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1. Introduction 

 

Several structural elements may be used to solve 

mechanical problems. Shell element is one of the most 

important of these and is widely used in aerospace, and civil 

and mechanical engineering. Due to difficulties and 

restrictions in analysis of shell structures using traditional 

and classical methods, the most appropriate approach is to 

employ numerical methods. The most prevalent method 

herein is finite element (FE), based on different theories like 

classical, first and higher order theories (CLT, FSDT, 

HSDT), or the degenerated shell method. Considerable 

research has been done on this subject (Ventsel and 

Krauthammer 2001). Elements introduced by researchers 

Chieslar and Ghali (1987) and Dvorkin and Bathe (1984) 

are continuum finite shell elements based on the 

degenerated shell method for general analysis. Review of 

existing literature related to shell structures demonstrates 

that developed elements based on the degenerated shell 

method have been favored more by researchers. Rezaiee-

Pajand and Arabi (2016) and Jabareen and Mtanes (2018) 

developed curved triangular shell elements for nonlinear 

analysis of laminated shells and Cosserat point shell 

elements respectively based on the degenerated solid shell 

approach. Static and free vibration behavior of orthotropic 

elliptic paraboloid shells investigated by Darilmaz (2017)  
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by means of the element developed by combining a hybrid 

plane stress element and a hybrid plate element.   

The major inefficiency corresponding to FEM is the 

large number of DOFs required for some problems, which 

makes utilizing a huge computer storage and solution time. 

In order to overcome this inefficiency, alternative methods 

are used in many researches, such as the finite strip method. 

The corresponding results for several cases, indicate that the 

finite strip method is more efficient than the general finite 

element method. This efficiency is related to the reduction 

of DOFs needed to obtain accurate results. Furthermore, the 

buckling of plates using the ordinary finite strip method has 

been performed by Benson and Hinton (1976). And-Van 

Erp and Menken (1990) for linear elastic and Kwon and 

Hancock (1991) for nonlinear elastic material: this allowed 

stability analysis of thin-walled section beams by the spline 

finite strip method (SFSM). Further research related to 

analysis of thin-walled structures by the finite strip method 

is about the structural analysis of shell structures using this 

specific method (Fan and Cheung 1983, Li et al. 1990, Hu 

1997, Wang and Dawe 1999). Au and Cheung (1996) 

carried out bending, free vibration and stability analysis of 

isotropic shells using the isoparametric spline finite strip 

method (ISFSM). In order to satisfy the different boundary 

conditions (BCs), they used additional points out of the 

structure’s domain and undertook extrapolation of the 

geometry. Sheikh (2004) used SFSM in order to analyze 

thick composite structures. Eccher et al. (2008) developed a 

specific isoparametric spline finite strip (ISFSM) to analyze 

perforated thin-walled structures based on the first-order 

shear deformation theory. Foroughi and Azhari (2014) 

investigated mechanical buckling and free vibration of thick 

functionally graded plates resting on an elastic foundation 
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using the higher-order B-spline finite strip method. Naghsh 

et al. (2015) implemented free vibration analysis of stringer 

stiffened general shells of revolution using the meridional 

finite strip method. Beside the advantages and efficiencies 

of the older FSM versions, they have two major 

shortcomings. Since FSM is basically developed for 

analysis of the plates or shallow shells with simple 

geometries (Au and Cheung 1996, Benson and Hinton 

1976), it suffers from the weakness of applying various 

boundary conditions and mapping procedure to analyze the 

shells with complicated geometries.  

The other efficient numerical method is isogeometric 

analysis (IGA), which is based on B-spline and NURBS 

interpolation in all of the curvilinear directions. Contrary to 

FEM and older versions of FSM, which approximate the 

geometry, IGA represents the exact one. It leads to provide 

higher-order accuracy comparing to FEM by utilizing the 

same number of DOFs. Employing IGA provides the 

higher-order continuity between the elements, while most of 

the FEM used in shell analysis, only provide C0-continuity. 

However, isogeometric analysis has some shortcomings in 

use of the method in many problems which can be solved 

by means of FEM with no difficulties. By employing B-

spline interpolation in 2D and 3D IGA and constructing 

rectangular grid of control points, the purely local 

refinement is so complicated and requires additional 

unwanted knots in the B-spline parameter space (Kim et al. 

2010, Nguyen et al. 2015). The other shortcoming of IGA is 

the weakness of applying the Dirichlet BCs at control points 

of rectangular control-grid, which are not located at the 

boundaries. It means that some especial treatment 

techniques such as Lagrange multiplier method or defining 

the penalty functions, are required for some especial cases. 

Contrarily, by employing FEM, it is possible to impose 

Dirichlet BCs at boundary nodes, directly (Rypl and Patzák, 

2012).    

In order to carry out free vibration analysis, there are 

some other methods in literature, which are based on the 

various theories to solve especial problems. Tornabene and 

Viola (2009) carried out free vibration analysis of 

functionally graded panels and shells of revolution by 

means of the GDQ method. Similar work for vibration 

analysis of laminated and sandwich FGM plates and shells 

of varying thickness has been done by Bacciocchi et al. 

(2015) and Tornabene et al. (2017) respectively. Younsi et 

al. (2018) carried out bending and free vibration analysis of 

FGM plates by means of hyperbolic shape functions based 

on quasi-3D and 2D shear deformation theories. Bourada et 

al. (2015) considered the effects of thickness stretching on 

bending and vibration of functionally graded beams. Free 

vibration of functionally graded nanoscale plates, beams 

and shells are investigated in (Bounouara et al. 2016, Zemri 

et al. 2015, Karami et al. 2018). Bourada et al. (2019) 

investigated the dynamic behavior of porous functionally 

graded beams by using a sinusoidal shear deformation 

theory. Stability, bending and vibration analyses of the 

sandwich FGM plates and shells, are important portions of 

thin-walled structures analysis. In this regard, Abdelaziz et 

al. (2017) and Belabed et al. (2018) performed buckling, 

bending and free vibration analyses of the sandwich FGM 

plates based on hyperbolic shear deformation theory. 

