. Accounting 

shear stress component becomes very important in short 

cylinders specially at both ends. We assume the constant 

value of Poisson’s ratio  𝜈  and variation of Young’s 

modulus 𝐸(𝑧)  through the thickness of nanoshell 

accordance to the power-law defined as 

𝐸(𝑧) = (𝐸𝑡 − 𝐸𝑏) (
𝑧

ℎ
+

1

2
)
𝑛

 + 𝐸𝑏, (3) 

where 𝐸𝑡 and 𝐸𝑏  are the values of the Young’s modulus at 

the top and bottom surface, respectively, 𝑛  is the in-

homogeneous index. 

A time-dependent two-dimensional displacement field 

for FSDT is assumed as follows 

𝑢𝑥(𝑥, 𝑧, 𝑡) = 𝑢(𝑥, 𝑡) + 𝑧𝜑𝑥(𝑥, 𝑡), 

𝑢𝑧(𝑥, 𝑧, 𝑡) = 𝑤(𝑥, 𝑡) + 𝑧𝜑𝑧(𝑥, 𝑡), 
(4) 

where 𝑢𝑥 , 𝑢𝑧  are the axial and radial displacement 

components. Based on first-order shear deformation theory, 

the both axial and radial displacments are varying linearly 

along the thickness direction. Based on Eqs. (4), the strain 

components are expressed as follows 

𝜀𝑥 =
𝑑𝑢

𝑑𝑥
+ 𝑧

𝑑𝜑𝑥

𝑑𝑥
, 𝜀𝑧 = 𝜑𝑧, 

𝜀𝜃 =
𝑤

𝑅+𝑧
+ 𝑧

𝜑𝑧

𝑅+𝑧
,  𝛾𝑥𝑧 = 𝜑𝑥 +

𝑑𝑤

𝑑𝑥
+ 𝑧

𝑑𝜑𝑧

𝑑𝑥
 

(5) 

The kinematic relations indicate that the present theory 

can be used for modeling the shear strains in cylindrical 

shells. Substituting variation of strain components (5) into 

variation of strain energy (1) and integration on thickness 

direction (𝑧) simplifies variation of strain energy equation 

in terms of resultant forces and moments as follows 

𝛿𝑈 = ∫ [−
𝑑𝑁𝑥

𝑑𝑥
𝛿𝑢 + (𝑁𝑥𝑧 −

𝑑𝑀𝑥

𝑑𝑥
) 𝛿𝜑𝑥 + (𝑁𝜃 −

𝐿

0
𝑑𝑁𝑥𝑧

𝑑𝑥
) 𝛿𝑤+(𝑀𝜃 + 𝑁𝑧 −

𝑑𝑀𝑥𝑧

𝑑𝑥
) 𝛿𝜑𝑧] 𝑑𝑥, 

(6) 

where the forces and moments are 

{𝑁𝑥 , 𝑁𝑧 , 𝑁𝑥𝑧} = ∫ (𝑅 + 𝑧){𝜎𝑥 , 𝜎𝑧, 𝜏𝑥𝑧}𝑑𝑧
ℎ/2

−ℎ/2
, 

{𝑁𝜃 , 𝑀𝜃} = ∫ 𝜎𝜃{1, 𝑧}𝑑𝑧
ℎ/2

−ℎ/2
, 

{𝑀𝑥 , 𝑀𝑥𝑧} = ∫ 𝑧(𝑅 + 𝑧){𝜎𝑥, 𝜏𝑥𝑧}𝑑𝑧
ℎ/2

−ℎ/2
, 

(7) 

The kinetic energy of the cylindrical nanoshell is 

defined as 

𝛿𝑇 = ∫ ∫ 2𝜋𝜌(𝑧)[𝑢̇𝑥𝛿𝑢̇𝑥 + 𝑢̇𝑧𝛿𝑢̇𝑧](𝑅 + 𝑧)𝑑𝑧𝑑𝑥
ℎ/2

−ℎ/2

𝐿

0
, (8) 

where mass density 𝜌(𝑧) varies through the thickness of 

the nanoshell accordance to the power-law 

𝜌(𝑧) = (𝜌𝑡 − 𝜌𝑏) (
𝑧

ℎ
+

1

2
)
𝑛

 + 𝜌𝑏, (9) 

where 𝜌𝑡 and 𝜌𝑏 are the values of the density at the top 

and bottom surface, respectively. The superposed dot on a 

variable indicates time derivative. 

