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1. Introduction 

 

The  laminated  composi te  and  the  sand wich 

structure/structural components are highly desirable in 

aeronautical, space and automobile industries due to their 

exceptional properties. In general, the sandwich-type of 

constructions are adopted for the design of the high-speed 

and reusable launch vehicles, which allows the structure to 

take an extra amount of loading in comparison to the 

layered structure. This is mainly because of the sandwich 

configuration i.e. two stiff composite layers (face sheets) 

are separated by a thick low-density material layer (core). 

The fibrous composite materials have extensive advantages 

over their conventional counterparts and the requirement of 

overcoming the difficulties involved in the design of 

advanced high-speed flight vehicles. This, in turn, 

encouraged mainly to the usage of sandwich structural 

component instead of layer composite. Moreover, the 

requirement and usage of this sandwich configuration have 

become the priority due to the improvement and availability 

of the advanced fibre for the fabrication of the face sheet. In 

addition, the sandwich configuration has good bending 

rigidity, vibration characteristics, fatigue properties as well 

as low specific weight. However, the bucking is the major  
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issue need to be taken care during the designing of 

sandwich skins as wings of an aircraft. It is well known that 

the structural parts of high-speed aircraft are not only 

exposed to the aerodynamic loading only but also to the 

aerodynamic heating, which, further affects the whole 

structural stability. Due to this, the structure/structural 

components may buckle and the load-bearing capacity of 

the structure also deviates from the expected lines. This is 

severe for the structure which is working under either the 

individual and/or combination of loading i.e. under the 

influence of elevated temperature environment. 

The structural responses (bending, vibration, 

buckling/post-buckling) of the laminated and sandwich 

composite plate are solved (Srinivas and Rao 1970, Singh et 

al. 1993, Striz et al. 1997, Hause et al. 1998, Thankam et 

al. 2003, Shiau and Kuo 2004, Girish and Ramachandra 

2005) using different types of numerical (finite 

element/quadrature/meshfree/Galerkin) and benchmark (3-

D elasticity) techniques to compute the temperature 

carrying capacity both the linear and nonlinear type strain. 

Similaly, the harmonic differential quadrature and discrete 

singular convolution algorithm have been adopted to 

investigate the static and dynamic characteristics of the 

isotropic/orthotropic composite circular/conical shell and 

plate structures by Civalek and his coworkers (2004, 2006, 

2007a, b, 2008, 2011). Additionally, the structural model 

derived using the equivalent single layer theories to express 

the displacement function either by first-order and higher-

order shear deformation theories (FSDT and HSDT) 

including von-Karman type nonlinear strain. Moreover, the 

HSDT type of kinematics is adopted by Matsunaga (2005, 
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2006) to model and predict the buckling temperature values 

of the laminated and the sandwich plate structure. Similarly, 

the analytical technique (Zakeri and Alinia 2006) in 

association with the FSDT kinematics have been utilized to 

predict the buckling and the post-buckling temperature of 

the sandwich structures while exposed to the uniform 

thermal stresses. Likewise, the HSDT kinematics including 

the finite element method (FEM) have been adopted to 

compute the free vibration frequency (Garg et al. 2006) and 

the dynamic deflections (Park et al. 2008) of the skew 

sandwich plate, whereas the thermal buckling and post-

buckling temperature are (Panda and Singh 2009) predicted 

for the laminated shell panel structure. The compressive 

strength of the laminated composite has been evaluated via 

experimentally to study the effect of the number of layers 

and the number of superposed delaminations (Amaro et al. 

2014). Additionally, the classical laminate plate theory 

(CLPT) and the HSDT kinematic models are adopted in 

conjunction with von-Karman nonlinear strain to predict the 

finite element (FE) solutions for the eigenvalues i.e., 

frequency (Singh and Panda 2014), buckling (Juhazs and 

Szerkenyes 2015a, b) and post-buckling (Nikard and Asadi 

2015) data of the layered composite structures with and 

without delamination. The deflection (Draiche et al. 2016) 

and buckling/post-buckling (Jun et al. 2016, Khayat et al. 