Menasria et al. (2017) and El-Haina et al. (2017) 

investigated thermal stability of FGM sandwich plates.           

Various structural problems have been solved using 

interpolation by B-spline functions (Dawe and Wang 1992, 

Van Erp et al. 1994, Uhm and Youn 2009, Fan and Luah 

1990, Vu-Bac et al. 2018). Some other related problems 

have been solved using analytical solutions (Javad et al. 

2016, Shahmohamadi and Kabir 2017, Pang et al. 2018, 

Zine et al. 2018). 

By considering the aforementioned studies especially 

researches which are related to analysis of thin-walled 

structures by means of the finite strip method, it is clear that 

there are some deficiencies in this corpus of work. Some 

studies are limited to special geometry or material and some 

additional knots out of the structure’s domain are 

necessarily needed to satisfy the different boundary 

conditions using SFSM. This causes some difficulties, 

because these additional knots are not determinate and to 

find them the points inside the domain of the structure need 

extrapolation (Au and Cheung 1996, Eccher et al. 2008, Fan 

and Cheung 1983). 

However, by considering the efficiencies and drawbacks 

of IGA and FEM, it seems that a novel method can be 

developed with multipurpose targets by applying the 

combination of FEM and IGA in free vibration analysis of 

the sandwich FGM shells. In the current work, a novel 

version of finite strip, namely, the isogeometric spline finite 

strip method (IG-SFSM) is developed, which applies FEM 

and IGA based on B3-spline basis functions in the 

transversal and longitudinal directions, respectively. The 

method provides the continuity of the finite strip shell 

elements in the longitudinal direction and reduces the IGA 

drawbacks by employing the FEM in the transversal 

direction. In order to simplicity of applying various 

boundary conditions after formation of the stiffness matrix, 

the B3-spline basis functions are developed in way that 

Kronecker delta properties at the boundaries is provided 

(Piegl and Tiller 1997). 

In the present study, integration in the thickness 

direction of the introduced IG-SFSM was performed during 

the formation of the stiffness matrix. This situation allows 

us to assume the properties of various materials (isotropic, 

laminated or sandwich FGM) and the variable thickness by 

a unit formulation. By means of the presented formulation, 

the function of variation thickness field and material 

properties were determined. Moreover, numerical 

integration along the three directions was based on the 

Gauss quadrature method. 

The layout of the paper is as follows. In Section 2 the 

manner of the B-spline interpolation using data-points is 

presented. Section 3 denotes the formulation of the 

introduced IG-SFSM incorporating the manner of mapping, 

governing kinematic equations, formation of stiffness and 

mass matrices, and definition of functionally graded 

material (FGM). In Section 4, to show the efficiency of the 

introduced finite strip method, different examples are 

provided to obtain the natural frequency parameters. 

Finally, in Section 5, conclusions of this paper are 

summarized. 
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2. Interpolation using basis B-spline functions 
 

The most important portion of numerical methods to 

solve structural problems especially FEM and FSM is the 

manner of interpolation. There are various methods for 

interpolation like Lagrange and spline interpolation. Each of 

these methods has some advantages and disadvantages. In 

the present paper Lagrange and spline methods have been 

use for interpolation in transverse and longitudinal 

directions respectively. The most important reason for using 

spline interpolation along the longitudinal direction of strips 

is the special characteristics of spline functions. 

Interpolation in the longitudinal direction should be 

implemented by several points as compared to the 

transverse direction of a strip. Spline interpolation avoids 

oscillation at the edges of the intervals by interpolating 

through high degree polynomials: this method is distinct 

from the number of data points using polynomials with low 

degrees (Piegl and Tiller 1997). In the present paper, 

displacement field and components of the global coordinate 

system are interpolated using B3-spline basis functions.    

Interpolation of the curve C with some data points using 

B-spline basis functions was according to Eq. (1) 


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where i  denotes ith control point demonstrated in Fig. 1, 

and 
,i p  illustrates the ith basis B-spline function and p 

denotes order of basis B-spline functions. Fig. 1 shows a 

schematic view of the B-spline curve C with data and 

control points. 

The ith normalized basis B-spline function ( ,i p ) 

demonstrated in Eq. (1) is defined by a recursive equation, 

as shown in Eq. (2) 
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B-spline basis functions are defined by the knot vector (

t ) presented in Eq. (2). Note that the derivatives of the B-

spline basis functions of order p  can be written in the 

form of a recursive equation by two B-splines of a lower 

order. This is presented in Eq. (3) (Piegl and Tiller 1997) 
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Solving mechanical problems using B-spline 

interpolation has a special characteristic which satisfies the 

general boundary conditions. If knot values at the 

boundaries repeat with multiplicity equal to 1p  , as 

mentioned in Eq. (4), then the B-spline basis functions so 

obtained provide the Kronecker delta properties at the 

boundaries. By means of this property, it is possible to 

satisfy the arbitrary boundary condition after formation of 

stiffness, mass matrices and force vector. 
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Note that B-spline interpolation is possible only when 

the number of control points is equal to data points. To set 

this condition, the value of ns presented in Eq. (4) should 

be equal to 1n p  . The value of n denotes the number 

of intervals. So, the value of 1n   represents the number 

of control or data points. For example, let us assume that 

there are 9 control and data points and that the order of B-  

 

Fig. 1 Schematic view of the B-spline curve C with data and control points 
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spline basis functions is 3. For this situation the values of 

n and ns should be 8 and 6 respectively. In Eq. (1), all of 

the control points ( i ) are related to the geometry of the 

curve and can be calculated using the existing data points 

( ip ) on the curve. Substituting data points in Eq. (1) yields 

the linear system of equations with 1n  equations and 

1n  unknowns: the values of control points can be 

calculated in this manner (Piegl and Tiller 1997). 