Substituting the displacement components (4) into Eq. 

(8), rearranging the variables, and finally integration by 

parts lead to following form of variation of kinetic energy 

as follows 

𝛿𝑇 = −∫ [(𝐵1𝑢̈ + 𝐵2𝜑̈𝑥)𝛿𝑢 + (𝐵2𝑢̈ + 𝐵3𝜑̈𝑥)𝛿𝜑𝑥 +
𝐿

0

(𝐵1𝑤̈ + 𝐵2𝜑̈𝑧)𝛿𝑤 + (𝐵2𝑤̈ + 𝐵3𝜑̈𝑧)𝛿𝜑𝑧]𝑑𝑥, 
(10) 

where the mass moments of inertia 𝐵𝑖  are calculated from 

𝐵𝑖 = ∫ 2𝜋𝜌(𝑧)(𝑅 + 𝑧)𝑧(𝑖−1)𝑑𝑧
ℎ/2

−ℎ/2
, (11) 

Finally, to complete Hamilton's principle, the virtual work 

done by external forces is defined as follows 

𝛿𝑊 = −∫ [𝐹𝑓𝛿𝑢𝑧|𝑧=ℎ
2

] 𝑑𝑥
𝐿

0
= −∫ [𝐹𝑓𝛿𝑤 +

𝐿

0

ℎ

2
𝐹𝑓𝛿𝜑𝑧] 𝑑𝑥, 

(12) 

where 𝐹𝑓 is reaction of Pasternak foundation expressed as 

𝐹𝑓 = 𝐾1𝑢𝑧 − 𝐾2∇
2𝑢𝑧 . Substitution of radial displacement 

into reaction of Pasternak foundation leads to following 

relation 

𝐹𝑓 = 𝐾1(𝑤 +
ℎ

2
𝜑𝑧) − 𝐾2(

d2𝑤

d𝑥2
+

ℎ

2

d2𝜑𝑧

d𝑥2
) , (13) 

where 𝐾1, 𝐾2 are two parameters of Pasternak foundation. 

Substitution of variations of strain energy (6), kinetic 

energy (10), and energy due to external works (12) into 

Hamilton's principle gives final governing equations of 

motion as 

𝛿𝑢: 
𝑑𝑁𝑥

𝑑𝑥
= 𝐵1𝑢̈ + 𝐵2𝜑̈𝑥, 

𝛿𝑤: 
𝑑𝑁𝑥𝑧

𝑑𝑥
− 𝑁𝜃 = 𝐵1𝑤̈ + 𝐵2𝜑̈𝑧 + 𝐹𝑓, 

𝛿𝜑𝑥 : 
𝑑𝑀𝑥

𝑑𝑥
− 𝑁𝑥𝑧 = 𝐵2𝑢̈ + 𝐵3𝜑̈𝑥, 

𝛿𝜑𝑧 : 
𝑑𝑀𝑥𝑧

𝑑𝑥
−𝑀𝜃 − 𝑁𝑧 = 𝐵2𝑤̈ + 𝐵3𝜑̈𝑧 +

ℎ

2
𝐹𝑓, 

(14) 

where the size-dependent resultant forces and moments 

expressed by the displacements have the following forms 
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(1 − 𝜉2𝛻2)𝑁𝑥 = 𝐴1
𝑑𝑢