2016) behaviour of the laminated composite flat/curved 

structures examined by considering the stretching effect 

using the FE steps in the framework of the FSDT and 

refined HSDT. In addition, the bending, buckling and free 

vibration (Abdelaziz et al. 2017) behaviour of the 

functionally graded (FG) beam/plate structure demonstrated 

by considering the stretching effect (Atmane et al. 2017, 

Bouhadra et al. 2018) via novel hyperbolic shear 

deformation theory. The thermal buckling behaviour of the 

laminated and FG structures are evaluated (Bellifa et al. 

2017, Chikh et al. 2017, El-Haina et al. 2017; Fahsi et al. 

2017, Menasria et al. 2017) by considering the stretching 

effect via refined HSDT and analytically. The structural 

responses (frequency, buckling) of the layered sandwich, 

FG and hybrid components are investigated (Zhai et al. 

2018, Wu et al. 2018, Bourada et al. 2018, Kaci et al. 2018; 

Karami et al. 2018, Zine et al. 2018) using different robust 

techniques i.e., discrete singular convolution and 

differential quadrature, harmonic differential quadrature 

method in the framework of the FSDT and HSDT type of 

kinematics. In the recent past, the buckling responses of the 

stiffened plate are analysed by Sadamoto et al. (2017) and 

Yoshida et al. (2017) in the framework of the FSDT via the 

meshfree Galerkin flat-shell formulation in association with 

the reproducing kernel particle method. The structural 

member of sandwich materials possesses the excellent 

performance characteristic are under high-velocity impact 

loading during their operation in aerospace industry. The 

dynamic responses of these structures are analysed by Gao 

et al. (2018) performing set of experiments as well as the 

numerically solved via the ABAQUS/Explicit module. 

Further, the bending, buckling and the vibration responses 

of the nanobeam and the FG sandwich structures have been 

examined by Meksi et al. (2019), Bedia et al. (2019) using 

the nonlocal strain gradient theory by considering the 

HSDT kinematics. Recently, the researchers (Draiche et al. 

2019, Mahmoudi et al. 2019, Semmah et al. 2019) have 

studied the static, dynamic and stability characteristics of 

the laminated composite and FG, structures using a novel 

fractional nonlocal model in the framework of the FSDT 

and nonlocal higher-order strain gradient theories. A quasi 

3D HSDT and the FSDT have been employed to examine 

the static, dynamic and stability characterisics of the 

layered, sandwich and FG structures on visco-Pasternak 

foundations (Addou et al. 2019, Zarga et al. 2019, Boukhlif 

et al. 2019, Boulefrakh et al. 2019, Boutaleb et al. 2019, 

Khiloun et al. 2019, Zaoui et al. 2019). 

The review of earlier researches implied that the 

structural responses of the layered composite and sandwich 

components have been studied largely every now and then 

utilizing the established kinematic models and solution 

techniques with and without skew angle. However, it is 

important to note that the post-buckling temperature 

prediction of the skew sandwich analysis of the layered 

sandwich composite shell panel did not get much attention 

earlier. Also, the thermal post-buckling behaviour of the 

layered sandwich composite shell panel is different than the 

layered composite because of the dissimilar types of 

material of the face and core, which may behave otherwise 

than the expected line. Hence, considering all the above 

aspects, the current study aims where, ‘t’ is the time, Ux, Uy 

and Uz are the displacement of any point within the panel 

along x, y and z directions, respectively. 1

xu , 1

yu and 1

zu are 

the mid-plane displacement of any point within the panel 

along , ,andx y   directions, respectively. Similarly, 1
x , 

1
y and 1

z are the rotation of to understand the thermal 

post-buckling behaviour of the laminated sandwich 

composite shell panel including the tilted angle. In the 

present study, a generic nonlinear (Green-Lagrange strain) 

FE model is developed mathematically using the HSDT 

kinematics (maintain the parabolic distribution of the 

transverse shear stress) to count the deformation 

characteristics under the elevated temperature loading. The 

temperature load parameter of the sandwich structure is 

predicted in the post-buckled regime computationally 

through a home-made computer code developed in the 

MATLAB environment. The model accuracy is established 

by solving a few numerical problems as same as the earlier 

published examples including the consistency test. The 

verified model is extended to show the applicability by 

solving for the different geometrical and material 

parameters associated with the structural design. 