 

 

3. Isogeometric B3-spline finite strip method 
 

In this section, a new version of finite strip is developed: 

it is called the isogeometric B3-spline finite strip method 

(IG-SFSM). Within this type of FSM, interpolation of 

components of the global coordinate system and the 

displacement field in longitudinal and transverse directions 

can be performed by the B3-spline and Lagrangian 

functions respectively. IG-SFSM provides the ability to 

model shells with complex geometries and boundary 

conditions. 

 

3.1 Mapping 
 

Consider a general shape finite strip element with 

variable thickness as shown in Fig. 2. The relevant 

transverse quadratic Lagrangian shape functions are given 

in Eq. (5) 
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where ( )iL   represents the Lagrangian quadratic shape 

function of the ith nodal line in local transverse curvilinear 

direction ( ), (Fig. 2). The functions used for the local 

longitudinal curvilinear direction ( ) and their properties 

are demonstrated in Eqs. (2)-(4). The general form of the  

 

 

global coordinate system , ,x y z  in terms of the 

components of the local curvilinear coordinate system 

,   by the B3-spline and the Lagrangian shape functions 

can be expressed as follows 
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Coefficients , ,
yx z

ij ijij    are control points related to 

the global coordinates of the node ij ( , ,ij ij ijx y z ): they are 

located at ith nodal line and jth row of nodes, and 

3 3 3( ) ,( ) ,( )ij ij ijl m n    are direction cosines related to 

these control points. All the unknown coefficients related to 

the control points are geometry dependent of the shell. 

Using data points on the mid-surface of the shell and 

substituting into Eq. (6), a linear system of equations is 

formed with 9( 1)NSC   equations and unknowns. This 

process is mentioned in Eq. (7) 
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Shape function of the shell strip element can be 

modified for usage of data points by substituting Eq. (7) 

into Eq. (6) for the case 0   

 

 

   

Fig. 2 An example of general finite strip in global and local curvilinear coordinates with arbitrary shape, variable 

thickness, and assumed DOFs 
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Using a similar interpretation, it is possible to use data 

points instead of control points for components of the 

global coordinate system and displacement by using the 

modified shape function ( )n instead of the initial one ( )n . 
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Using Eq. (10), the Jacobian matrix is calculable as 
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3.2 Displacement field and kinematic equations 
 
Displacement field of a finite strip based on the 

degenerated shell method is expressed in Eq. (12), 

developed using concepts in Eqs. (1)-(6) and the DOFs 

depicted in Fig. 2. Displacement field demonstrated in Eq. 

(12) has been written based on displacement fields 

expressed in (Dvorkin and Bathe 1984, Chieslar and Ghali 

1987, Au and Cheung 1996, Rezaiee-Pajand and Arabi 

2016, Jabareen and Mtanes 2018) for a finite shell element. 
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Where coefficients , , , ,u v w
ij ij ij ij ij

       are the control 

points related to the nodal DOFs located in the ith nodal 

line and the jth row of nodes ( , , , , )ij ij ij ij iju v w   . Note 

that , ,ij ij iju v w are nodal translational DOFs in the 

direction of the components of the global coordinate system 

( , , )x y z and that ,ij ij  are nodal rotational DOFs 

around the components of the local coordinate system 

( ( ), ( ))x or y or    respectively. Using the concept 

denoted in Eq. (7), it is possible to rewrite Eq. (12) based on 

the data points of the nodal DOFs as illustrated in Eq. (13) 
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Now we can introduce kinematic equations based on 3D 

elasticity through Eq. (14) 
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Substituting Eq. (13) into Eq. (14) yields 
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where 
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3.3 Free vibration analysis 

 

Stiffness matrix can be obtained using virtual work 

method expressed in Eq. (17) 

 uKu

uJDBBu

uDBBuεDεσε

ˆˆ

ˆ)det(ˆ

ˆˆˆˆˆˆ

1

1 1

1

1

strip
T

ns TT

V

TT

V

T

V

T

ddd

dVdVdVU

































  



  

 (17) 

where U is variation of strain energy and 
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Transformation matrix, T and elasticity coefficients 

matrix, D can be calculated using Eq. (19) 
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In Eq. (19), parameters ( , ,i i il m n , where 1, 2, 3i  ) are 

direction cosines of unit vectors at each integration point. 

( )E   is the elasticity module of the shell. A similar 

approach can be employed to obtain the mass matrix of a 

strip using virtual work 
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Note that û  is the nodal velocity vector in Eq. (20), 

Using stiffness and mass matrices for each strip element 

,strip stripK M  illustrated in Eq. (17) and Eq. (20) 

respectively, it is possible to obtain natural frequency values 

by solving the eigenvalue problem shown in Eq. (21). 

0)det( 2  MK   (21) 

where the matrices K and M represent stiffness and mass 

matrices after assembling strips and applying boundary 

conditions respectively. 

 

3.4 Functionally Graded Material (FGM) 
 

Functionally Graded Materials (FGMs) are metallurgic 

composite materials which have received increasing 

attention in structural applications in recent year. 

Mechanical properties of FGMs are characterized by 

variations in composition over the volume fraction of 

constituents in one or more directions that are usually made 

of two constitutions, ceramic and metal portions. For a 

sandwich shell, some layers can be FGM and the other 

layers can be isotropic. In an FGM layer with local 

coordinates in the thickness direction   (see Fig. 3), this 

composition changes in terms of volume fraction of 

constituents as 
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In Eq. (22), , ,c c cE    and , ,m m mE    denote 

mechanical properties of ceramic and metal respectively 

and cV demonstrates volume fraction of ceramic.  