𝑑𝑥
+ 𝐴2

𝑑𝜑𝑥

𝑑𝑥
+ 𝐴3𝑤 + (𝐴4 + 𝐴5)𝜑𝑧, 

(1 − 𝜉2𝛻2)𝑁𝑧 = 𝐴5
𝑑𝑢

𝑑𝑥
+ 𝐴6

𝑑𝜑𝑥

𝑑𝑥
+ 𝐴3𝑤 + (𝐴1 + 𝐴4)𝜑𝑧, 

(1 − 𝜉2𝛻2)𝑀𝑥 = 𝐴2
𝑑𝑢

𝑑𝑥
+ 𝐴9

𝑑𝜑𝑥

𝑑𝑥
+ 𝐴4𝑤 + (𝐴6 + 𝐴10)𝜑𝑧, 

(1 − 𝜉2𝛻2)𝑁𝜃 = 𝐴3
𝑑𝑢

𝑑𝑥
+ 𝐴4

𝑑𝜑𝑥

𝑑𝑥
+ 𝐴12𝑤 + (𝐴3 + 𝐴13)𝜑𝑧, 

(1 − 𝜉2𝛻2)𝑀𝜃 = 𝐴4
𝑑𝑢

𝑑𝑥
+ 𝐴10

𝑑𝜑𝑥

𝑑𝑥
+ 𝐴13𝑤 + (𝐴4 + 𝐴14)𝜑𝑧, 

(1 − 𝜉2𝛻2)𝑁𝑥𝑧 = 𝑘𝑠𝐴7 (𝜑𝑥 +
𝑑𝑤

𝑑𝑥
) + 𝑘𝑠𝐴8

𝑑𝜑𝑧

𝑑𝑥
, 

(1 − 𝜉2𝛻2)𝑀𝑥𝑧 = 𝑘𝑠𝐴8 (𝜑𝑥 +
𝑑𝑤

𝑑𝑥
) + 𝑘𝑠𝐴11

𝑑𝜑𝑧

𝑑𝑥
, 

(15) 

Substitution of the resultant forces and moments (15) 

into governing equations of motion (14) gives 

𝛿𝑢: 𝐴1
𝑑2𝑢

𝑑𝑥2
+ 𝐴2

𝑑2𝜑𝑥

𝑑𝑥2
+ 𝐴3

𝑑𝑤

𝑑𝑥
+ (𝐴4 + 𝐴5)

𝑑𝜑𝑧

𝑑𝑥
=

(1 − 𝜉2𝛻2)(𝐵1𝑢̈ + 𝐵2𝜑̈𝑥), 

𝛿𝜑𝑥: 𝐴2
d2𝑢

d𝑥2
− 𝑘𝑠𝐴7𝜑𝑥 + 𝐴9

d2𝜑𝑥

d𝑥2
+ (𝐴4 − 𝑘𝑠𝐴7)

d𝑤

d𝑥
+

(𝐴6 + 𝐴10 − 𝑘𝑠𝐴8)
d𝜑𝑧

d𝑥
= (1 − 𝜉2𝛻2)(𝐵2𝑢̈ + 𝐵3𝜑̈𝑥), 

𝛿𝑤: 𝐴3
𝑑𝑢

𝑑𝑥
+ (𝐴4 − 𝑘𝑠𝐴7)

𝑑𝜑𝑥

𝑑𝑥
+ 𝐴12𝑤 − 𝑘𝑠𝐴7

𝑑2𝑤

𝑑𝑥2
+

(𝐴3 + 𝐴13)𝜑𝑧 − 𝑘𝑠𝐴8
𝑑2𝑤

𝑑𝑥2
= −(1 − 𝜉2𝛻2)(𝐵1𝑤̈ + 𝐵2𝜑̈𝑧) −

(1 − 𝜉2𝛻2) [𝐾1(𝑤 +
ℎ

2
𝜑𝑧) − 𝐾2(

d2𝑤

d𝑥2
+
ℎ

2

d2𝜑𝑧

d𝑥2
)], 

𝛿𝜑𝑧: (𝐴4 + 𝐴5)
d𝑢

d𝑥
+ (𝐴6 + 𝐴10 − 𝑘𝑠𝐴8)

d𝜑𝑥

d𝑥
+ (𝐴3 +

𝐴13)𝑤 − 𝑘𝑠𝐴8
d2𝑤

d𝑥2
− 𝑘𝑠𝐴11

d2𝜑𝑧

d𝑥2
+ (𝐴1 + 2𝐴4 + 𝐴14)𝜑𝑧 =

−(1 − 𝜉2𝛻2)(𝐵2𝑤̈ + 𝐵3𝜑̈𝑧) −
ℎ

2
(1 − 𝜉2𝛻2) [𝐾1 (𝑤 +

ℎ

2
𝜑𝑧) − 𝐾2 (

d2𝑤

d𝑥2
+
ℎ

2

d2𝜑𝑧

d𝑥2
)], 

 

(16a) 

 
 

(16b) 

 

 

 

(16c) 

 

 

 
 

(16d) 