 

 

2. Theory and general formulation 
 

The sandwich structure is a special form of a layered 

structure having two thin stiff and strong laminated face 

sheets separated by a relatively thick and lightweight core 

material. Fig. 1 represents the geometry of the sandwich 

panel having a length “a”, width “b” and total thickness “h” 

is the combination of thicknesses of the face sheet “hf” and 

the core “hc”.  The displacement model for the laminated 

sandwich shell panel is assumed to be (Singh and Panda 
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2014) higher-order including the stretching effect and given 

as 

normal to the mid-plane and extension terms, respectively 

along the corresponding directions. The higher-order 

functions in the equation i.e., 1
x ,

1
y , 1

x and
1
y are defined 

from Taylor series expansion to express the desired mid-

plane kinematics of the panel geometry. 

The nonlinear strain-displacement relation based on Green-

Lagrange type of nonlinearity as in Reddy (2004a) is 

adopted for the full geometric distortion of the sandwich 

composite shell panel and can be expressed as 

 

 

 

 

where, the mid-plane linear { }l and nonlinear { }nl strain 

vector terms can be seen in Singh and panda (2014). 

The constitutive relations for any arbitrary kth layer in 

the sandwich composite panel accounting the external 

thermal environment has been elaborated as same as Reddy 

(2004b) 
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Fig. 1 Geometry and configuration of the sandwich panel 
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     
kk k k

Q T      
   

 (3) 

From the constitutive expression (Eq. (3)), the required 

stress and the strain tensors can be presented in the 

expanded form i.e., 

   
Tk

x y z yz xz xy       and 

    .
Tk

x y z yz xz xy       Also,
k

Q 
 

is the 

transformed reduced stiffness matrix, whereas, the uniform 

temperature rise is ‘ΔT’. Similarly, the transformed linear 

thermal expansion coefficient vector of the kth layer 

represented in the equation as 

   
Tk

x y xy     

Now, to obtain the required in-plane temperature forces 

are computed by integrating the Eq. (3) over the thickness 

of the panel and defined as in the following lines. 
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where,     , andt t tN M P   are the resultant compressive 

in-plane membrane force vectors, moments and the higher-

order terms, respectively. 

Now, the strain energy (US.E.) of the sandwich composite 

shell panel can be expressed as 

   . .

1

2

T

S E iiv
U dV    (5) 

The final form of the energy functional of the sandwich 

panel under uniform temperature loading is obtained by 

replacing the total strain and the stress tensors from the Eqs. 

(2) and (3) into the above Eq. (5) and can be written as 

v 
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Now, the total work done (WΔT) by the in-plane thermal 

force       , andtx ty txyN N N  
due to the influence of the 

uniform temperature rise (ΔT) of the curved sandwich 

composite panel is computed using Green-Lagrange type of 

strain field and written as 
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The above work done expression is linearized by 

employing the procedure as given in Cook et al. (2009) and 

conceded as 
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1

2

T

T G G G
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where,  G and  GD represents the geometric strain and 

the material property matrix, respectively due to the in-

plane thermal loading. 