By substituting ( ), ( )E     and ( )  in Eqs. (19) 

and (20) it is possible to apply the FGM, and laminate and 

sandwich FGM to the shell as material properties by a 

uniform formulation. 
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Fig. 3 Local coordinates of the entire shell ( ) and ith 

layer of shell ( ) in the thickness direction 

 

 

4. Numerical results and discussion 

 

This section exhibits several examples related to the free 

vibration of laminate and sandwich FGM shell panels. Most 

of these examples are extracted from literature to validate 

the accuracy of this method (Tornabene and Viola 2009, 

Bacciocchi et al. 2015, Tornabene et al. 2017). 

 

4.1 FGM shell panels 

 

The first set of examples is about the free vibration of 

FGM shell panels extracted from (Tornabene and Viola 

2009). In the aforementioned reference two constituents 

have been assumed, zirconia as ceramic and aluminum as 

metal; similarly, two kinds of functions have also been 

assumed for volume fraction of ceramic ( ( )cV  ), stated in 

Eq. (23) 
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Young’s modulus, Poisson’s ratio, and mass density for 

zirconia are 168cE GPa , 0.3c  , and

35700 /c kg m  ; for aluminum, they are 70mE GPa , 

0.3m  , and 32707 /m kg m  . 

Details regarding the geometry of the FGM shell panels 

with reference to Fig. 4 are demonstrated (Tornabene and 

Viola 2009): 

1- Toro-parabolic panel: 9 ,k m 0.2 ,h m 9 ,bR m

3 ,a m 3 ,c m  1 ,b m 120   

2- Parabolic panel: 8 ,k m 0.2 ,h m 0,bR  4 ,a m

1 ,c m 2 ,b m 120   

3- Toro-circular panel: 0.2 ,h m 1.5 ,bR m  3 ,R m

0 60 ,  1 120 ,  120   

4- Spherical panel: 0.1 ,h m 0,bR  2 ,R m 0 30 , 

1 90 ,  120   

 

Fig. 4 Details related to the definition of geometry of the 

FGM shell panells (Tornabene and Viola 2009) 

 

 

 

Fig. 5 Geometries and boundary conditions (Tornabene 

and Viola 2009):  (a) Toro-parabolic panel (CFCF), (b) 

Parabolic panel (SSFF), (c) Toro-circular panel (CFCF) 

and (d) Spherical panel (CFFF) 

 

 

Geometries and boundary conditions of examples 

concerned with the work of Tornabene and Viola (2009) are 

depicted in Fig. 5. 

At the first step, a convergence study of results related 

to five natural frequency parameters of the Toro-parabolic 

isotropic shell (zirconia) was conducted (Fig. 5(a)). This 

convergence study is presented in Table 1. The frequency 

parameters are given for the number of strips (NST) equal 

to 10, 15, and 20, and the number of sections (or intervals) 

for each strip (NSC) equal to 8, 10, and 12. The values for 

NST and NSC needed for convergence depend on several 

parameters, like geometry of the shell, boundary conditions, 

and thickness variation. The results presented in Table 1 

demonstrate that sufficient and accurate results are achieved 

when the first five modal frequencies of isotropic Toro- 
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parabolic shells use ten strips where each strip is made of 

ten sections (NST = 10, NSC = 10). It is noteworthy that 

some modes have more complicated modal shapes and that 

to obtain frequencies related to these modes some more 

strips made of more sections may be needed. 

The five first natural frequency parameters of Toro-

parabolic, parabolic, Toro-circular, and spherical FGM shell 

panels with different boundary conditions are illustrated in 

Tables 3 and Table 2, Table 4 and Table 5 respectively. 

 

 

 

 

 

 

 

 

 

Reviewing the aforementioned tables, it is clear that 

frequency parameters obtained by the present method (IG-

SFSM) are close to the results obtained by Tornabene and 

Viola (2009) for similar cases using GDQ. This proximity 

means that the introduced finite strip method is able to 

obtain natural frequencies related to the free vibration of 

FGM shell panel’s analysis with arbitrary shapes. The five 

first natural frequency parameters of Toro-parabolic, 

parabolic, Toro-circular, and spherical FGM shell panels 

with different boundary conditions are illustrated in Tables 

3 and 5 respectively. Reviewing the aforementioned tables,  

Table 1 Convergence astudy of isotropic Toro-parabolic shell 

𝜔∗ 
NSC=8 NSC=10 NSC=12 Tornabene and  

Viola (2009) NST=10 NST=15 NST=20 NST=10 NST=15 NST=20 NST=10 NST=15 NST=20 

1 37.540 37.487 37.465 36.836 36.780 36.757 36.782 36.726 36.703 36.620 

2 38.332 38.277 38.255 37.625 37.568 37.545 37.572 37.515 37.492 37.389 

3 40.993 40.965 40.953 40.351 40.322 40.309 40.329 40.300 40.286 40.191 

4 46.441 46.370 46.340 45.842 45.769 45.738 45.853 45.779 45.748 45.633 

5 54.185 54.045 53.997 53.618 53.477 53.428 53.649 53.507 53.458 53.268 

(*) NSC=Number of sections  (*) NST=Number of isogeometric spline finite strips  (*)  𝜔∗ = 𝜔𝑘2√𝜌𝑐/(ℎ2𝐸𝑐) 

Table 2 First five natural frequency parameters (𝜔∗) of Parabolic FGM shell panel 

𝜔∗  r =0 r =0.6 r =1 r =5 r =20 r =50 r =100 r =∞ 

FGM1- Parabolic panel   𝜔∗ = 𝜔𝑘2√𝜌𝑐/(ℎ2𝐸𝑐) 

1 
IG-SFSM (present study) 31.424 30.217 29.902 29.969 29.891 29.680 29.565 29.424 

Tornabene and Viola (2009) 31.272 30.076 29.765 29.843 29.765 29.547 29.435 29.295 

2 
IG-SFSM (present study) 41.416 40.413 40.276 40.931 40.202 39.516 39.187 38.787 

Tornabene and Viola (2009) 41.183 40.250 40.131 40.798 40.024 39.320 38.983 38.576 