Eqs. (16) are the governing equations of motion for a 

functionally graded cylindrical nanoshell based on first-

order shear deformation theory and nonlocal elasticity. The 

dynamic responses of the nanoshell can be analyzed using 

solution of Eq. (16). In this paper, the natural frequency 

responses are evaluated using the analytical method. The 

solution is applicable for various boundary conditions. The 

integration constants appeared in Eq. (16) are presented in 

following way 

{𝐴1, 𝐴2, 𝐴9} = ∫ 𝜆(1 − 𝜈)(𝑅 + 𝑧){1, 𝑧, 𝑧2}d𝑧
ℎ/2

−ℎ/2
, 

{𝐴3, 𝐴4, 𝐴10} = ∫ 𝜆𝜈{1, 𝑧, 𝑧2}d𝑧
ℎ/2

−ℎ/2
, 

{𝐴5, 𝐴6} = ∫ 𝜆𝜈(𝑅 + 𝑧){1, 𝑧}d𝑧
ℎ/2

−ℎ/2
, 

{𝐴7, 𝐴8, 𝐴11} = ∫
1−2𝜈

2
𝜆(𝑅 + 𝑧){1, 𝑧, 𝑧2}d𝑧

ℎ/2

−ℎ/2
, 

{𝐴12, 𝐴13, 𝐴14} = ∫
1−𝜈

𝑅+𝑧
𝜆{1, 𝑧, 𝑧2}d𝑧

ℎ/2

−ℎ/2
. 

(17) 

The governing equations of motion may be presented in 

matrix form as follows 

[𝐼]
𝑑4{𝑋}

𝑑𝑥4
+ [𝐽]

𝑑2{𝑋}

𝑑𝑥2
+ [𝑆]

𝑑{𝑋}

𝑑𝑥
+ [𝑄]{𝑋} = [𝑌]{𝑋̈} + [𝑍]

𝑑2{𝑋̈}

𝑑𝑥2
, (18) 

 

where the elements of above defined matrices are expressed 

by 

𝐼33 = 𝜉
2𝐾2, 𝐼34 = 𝜉

2 ℎ

2
𝐾2, 𝐼44 = (

ℎ

2
)
2

ξ2𝐾2, 

𝐽11 = 𝐴1, 𝐽12 = 𝐴2, 𝐽22 = 𝐴9, 

 𝐽33 = −𝑘𝑠𝐴7 − 𝐾2 − ξ
2𝐾1, 

𝐽34 = −𝑘𝑠𝐴8 −
ℎ

2
𝐾2 − ξ

2 ℎ

2
𝐾1, 

𝐽44 = −𝑘𝑠𝐴11 − (
ℎ

2
)
2
(𝐾2 + ξ

2𝐾1), 

𝑆13 = 𝐴3, 𝑆14 = 𝐴4 + 𝐴5, 𝑆23 = 𝐴4 − 𝑘𝑠𝐴7, 

𝑆24 = A6 + A10 − ksA8, 

𝑄22 = −𝐴7, 𝑄33 = 𝐴12 + 𝐾1, 𝑄34 = 𝐴3 + 𝐴13 +
ℎ

2
𝐾1, 

𝑄44 = A1 + 2A4 + 𝐴14 + (
ℎ

2
)
2

𝐾2, 

𝑌11 = 𝐵1, 𝑌12 = 𝐵2, 𝑌21 = 𝐵2, 𝑌22 = 𝐵3, 

𝑌33 = −𝐵1, 𝑌34 = −𝐵2, 𝑌44 = −𝐵3, 

𝑍11 = −ξ2𝐵1, 𝑍12 = −ξ
2𝐵2, 𝑍21 = −ξ2𝐵2,  

𝑍22 = −ξ
2𝐵3, 𝑍33 = ξ2𝐵1, 𝑍34 = ξ

2𝐵2, 𝑍44 = ξ
2𝐵3 

(19) 

After derivation of the governing equations of motion, the 

solution procedure may be presented for a functionally 

graded cylindrical nanoshell with various boundary 

conditions. 

 

 

3. Analytical solution 
 

An analytical solution for a FG cylindrical nanoshell 

with various boundary conditions is obtained based on 

properties of a trigonometric functions. The ends of 

cylindrical nanoshell are assumed to be simply-supported 

(S), clamped (C) or free (F). 