In the current study, a nine-noded curved isoparametric 

element with ten unknowns per node 
1 1 1 1 1 1 1 1 1 1, , , , , an, d, ,x y z x y z x y x yu u u        is used to develop the 

finite element procedure. The generalized displacements 

fields included in the present study in terms of nodal 

variables can be expressed as 
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In addition, the displacement vector  at any point on 

the mid-surface can be expressed as follows 

   i iN    (10) 

where,   1 1 1 1 1 1 1 1 1 1

i i i i i i i i iii x y z x y z x x

T

y yu u u           is 

the nodal displacement vector of the model and Ni is the 

interpolating function associated with node ‘i’. 

Now, substituting the Eq. (10) into the Eqs. (6) and (8), 

the corresponding functionals i.e. the strain energy and the 

work done expressions are modified as 
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Similarly, the linear and nonlinear mid-plane strain 

vectors are rewritten in the form of the nodal displacement 

vectors and can be expressed as 
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          ,l nl GB A      (13) 

where, [B] is the linear strain-displacement matrix defined 

with the help of nodal shape functions and operator matrix. 

Similarly, [G] associated with nonlinear mid-plane strain as 

same as the linear case whereas components of [A] are the 

function of displacements. The details regarding the 

individual matrices can be seen in Singh and Panda (2014). 

Now, by minimizing the energy expression, the final 

form of the governing equation for the sandwich composite 

shell panel is obtained and expressed as 

0   (14) 

where,  . .S E TU W   . 

Finally, by using the Eqs. (6)-(14), the final governing 

equilibrium equation of the sandwich structural system can 

be expressed as Panda and Singh (2009) 

       

        

( )

, 0

l nl T

l nl cr G

K K F

or K K T K

 



 

  
 (15) 

The equation consist of terms {δ}, [Kl] and [Knl] are the 

global displacement vector, the linear global stiffness matrix 

and the nonlinear global stiffness matrix, respectively. Also, 

the thermal force vector seen in the system equation due to 

the elevated environment has been dropped and the 

corresponding effect included in the system via geometrical 

stiffness i.e., [KG] in the further steps (Thankam et al. 

2003). The inclusion of the geometrical stiffness matrix 

technique is mainly adopted to make the equation a 

nonlinear eigenvalue type. Now, the linear and nonlinear 

eigenvalues are computed by solving the Eq. (15) and the 

steps followed (Panda and Singh 2009) can be seen below. 

Now, the minimum eigenvalue predicted is the critical 

buckling temperature load and denoted as Tcr. 

 The geometry and material parameters are initialized as 

a first step.  

 The relevant structural elemental matrices are evaluated 

using the finite element technique.   

 The final/global form of each case achieved further 

using the FE methodology.  

 Now, to avoid the rigid body motion, the edge support 

conditions are applied and the final governing equation 

is solved using the direct iterative technique.  

 First, the linear response (critical buckling temperature 

parameter) is achieved at the first step of iteration 

process.  

 Further, the iteration process has been extended to 

obtain the nonlinear responses (post-buckling 

temperature parameter). 

The iterations will continue until the two consecutive 

values converge, considering the necessary criteria. 

 

 
3. Results and discussions 

 

The post-buckling behaviour of the laminated composite 

plate is examined using the presently developed numerical 

model. The critical buckling temperature data are presented 

in the non-dimensional form using the formula:
2( / )T T crT b h  . The material properties considered for 

the present numerical analysis are taken as same as 

Thankam et al. (2003) and provided below for the sake of 

clarity. The computation of the responses are obtained using 

different sets of end support conditions and the details of 

end boundaries can be seen in Table 1. 