3 
IG-SFSM (present study) 64.222 62.630 62.145 61.582 61.030 60.604 60.397 60.149 

Tornabene and Viola (2009) 64.808 63.308 62.852 62.282 61.645 61.182 60.967 60.700 

4 
IG-SFSM (present study) 71.844 68.833 68.037 67.963 67.993 67.674 67.504 67.289 

Tornabene and Viola (2009) 72.133 69.281 68.522 68.396 68.315 67.970 67.789 67.563 

5 
IG-SFSM (present study) 80.929 77.751 77.048 77.807 77.451 76.681 76.288 75.800 

Tornabene and Viola (2009) 81.022 78.014 77.362 78.066 77.596 76.800 76.392 75.892 

FGM2- Parabolic panel   𝜔∗ = 𝜔𝑘2√𝜌𝑐/(ℎ2𝐸𝑐) 

1 
IG-SFSM (present study) 31.424 30.906 30.772 30.787 30.232 29.832 29.647 29.424 

Tornabene and Viola (2009) 31.272 30.769 30.639 30.661 30.106 29.702 29.517 29.295 

2 
IG-SFSM (present study) 41.416 39.735 39.424 40.168 39.887 39.372 39.109 38.787 

Tornabene and Viola (2009) 41.183 39.457 39.135 39.883 39.646 39.146 38.890 38.576 

3 
IG-SFSM (present study) 64.222 62.952 62.571 62.082 61.223 60.682 60.437 60.149 

Tornabene and Viola (2009) 64.808 63.452 63.052 62.560 61.741 61.223 60.982 60.700 

4 
IG-SFSM (present study) 71.844 71.359 71.211 70.933 69.244 68.244 67.804 67.289 

Tornabene and Viola (2009) 72.133 71.541 71.359 71.044 69.433 68.481 68.056 67.563 

5 
IG-SFSM (present study) 80.929 79.410 79.151 79.822 78.288 77.059 76.485 75.800 

Tornabene and Viola (2009) 81.025 79.388 79.107 79.773 78.307 77.118 76.559 75.892 
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Table 4 First five natural frequency parameters (ω∗) of Toro-circular FGM shell panel 

𝜔∗  r =0 r =0.6 r =1 r =5 r =20 r =50 r =100 r =∞ 

FGM1- Toro-circular panel   𝜔∗ = 𝜔𝑅2√𝜌𝑐/(ℎ2𝐸𝑐) 

1 
IG-SFSM (present study) 13.141 12.836 12.747 12.626 12.487 12.398 12.358 12.309 

Tornabene and Viola (2009) 13.111 12.781 12.687 12.565 12.444 12.363 12.325 12.281 

2 
IG-SFSM (present study) 13.341 13.024 12.934 12.821 12.681 12.589 12.546 12.496 

Tornabene and Viola (2009) 13.319 12.976 12.880 12.768 12.646 12.561 12.522 12.475 

3 
IG-SFSM (present study) 17.715 17.020 16.894 17.219 17.091 16.858 16.272 16.593 

Tornabene and Viola (2009) 17.653 16.945 16.818 17.146 17.021 16.794 16.678 16.535 

4 
IG-SFSM (present study) 18.179 17.458 17.329 17.678 17.549 17.305 17.181 17.028 

Tornabene and Viola (2009) 18.111 17.381 17.251 17.602 17.474 17.235 17.114 16.964 

5 
IG-SFSM (present study) 18.942 18.479 18.340 18.132 17.960 17.851 17.801 17.742 

Tornabene and Viola (2009) 18.944 18.451 18.304 18.098 17.947 17.846 17.800 17.744 

FGM2- Toro-circular panel   𝜔∗ = 𝜔𝑅2√𝜌𝑐/(ℎ2𝐸𝑐) 

1 
IG-SFSM (present study) 13.141 12.916 12.848 12.713 12.519 12.412 12.364 12.309 

Tornabene and Viola (2009) 13.111 12.913 12.850 12.714 12.503 12.389 12.339 12.281 

2 
IG-SFSM (present study) 13.341 13.110 13.040 12.913 12.715 12.603 12.554 12.496 

Tornabene and Viola (2009) 13.319 13.114 13.052 12.924 12.708 12.589 12.536 12.475 

3 
IG-SFSM (present study) 17.715 17.249 17.183 17.500 17.196 16.903 16.763 16.593 

Tornabene and Viola (2009) 17.653 17.199 17.136 17.454 17.148 16.850 16.707 16.535 

4 
IG-SFSM (present study) 18.179 17.695 17.629 17.970 17.657 17.351 17.204 17.028 

Tornabene and Viola (2009) 18.111 17.639 17.575 17.915 17.602 17.292 17.143 16.964 

5 
IG-SFSM (present study) 18.942 18.717 18.577 18.372 18.062 17.896 17.825 17.742 

Tornabene and Viola (2009) 18.944 18.697 18.617 18.411 18.078 17.905 17.830 17.744 

 
Fig. 6 Relationship between first two modal frequency parameters (𝜔∗) and power law index (r) related to FGM shell 

panels: (a) Toro-parabolic panel, (b) Parabolic panel, (c) Toro-circular panel and (d) Spherical panel 
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it is clear that frequency parameters obtained by the present 

method (IG-SFSM) are close to the results obtained by 

Tornabene and Viola (2009) for similar cases using GDQ. 

This proximity means that the introduced finite strip 

method is able to obtain natural frequencies related to the 

free- vibration of FGM shell panel’s analysis with 

arbitrary shapes.  
As can be observed in graphs depicted in Fig. 6, the 

relationship between the first two modal frequency 

parameters (𝜔∗) and the power law index (r) is plotted 

between r equal to 0 and 40 as low and high level values of 

the power-law index. 