The analytical solution is assumed as 

{

𝑢
𝑤
𝜑𝑥
𝜑𝑧

} = ∑

{
 
 

 
 𝑈𝑚

𝜕𝑋𝑚(𝑥)

𝜕𝑥

𝑊𝑚
𝜕𝑋𝑚(𝑥)

𝜕𝑥

Θ𝑚
𝑥 𝑋𝑚(𝑥)

Θ𝑚
𝑧 𝑋𝑚(𝑥)}

 
 

 
 

e𝑖𝜔𝑡∞
𝑛=1 , (20) 

where 𝜔 is the natural frequency, 𝑈𝑚, 𝑊𝑚, Θ𝑚
𝑥 , Θ𝑚

𝑧  are 

the maximum values of the displacements. The functions 

𝑋𝑚(𝑥)  are listed in Table 1 for various boundary 

conditions. For convenience four variables 𝑈𝑚, 𝑊𝑚, Θ𝑚
𝑥 , 

Θ𝑚
𝑧  can be presented as a vector 

{X} = [𝑈𝑚 𝑊𝑚 Θ𝑚
𝑥 Θ𝑚

𝑧 ]𝑇, (21) 

By substituting the series (20) into the governing 

equations expressed by displacements (16), the 

characteristic equation for simply-supported FGM 

nanoshell can be defined as 

([𝐾] + 𝜔2[𝑀]){X} = {0}, (22) 
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Table 1 The admissible functions 𝑋𝑚(𝑥) for 𝜆𝑚 = 𝑚𝜋/𝑎 

Boundary conditions Function 𝑿𝒎 

SS sin(𝜆𝑚𝑥) 

CC sin2(𝜆𝑚𝑥) 

SC sin(𝜆𝑚𝑥) [cos(𝜆𝑚𝑥) − 1] 

CF cos2(𝜆𝑚𝑥) [sin
2(𝜆𝑚𝑥) + 1] 

 

 

where the elements of the symmetric stiffness [𝐾] and mass 
[𝑀] matrices are expressed as follows 

𝐾11 = −𝐴1𝜆𝑚
2 , 𝐾12 = −𝐴2𝜆𝑚

2 , 𝐾13 = 𝐴3𝜆𝑚, 

𝐾14 = (𝐴4 + 𝐴5)𝜆𝑚, 

 𝐾22 = −𝐴9𝜆𝑚
2 − 𝐴7, 𝐾23 = (𝐴4 − 𝑘𝑠𝐴7)𝜆𝑚, 

𝐾24 = (A6 + A10 − ksA8)𝜆𝑚, 

𝐾33 = 𝜉
2𝐾2𝜆𝑚

4 + (𝑘𝑠𝐴7 + 𝐾2 + ξ
2𝐾1)𝜆𝑚

2 + 𝐴12 + 𝐾1, 

𝐾34 = 𝜉
2 ℎ

2
𝐾2𝜆𝑚

4 + (𝑘𝑠𝐴8 +
ℎ

2
𝐾2 + ξ

2 ℎ

2
𝐾1) 𝜆𝑚

2 + 𝐴3 +

𝐴13 +
ℎ

2
𝐾1, 

𝐾44 = (
ℎ

2
)
2

ξ2𝐾2𝜆𝑚
4 + [𝑘𝑠𝐴11 + (

ℎ

2
)
2
(𝐾2 +

ξ2𝐾1)] 𝜆𝑚
2 + A1 + 2A4 + 𝐴14 + (

ℎ

2
)
2

𝐾2, 

𝑀11 = 𝐵1 + ξ
2𝐵1𝜆𝑚

2 , 𝑀12 = 𝐵2 + ξ
2𝐵2𝜆𝑚

2 , 

𝑀22 = 𝐵3 + ξ
2𝐵3𝜆𝑚

2 , 

𝑀33 = −𝐵1 − ξ
2𝐵1𝜆𝑚

2 , 𝑀34 = −𝐵2 − ξ
2𝐵2𝜆𝑚

2  

𝑀44 = −𝐵3 − ξ
2𝐵3𝜆𝑚

2 , 

(23) 

The natural frequencies of cylindrical FGM nanoshell are 

derived using solution of characteristic equation as follows 

Det[[𝐾] + 𝜔2[𝑀]] = 0, (24) 

It is noted that the characteristic equation for a simply-

supported cylidnrical nanoshell is derived directly by 

substitution of solution from first row of Table 1 into Eq. (20) 

and then into Eq. (18). The solution procedure for other 

boundary conditions such as clamped-clamped and simply-

clamped is obtained by integeration of Eq. (18) on the length of 

cylinder after substitution of solution from Eq. (20). More 

details on the solution procedure are presented in previous 

paper by Arefi et al. (2016). 