/ 40; / 0.60; ;

/ 0.50; 0.25; / 10

x y x y y x z x y

y y x y y x

E E G E G G

G E

        

        

  

  
 

The model verification is one of the major steps in every 

numerical analysis, hence, the current nonlinear FE model 

consistency has been checked for different numbers of 

elements i.e., coarse to fine mesh effect on the desired 

output. It is important to mention that the results are 

verified for the laminated composite plate structure instead 

of the sandwich component due to the unavailability of 

thermal post-buckling case of flat/curved sandwich. The 

model validity has been established based on the 

assumption of negligible core layer thickness with infinite 

radii, which, in turn, implies as laminated composite flat 

structure. Moreover, the flat panels are the simplest form of 

curved geometry. Table 2 presented the temperature ratio of 

the nonlinear (T) to the critical buckling (Tcr) values for 

different element sizes including the reference data. The 

results are calculated using the same material and the 

dimensional values for the sake of comparison. The 

difference between the ratios is due to the types of mid-

plane kinematics and nonlinear strain displacement 

relations. The current model utilizes the higher-order mid-

plane kinematics and Green-Lagrange strain with stretching 

term effect whereas the reference model adopted von-

Karman nonlinearity in the framework of the FSDT. The FE 

convergence indicates the model solidity for the current 

analysis and 36 elements has been utilized to compute the 

new post-buckling data. 

 

3.1 Parametric study 
 

Now, several examples are solved to show the 

influences of various geometrical parameters (amplitude 

ratio, Wmax/h; length-to-width ratio, a/b; side-to-thickness 

ratio, b/h; curvature ratio, R/a; core-to-face thickness ratio, 

hc/hf) on the nonlinear buckling load parameter of skew (ϕ 

= 0°, 15°, 30° and 45°) sandwich (0°/90°/Core/90°/0°) 

shell panels.  
 

 

Table 1 End support conditions 

End 

conditions 
At edge ξx = 0, a At edge ξy = 0, b 

Simply-

support 0

y z

y y

y

z

U U 

  

  

  
 

0

x z

x x

x

z

U U 

  

  

  
 

Clamped 

0

x y z

x y

x y

x

y z

U U U 

   

 

   

   

 

 

0

x y z

x y

x y

x

y z

U U U 

   

 

   

   

 
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Table 2 Convergence and validation of the post-buckling 

ratio (T/Tcr) for hinged square (45°/-45°) S laminated 

composite plate (b/h = 100) 

Number of 

elements 

T/Tcr 

Amplitude ratio (Wmax/h) 

0.2 0.4 0.6 0.8 1.0 

4 1.0079 1.0312 1.0697 1.1225 1.1896 

9 1.0068 1.0269 1.0604 1.1066 1.1646 

16 1.0076 1.0307 1.0687 1.1214 1.1882 

25 1.0091 1.0342 1.0794 1.1408 1.2192 

36 1.0102 1.0412 1.0925 1.1619 1.2551 

49 1.0114 1.0475 1.1052 1.1871 1.2915 

64 1.0136 1.0545 1.1206 1.2142 1.3351 

Singh et al. 

(1993) 
1.051 1.204 1.459 1.322 1.371 

Thankam  

et al. (2003) 
1.051 1.203 1.459 1.318 1.366 

 

 

The material properties of each example of the laminated 

sandwich shell structures are taken from Matsunaga (2005) 

and provided in the following lines: 

Face (graphite/epoxy) 

2 2

5 3 3

3

6

0 0 0

2 10 ; 8 10 ; 2.2 10 ;

5 10 ; 0.35; 0.25;

2 ; 50 ; 1 10 /

x y y

x y x x x x

x y

E MPa E MPa G MPa

G G MPa

K

   

         

 

  

     

     

     

    

 

Core (soft) 

3

6

0 0

1000 ; 2 10 ; 800 ;

3700 ; 0.25; 0.35;

30 ; 1 10 /

x y x y x

y x y x y y

x y

E MPa E MPa G G MPa

G MPa

K

     

       

 

  

    

    

   

   

 

 

3.1.1 Influence of the side-to-thickness ratio 
The first numerical problem is solved to predict the 

post-buckling behaviour of a square simply supported skew 

panel of two different geometrical configurations i.e., 

cylindrical (one of the radius is infinite) and spherical (both 

radii of curvature are equal) (refer to Fig. 2). The responses 

are plotted for five different thickness ratios (b/h = 5, 15, 

25, 50, and 100) including the other associated data i.e.  