With reference to Eq. (23), it is apparent that r equal to 0 

denotes the full ceramic shell: higher values for this 

parameter represent the shell with characteristics 

approximately close to the full metal. By considering the 

graphs depicted in Fig. 6 it can be seen that there are some 

notable points. For all of the cases except the Toro-circular 

panel in the intermediate range in the vicinity of r equal to 

1, modal frequency parameters do not have uniform 

changes. In this range, the influence of the chosen ceramic’s 

volume fraction function (i.e., FGM1 or FGM2) on modal 

frequency parameters is varies more significantly from each 

other, whereas at very high or low levels for values of r 

these differences are insignificant. As can be seen in Figs. 

6(a)-6(c), the first and second modal frequencies of the 

Toro-parabolic and Toro-circular panels are close to each 

other for all values of the power-law index (r) and the  

 

 

choice of ceramic’s volume fraction. However, as 

demonstrated in Figs. 6(b)-6(d) for cases with parabolic and 

spherical panels. 

 

4.2 Laminated shell panels with variable thickness 

 

The second set of examples is related to shell panels 

with two important characteristics. All the cases have 

variable thickness and are made of laminated materials 

(Bacciocchi et al. 2015). Three types of materials are used 

as constituents in these laminations. Mechanical properties 

of these constituent materials are illustrated in Table 6. 

To define the geometry of the shells in this set of 

examples, we considered an arbitrary curved surface 

defined in global and local curvilinear coordinates as 

depicted in Fig. 7 Definition of geometry using this manner 

allowed us to introduce the geometrical characteristics of 

this set of examples. By means of this method, three 

geometric types of shell panels with their variation of 

thickness can be defined as demonstrated in Table 7. These 

geometrical characteristics and variation of thickness 

representations are defined based on Eq. (24) and Fig. 7. 

1 2 1 2 1 2 1 2
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(24) 

Table 5 First five natural frequency parameters (𝝎∗) of Spherical FGM shell panel 

𝜔∗  r =0 r =0.6 r =1 r =5 r =20 r =50 r =100 r =∞ 

FGM1- Spherical panel   𝜔∗ = 𝜔𝑅2√𝜌𝑐/(ℎ2𝐸𝑐) 

1 
IG-SFSM (present study) 3.380 3.266 3.244 3.287 3.254 3.212 3.191 3.166 

Tornabene and Viola (2009) 3.382 3.268 3.246 3.289 3.256 3.214 3.193 3.168 

2 
IG-SFSM (present study) 4.509 4.338 4.308 4.402 4.360 4.296 4.264 4.224 

Tornabene and Viola (2009) 4.506 4.334 4.305 4.399 4.358 4.293 4.261 4.221 

3 
IG-SFSM (present study) 7.017 6.774 6.729 6.830 6.762 6.672 6.627 6.573 

Tornabene and Viola (2009) 7.013 6.769 6.725 6.826 6.758 6.668 6.624 6.569 

4 
IG-SFSM (present study) 8.315 7.984 7.930 8.134 8.061 7.932 7.868 7.788 

Tornabene and Viola (2009) 8.321 7.977 7.923 8.128 8.055 7.926 7.862 7.782 

5 
IG-SFSM (present study) 11.252 10.914 10.839 10.888 10.778 10.663 10.607 10.540 

Tornabene and Viola (2009) 11.243 10.904 10.830 10.880 10.770 10.655 10.599 10.531 

FGM2- Spherical panel   𝜔∗ = 𝜔𝑅2√𝜌𝑐/(ℎ2𝐸𝑐) 

1 
IG-SFSM (present study) 3.380 3.291 3.275 3.316 3.266 3.216 3.194 3.166 

Tornabene and Viola (2009) 3.382 3.292 3.277 3.318 3.268 3.219 3.196 3.168 

2 
IG-SFSM (present study) 4.509 4.375 4.356 4.448 4.379 4.301 4.268 4.224 

Tornabene and Viola (2009) 4.506 4.372 4.353 4.446 4.377 4.302 4.265 4.221 

3 
IG-SFSM (present study) 7.017 6.825 6.793 6.890 6.786 6.678 6.633 6.573 

Tornabene and Viola (2009) 7.013 6.820 6.788 6.886 6.782 6.679 6.629 6.569 

4 
IG-SFSM (present study) 8.315 8.057 8.022 8.227 8.100 7.943 7.877 7.788 

Tornabene and Viola (2009) 8.321 8.050 8.015 8.221 8.093 7.944 7.870 7.782 

5 
IG-SFSM (present study) 11.252 10.996 10.942 10.991 10.821 10.677 10.617 10.540 

Tornabene and Viola (2009) 11.243 10.986 10.933 10.983 10.812 10.674 10.609 10.531 
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Table 6
 
Mechanical properties of material constituents related to second set of examples (Bacciocchi et al. 2015) 

 ( )E GPa    3( / )kg m  

Aluminum 70 0.3 2707 

Zirconia 168 0.3 5800 

Steel 210 0.3 7800 

Table 7 Geometrical characteristics of laminated shell panels (Bacciocchi et al. 2015) 

Translational panel (CCCC) Panel of revolution (FCFF) Conical panel (FCCC) 
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Table 8 First ten natural frequencies of translational panel, panel of revolution, and conical panel 

 Translational panel (CCCC) Panel of revolution (FCFF) Conical panel (FCCC) 

𝜔∗ present 
Bacciocchi et al.  

(2015) 
present 

Bacciocchi et al. 

(2015) 
present 

Bacciocchi et al. 