 
 

4. Results and discussion 
 
The numerical results are presented in this section in 

terms of important parameters of the formulated problem. 

Fig. 2 shows variation of fundamental natural frequencies 
of simply-supported functionally graded cylindrical 

nanoshell in terms of nonlocal parameter ξ for various in-

homogeneous index 𝑛. The obtained results indicate that 

with increase of nonlocal parameter, the fundamental 

frequencies are decreased. It is concluded that the stiffness 

of nanoshell is decreased with increase of nonlocal 

parameter. In addition, one can conclude that with increase 

of in-homogeneous index, the stiffness of nanoshell is 

decreased and consequently the fundamental natural 

frequencies are decreased significantly. 
Fig. 3 presents distribution of fundamental natural 

frequencies of simply-supported  cylindrical nanoshell in 

terms of nonlocal parameters 𝜉  for various Winkler 

parameter of foundation 𝐾1. One can conclude that with 

increase of Winkler parameter of foundation  𝐾1 , the 

stiffness of foundation is increased and consequently the 

fundamental natural frequencies are increased significantly. 

Fig. 4 shows distribution of fundamental natural frequencies 

of simply-supported cylindrical nanoshell in terms of 

nonlocal parameters 𝜉 for various Pasternak parameter of 

foundation 𝐾2. One can conclude that with increase of this 

parameter 𝐾2, the stiffness of foundation is increased and 

then the fundamental natural frequencies are increased 

significantly. 

 

 

 

Fig. 2 The variation of fundamental natural frequencies of 

simply-supported functionally graded cylindrical 

nanoshell in terms of nonlocal parameters 𝜉 for various 

in-homogeneous index 𝑛 

 

 

Fig. 3 The variation of fundamental natural frequencies of 

simply-supported functionally graded cylindrical 

nanoshell in terms of nonlocal parameters 𝜉 for various 

Winkler's parameter 𝐾1 
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Fig. 4 The variation of fundamental natural frequencies of 

simply-supported functionally graded cylindrical 

nanoshell in terms of nonlocal parameters 𝜉 for various 

Pasternak's parameter 𝐾2 

 

 

Figs. 5 and 6 present variation of natural frequencies of 

simply-supported functionally graded cylindrical nanoshell 

with various modes. Figure 5 shows variation of first three 

natural frequencies of functionally graded cylindrical 

nanoshell in terms of in-homogeneous index 𝑛 . Fig. 6 

shows variation of first three natural frequencies of 

functionally graded cylindrical nanoshell in terms of 

nonlocal parameter 𝜉 . The results indicate that the 

frequencies of second and third mode are two and three 

times of fundamental frequency, respectively. 

In continuation of the paper, the influence of 

dimensionless geometric parameters are studied on the free 

vibration characteristics of simply-supported functionally 

graded cylinderical nanoshell. Fig. 7 shows variation of 

fundamental natural frequencies of nanoshell in terms of 

small scale parameter for various dimensionless parameter 

of L/R. It is concluded that with increase of dimensionless 

parameter of L/R, the natural freqencies are decreased 

significantly. It can be concluded that with increase of 

dimensionless parameter of L/R, the stiffness of structure 

 

 

 

Fig. 5 The variation of natural frequencies of simply-

supported functionally graded cylindrical nanoshell in 

terms of in-homogeneous index 𝑛 for various modes 𝑚 

 

 

Fig. 6  The variation of natural frequencies of simply-

supported functionally graded cylindrical nanoshell in 

terms of nonlocal parameter 𝜉 for various modes 𝑚 

 

 

 

Fig. 7 Variation of fundamental natural frequencies of 

simply-supported nanoshell in terms of  nonlocal 

parameter 𝜉 for various dimensionless parameter of 𝐿/𝑅 

 

 

is decreased and consequently the natural frequencies are 

decreased significantly. 

Figs. 8 and 9 present variation of fundamental natural 

frequencies in terms of small scale parameter for various 

dimensionless parameters of 𝐿/ℎ and 𝑅/ℎ, respectively. It 

is concluded that with increase of dimensionless parameter 

of 𝐿/ℎ, the natural freqencies are decreased significantly. 