Wmax/h = 0.4; R/a = 10; and hc/hf = 5. It is well-known that 

the variation in the structural stiffness affects the responses 

significantly which can be seen in the figure i.e., the 

buckling load parameter increases with an increase in b/h 

and ϕ. Also, from the results it can be noticed that the 

spherical geometry has higher temperature carrying 

capacity in comparison to the cylinder. 

 

3.1.2 Influence of curvature ratio 

The current example also reported for two different 

geometrical configurations having equal (spherical) and 

unequal (hyperboloid) curvatures. The importance of 

curvature values on the temperature data in the post-

buckling regime have been obtained and presented in Fig. 3.  
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Fig. 2 Effect of the side-to-thickness ratios on the 

nonlinear buckling load parameter of a skew sandwich 

cylindrical and spherical shell panel 
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Fig. 3 Effect of the curvature ratios on the nonlinear 

buckling load parameter of a skew sandwich spherical 

and hyperbolical shell panel 

 

 

The numerical problem has been solved for the thin (b/h 

= 50) square clamped skew sandwich (hc/hf = 10) panel of 

five curvature ratios (R/a = 5, 15, 25, 50 and 100) by setting 

the amplitude as: Wmax/h = 0.6. The responses follow a 

similar line for the skew angle as in the earlier example i.e., 

the buckling load parameters are increasing when the skew 

angle increases. But, the buckling load parameter value 

follows a declining trend with the increase of R/a. This is 

because of fact that the panel becomes flat while R/a 

increases, whereas the spherical geometry shows higher 

strength in comparison to the hyperbolical shell panel. 

 

3.1.3 Influence of length-to-width ratio 

The nonlinear buckling load parameters are obtained by 

varying the length-to-width ratio of a square clamped skew 
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cylindrical and elliptical sandwich shell panel and presented 

in Table 3. The results are computed by considering the 

geometrical parameters as, a/b = 1, 1.5, 2, 2.5, and 3; b/h = 

10; R/a = 10; hc/hf = 10; and Wmax/h = 0.4. It is understood 

from the earlier example that the nonlinear buckling load 

parameter value increases as the skew angle increase and 

the same type of trend have been observed in this example 

too. The results also point out that the nonlinear buckling 

load parameter values are following a declining type of 

trend with the increase in the values of a/b. In addition, the 

elliptical shell geometry has a higher nonlinear buckling 

load parameter values in comparison with the cylindrical 

shell geometry. 

 

3.1.4 Influence of amplitude ratio 

In the previous set of numerical examples influence of 

b/h, R/a, and a/b with the skew angles are investigated. 

Now, the responses are computed to examine the effect of 

the amplitude ratios on a square simply supported 

cylindrical and spherical skew sandwich shell panel can be 

seen in Fig. 4. For the computation purpose, the geometrical 

data has been considered as: Wmax/h = 0.2, 0.4, 0.6, 0.8, and 

1.0; b/h = 100; R/a = 10; and hc/hf = 5. The effect of the 

skew angle is similar as discussed in the earlier cases i.e., 

the nonlinear buckling load parameter values increase with 

an increase in the skew angles. In addition, the nonlinear 

buckling load parameter values follow an increasing type of 

trend with an increase in the amplitude ratios. Further, the 

spherical shell geometry shows higher values compared to 

the cylindrical shell geometry. 

 

3.1.4 Influence of amplitude ratio 

In the previous set of numerical examples influence of 

b/h, R/a, and a/b with the skew angles are investigated. 

Now, the responses are computed to examine the effect of 

the amplitude ratios on a square simply supported 

cylindrical and spherical skew sandwich shell panel can be 

seen in Fig. 4. 