(2015) 

1 11.731 11.716 9.892 9.888 1.5632 1.5622 

2 11.810 11.800 10.851 10.839 1.8204 1.8195 

3 12.778 12.758 21.539 21.522 2.3325 2.3314 

4 15.911 15.892 25.347 25.338 2.3976 2.3965 

5 17.525 17.506 26.112 26.075 2.5345 2.5332 

6 19.446 19.426 40.932 40.940 3.0861 3.0844 

7 20.011 19.994 41.530 41.503 3.1297 3.1274 

8 20.261 20.237 47.083 47.075 3.2448 3.2428 

9 22.008 21.990 47.608 47.565 3.3262 3.3248 

10 22.228 22.205 52.716 52.659 3.7657 3.7637 

𝜔∗ = 𝜔𝑎2√
𝜌𝐴𝑙

𝐸𝐴𝑙ℎ0
2 

 

Lamination scheme : (Al/Zi) 

h0,1=0.05m   h0,2=0.05 m 

 

Lamination scheme :  

(Al/Zi/Al) 

h0,1=0.015m, h0,2=0.015 m  h0,3

=0.015 m 

 

Lamination scheme : (Al/St) 

h0,1=0.05 m   h0,2=0.05 m 
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All three laminated shell panels represented in Table 7 

based on Eq. (24) and Fig. 7 were analyzed by IG-SFSM. 

The results so obtained were compared with results for 

similar cases presented by Bacciocchi et al. (2015) based on 

the GDQ method. This comparison is demonstrated in Table 

8: it shows the closeness of two kinds of results for each  

case of study. This comparison presents proof of the 

accuracy of the present method in analysis of laminated 

shell panels with variable thickness incorporating arbitrary 

shapes and various boundary conditions (Bacciocchi et al. 

2015). 

 

4.3 Sandwich FGM shell panel of variable thickness 
 

The third example is related to free vibration analysis 

and natural frequencies of a doubly curved translational 

sandwich FGM shell panel (Tornabene et al. 2017). 

Geometrical characteristics and variation of the thickness 

representation of this shell and the applied boundary 

condition are depicted in Table 9. These characteristics are 

presented based on the description in Fig. 7. This example 

incorporates a doubly curved translational shell made of 

three different layers. The first layer (down layer) is made 

of stainless steel SUS304, the middle layer is made of 

FGM1 that is shown in Eq. (23), and third layer (top layer) 

is made of Silicon nitride
3 4Si N . Mechanical properties of 

the material constituents employed in FGM related to this 

example are demonstrated in Table 10. 

The first eight natural frequencies of a doubly curved 

translational sandwich FGM shell panel introduced in 

Tables 9 and 10 have been analyzed using IG-SFSM: the  

 

 

 

 

 

 

results obtained were compared with those related to same 

case, have been achieved by Tornabene et al. (2017) using 

local generalized differential quadrature (LGDQ). This 

comparison is demonstrated in Table 11: it shows the 

suitable accuracy of the introduced IG-SFSM. Investigation 

of Table 11 shows that for each mode of natural 

frequencies, there is a special relationship between the 

modal frequency and the power-law index (r).  

 

 

 

Fig. 8 Relationship between first five modal frequency 

parameter (𝜔∗) and power law index (r) related to doubly 

curved sandwich FGM shell panel 

 

 

 

 

Table 9 Geometrical characteristics of sandwich FGM translational shell panel (Tornabene et al. 2017) 

Translational shell panel (CFCF) Geometrical characteristics 
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Table 10 Mechanical properties of material constituents related to third example (Tornabene et al. 2017) 

 ( )E GPa    3( / )kg m  

Stainless steel 207.7877 0.317756 8166 

Silicon nitride Si3 N4 322.2715 0.24 2370 
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Fig. 8 shows this relationship for the first five modal 

frequencies. Investigation of Fig. 8 shows that the manner 

of change of all modal frequency parameters is the same, 

but increase in the number of modes results in increase in 

the maximum and minimum modal frequencies. It is 

notable that for each mode of natural frequency, increasing 

the power-law index (r) to more than 5 results in the same 

frequency which converges to the special value. This 

manner is different from that demonstrated in Fig. 6, related 

as that is to the first set of examples. 

 

 

 

 

 

4.4 Laminated-sandwich FGM shell panel with 
variable thickness 

 

The last numerical example is about free vibration of a 

laminated-sandwich FGM shell panel with variable 

thickness. The geometry of the aforementioned shell panel 

is hyperbolic paraboloid. Natural frequencies of the 

aforementioned structures have been calculated using IG-

SFSM for different boundary conditions and FGM 

representations. Table 12 demonstrates the geometrical 

characteristics of laminated and sandwich FGM hyperbolic 

paraboloid shell panels. Notably, the appellation of different 

Table 11 First ten natural frequency parameters (𝜔∗) of doubly curved sandwich FGM shell panel 

Doubly curved Sandwich FGM shell panel    𝜔∗ = 𝜔𝑘2√𝜌𝑐/(ℎ2𝐸𝑐) 

𝜔∗  r =0 r =0.2 r =0.5 r =1 r =2 r =6 r =128 r =∞ 

1 
IG-SFSM (present study) 28.548 25.639 23.375 21.557 20.096 18.545 17.406 17.341 

Tornabene et al. (2017) 28.345 25.457 23.204 21.406 19.950 18.509 17.374 17.307 

2 
IG-SFSM (present study) 29.001 26.123 23.808 21.879 20.225 18.716 17.795 17.739 

Tornabene et al. (2017) 28.941 26.069 23.759 21.835 20.182 18.723 17.662 17.607 

3 
IG-SFSM (present study) 34.696 31.211 28.402 26.058 24.048 22.027 20.680 20.603 

Tornabene et al. (2017) 34.670 31.188 28.378 26.036 24.026 22.005 20.661 20.582 

4 
IG-SFSM (present study) 39.432 35.426 32.301 29.800 27.780 25.876 24.613 24.537 

Tornabene et al. (2017) 39.317 35.323 32.204 29.711 27.692 25.793 24.531 24.456 

5 
IG-SFSM (present study) 43.659 39.142 35.550 32.595 30.108 27.674 26.110 26.021 

Tornabene et al. (2017) 43.643 39.128 35.534 32.582 30.095 27.661 26.098 26.010 

6 
IG-SFSM (present study) 48.756 43.611 39.471 36.024 33.078 30.155 28.298 28.196 

Tornabene et al. (2017) 48.742 43.598 39.460 36.016 33.068 30.146 28.290 28.188 

7 
IG-SFSM (present study) 56.278 50.496 45.959 42.304 39.323 36.504 34.684 34.578 

Tornabene et al. (2017) 56.219 50.443 45.908 42.260 39.279 36.467 34.649 34.543 

8 
IG-SFSM (present study) 61.181 54.768 49.741 45.696 42.421 39.356 37.402 37.289 

Tornabene et al. (2017) 61.041 54.643 49.623 45.594 42.320 39.262 37.311 37.197 

Table 12 Geometrical characteristics of laminated-sandwich FGM hyperbolic paraboloid shell panel 

hyperbolic paraboloid shell panel Geometrical characteristics 

 
 