One can conclude that with increase of dimensionless 

parameter of 𝐿/ℎ, the stiffness of structure is decreased and 

consequently the natural frequencies are decreased 

significantly. Investigation on the influence of 𝑅/ℎ 

indicates that with increase of this parameter, the stiffness 

of structure is increased and the natural frequencies are 

increased significantly. 

To investigate the influence of various boundary conditions 

on the natural frequencies of cylindrical nanoshell, the 

information presented by Eq. (18) and Table 1 are used to 

show numerical results for simply-simply (SS), simply-

clamped (CS) and clamped-clamped (CC) boundary 

conditions. Figs. 10 and 11 show variation of natural 
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frequencies of FG nanoshell for various boundary 

conditions in terms of nonlocal parameter and in-

homogeneous index, respectively. It is concluded that the 

natural frequencies for CC boundary condition is 25% more 

than CS boundary condition and the natural frequencies for 

CS is 60% more than SS boundary condition. One can 

conclude that changing one simply-supported boundary 

condition leads to significant increase of natural frequency 

than the case the second boundary condition is changed. 

Shown in Fig. 12 is variation of natural frequencies of 

functionally graded nanoshell in terms of various mode 

numbers for various boundary conditions. It is concluded 

that the natural frequencies are significantly increased with 

increase of mode number m. The numerical results indicates 

that natural frequencies of second and third mode shapes 

are approximately two and three times of fundamental 

fundamental natural frequency. 

 

 

 

Fig. 8 Variation of fundamental natural frequencies of 

simply-supported nanoshell in terms of  nonlocal 

parameter 𝜉 for various dimensionless parameter of 𝐿/ℎ 

 

 

 

Fig. 9 Variation of fundamental natural frequencies of 

simply-supported nanoshell in terms of  nonlocal 

parameter 𝜉  for various dimensionless parameter of 

𝑅/ℎ 

 

 

Fig. 10 Variation of fundamental natural frequencies of 

nanoshell in terms of  nonlocal parameter 𝜉 for various 

boundary conditions 

 

 

 

Fig. 11 Variation of fundamental natural frequencies of 

nanoshell in terms of in-homogeneous index 𝑛  for 

various boundary conditions 

 

 

5. Conclusions 
 

Free vibration analysis of FG cylindrical nanoshell was 

studied in this work. A two-dimensional analysis was 

carried out based on FSDT and nonlocal elasticity theory. 

The cylindrical nanoshell was assumed made from 

functionally graded materials. Hamilton's principle was 

used to derive governing equations of motion in terms of 

four displacements and rotation components. An analytical 

approach was carried out to present natural frequencies of 

nanoshell in terms of important parameters of the problem 

such as nonlocal parameter, in-homogeneous index, mode 

number and some geometric dimensionless parameters such 

as ratio of length to radius and thickness on the natural 

frequencies of nanoshell. In addition the analytical approach 

used in this paper has capability to predict natural 

frequencies of FGM nanoshells with various boundary 

conditions. The main numerical results of this study are 

presented as follows: 
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Fig. 12 Variation of fundamental natural frequencies of 

nanoshell in terms of mode number 𝑚  for various 

boundary conditions 

 

 

 

 The influence of small scale parameters of 

nanomaterials associated with nonlocal elasticity 

theory has significant influence on the natural 

frequencies of nanoshells. One can conclude that 

with increase of nonlocal parameter, the natural 

frequencies are decreased because of decrease of 

stiffness of nanoshell. 

 The influence of in-homogeneous index was 

studied on the natural frequencies of nanoshell. 

Our numerical results indicate with increase of in-

homogenous index, the stiffness of structure is 

decreased and consequently the natural frequencies 

are decreased significantly. 

 The Pasternak's foundation can change the 

structural behavior of cylindrical nanoshell. With 

increase of two parameters of Pasternak's 

foundation, the stiffness of structure is increased 

and natural frequencies are increased importantly. 

 The dimensionless geometric parameters of 

cylidrical nanoshell ( 𝐿/𝑅, 𝐿/ℎ, 𝑅/ℎ ) have 

significant influences on the free vibration 

characteristics of nanoshell. The numerical results 

indicate that with increase of  (𝐿/𝑅, 𝐿/ℎ ) the 

stiffness of cylinder is decreased and consequently 

the natural frequencies are decreased significantly. 

In addition, with increase of 𝑅/ℎ the stiffness of 

cylinder is increased and then the natural 

frequencies are increased. 
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