Lamination scheme : (Al/St/FGM2/Si/Zi) 
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boundary conditions is based on Edge 1, Edge 2, Edge 3, 

and Edge 4, as shown in Table 12. For example, FCSF 

represents the special boundary condition wherein Edge 1 is 

the free edge (i.e. all DOFs are free); Edge 2 is completely 

clamped, i.e. all edges are restrained; Edge 3 is completely 

simple, i.e. all translational DOFs are restrained and all 

rotational DOFs are free; and Edge 4 is another free edge. 

This shell panel is made of five layers. The first and second 

layers are made of aluminum and steel respectively. The 

third and fourth layers are made of silicon and zirconia 

respectively. The middle layer is made of functionally 

graded material such that the governing function in this 

layer is related to FGM2, as illustrated in Eq. (23). This 

layer is made of two constituent materials, ceramic (silicon) 

and metal (steel). The mechanical properties of aluminum, 

steel and zirconia are demonstrated in Table 6; these 

characteristics for silicon are presented in Table 10. The 

natural frequency parameters of free vibration have been 

achieved for the aforementioned shell panel: relevant results 

are shown in Table 13, demonstrating the effect of boundary 

condition on the natural frequencies of free vibration. 

 

 

5. Conclusions 
 

In the present paper, an improved version of FSM, 

named IG-SFSM, is introduced. The method is able to  

model shell structures with different complicated  

 

 

geometries and boundary conditions. By employing the 

FEM and IGA in the transverse and longitudinal directions, 

respectively, and enjoying the benefits of the methods, 

multipurpose targets are achieved for analysis of the 

sandwich FGM shells. To show the accuracy of the method, 

different examples related to the free vibration analysis of 

shell structures with different geometries, boundary 

conditions, and material properties are considered. Most of 

them are available in the existing literature, which 

employed the other numerical methods: these are used for 

validating of the results achieved by IG-SFSM. Free 

vibration analysis and obtained natural frequencies, show 

that it is possible to analyze the shell structures with the 

aforementioned mechanical and geometrical properties by 

means of IG-SFSM. Also, the corresponding results show 

that the method is an efficient tool in comparison to the 

other methods, such as FEM and IGA. By using IG-SFSM, 

the suitable continuity of IGA is provided in longitudinal 

direction of the strips and its shortcomings are reduced in 

the transversal direction by employing FEM. The 

introduced finite strip method provides a situation which 

satisfies all of the boundary conditions without any 

difficulties encountered with previous versions of FSM and 

IGA for analysis of shell structures. Results obtained by 

means of IG-SFSM show that there are no restrictions on 

use of the proposed method for free vibration analysis of 

sandwich functionally graded shells with the field of 

thickness changes. 

Table 13 Natural frequency parameters of hyperbolic paraboloid shell panel for different boundary conditions 

𝜔∗ SSSS CCCC SCCS CSSC SFFS FSSF CFFC FCCF FSCF SFFC 

r =1 

1 246.41 281.62 253.26 276.59 171.97 149.97 220.37 166.80 162.42 188.51 

2 260.63 310.91 266.96 282.78 201.40 162.37 228.05 187.89 174.10 203.47 

3 266.45 322.82 306.86 304.81 206.80 169.19 235.27 197.32 183.14 220.94 

4 300.85 386.03 337.44 356.22 211.20 181.94 250.02 219.44 203.31 236.55 

5 379.08 471.18 388.30 401.66 231.31 215.46 280.22 232.21 217.01 247.83 

6 386.15 473.49 453.60 465.30 260.10 249.76 321.81 289.03 268.39 288.80 

r =3 

1 217.66 246.76 223.94 241.95 152.33 133.01 193.26 146.34 142.37 166.34 

2 227.12 275.48 233.17 249.76 178.02 142.05 200.24 165.23 154.36 178.44 

3 234.83 285.99 271.56 269.92 181.13 150.16 208.94 175.58 161.25 194.20 

4 267.45 343.27 300.03 316.66 184.45 159.68 220.71 192.99 180.68 208.71 

5 337.56 418.91 345.73 357.32 203.56 188.92 248.80 206.49 190.44 219.44 

6 343.45 420.92 403.39 413.68 231.44 221.81 286.09 256.86 238.42 257.07 

r =5 

1 209.46 236.79 215.73 231.86 146.81 128.16 185.43 140.53 136.49 160.17 

2 217.58 265.52 223.75 240.16 171.31 136.05 192.22 158.86 148.75 171.53 

3 225.91 275.44 261.70 259.98 174.13 144.85 201.48 169.52 155.06 186.54 

4 258.01 331.16 289.64 305.28 177.11 153.26 212.35 185.39 174.45 200.98 

5 325.79 404.03 333.77 344.55 195.99 181.10 239.90 199.34 182.68 211.28 

6 331.31 406.09 389.27 399.02 223.74 213.50 276.05 247.57 229.66 248.25 

𝜔∗ = 𝜔𝑘2√𝜌𝑆𝑖/(ℎ0
2𝐸𝑆𝑖) 
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