 

 

Table 3 Effect of the length-to-width ratios on the nonlinear 

buckling load parameter of a skew sandwich cylindrical and 

elliptical shell panel 

a/b 
Shell 

geometry 

Skew angle (ϕ) 

0° 15° 30° 45° 

1.0 

Cylindrical 

18.8299 18.9901 19.5021 20.4281 

1.5 13.1437 13.1939 13.1966 16.1487 

2.0 9.4574 9.6972 10.6103 12.494 

2.5 6.9678 7.1551 7.9648 9.7531 

3.0 5.2811 5.4643 6.1333 7.7301 

1.0 

Elliptical 

18.9110 19.0832 19.5780 20.4828 

1.5 13.4361 13.6882 14.5215 16.2273 

2.0 9.5790 9.8319 10.7051 12.5765 

2.5 7.0158 7.2283 8.0401 9.8271 

3.0 5.3510 5.5165 6.2035 7.8034 
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Fig. 4 Effect of the amplitude ratios on the nonlinear 

buckling load parameter of a skew sandwich cylindrical 

and spherical shell panel 

 
 

For the computation purpose, the geometrical data has 

been considered as: Wmax/h = 0.2, 0.4, 0.6, 0.8, and 1.0; b/h 

= 100; R/a = 10; and hc/hf = 5. The effect of the skew angle 

is similar as discussed in the earlier cases i.e., the nonlinear 

buckling load parameter values increase with an increase in 

the skew angles. In addition, the nonlinear buckling load 

parameter values follow an increasing type of trend with an 

increase in the amplitude ratios. Further, the spherical shell 

geometry shows higher values compared to the cylindrical 

shell geometry. 
 

3.1.5 Influence of core-to-face thickness ratio 
In this example, the influence of the core-to-face 

thickness ratio (hc/hf = 5, 10, 15, 20 and 25) on the 

nonlinear buckling load parameter of a square simply 

supported hyperbolical and elliptical skew sandwich shell 

panel are analysed and presented in Fig. 5. For the 

computation purpose, the geometrical parameters are 

considered as: b/h = 50; R/a = 5; Wmax/h = 0.2. The results 

show that an increase in the core-to-face thickness ratios 

values tends to increase the nonlinear buckling load 

parameter values. In addition, the skew angle has also a 

substantial effect on the responses. Further, the elliptical 

shell geometry has a higher nonlinear buckling load 

parameter values in comparison with the hyperbolical shell 

geometry. 
 

3.1.6 Different shell panel geometry 
Finally, a numerical example is solved to check the 

behaviour of all different shell panels (flat panel, 

cylindrical, spherical, hyperbolical, and elliptical) on 

nonlinear buckling load parameter as shown in Fig. 6. In 

this case, a square simply supported skew sandwich shell 

panels has been considered with other important 

geometrical parameters are b/h = 10; R/a = 5; Wmax/h = 0.2; 

and hc/hf = 5. The results are obtained for various skew 

angles and the effect of the same has been discussed earlier.  
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Fig. 5 Effect of the core-to-face thickness ratios on the 

nonlinear buckling load parameter of a skew sandwich 

Hyperbolical and elliptical shell panel 
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Fig. 6 Nonlinear buckling load parameter responses of 

the different sandwich skew shell panel 

 
 
It is noticed from the responses that the spherical shell 

geometry has the higher nonlinear buckling load parameter 

value compared to other shell geometries and it follows 

declining type of trend i.e., spherical to elliptical, 

cylindrical, hyperbolical and flat panel. 
 

 
4. Conclusions 
 

The temperature load-carrying capacity of low-density 

core type sandwich structural component is investigated 

numerically via a higher-order FE model in the framework 

of equivalent single layer theory. The mathematical model 

is derived using the full nonlinear strain kinematics i.e. 

Green-Lagrange strain to accumulate the geometrical 

distortion under the elevated thermal field in the post-

buckling regime. The temperature data are obtained 

computationally with the help of a nonlinear FE code 

prepared in MATLAB including the direct iterative 

method. Additionally, the model includes all of the 

nonlinear strain terms to investigate the exact geometrical 

distortion. The FE model consistency and accuracy has 

been established as a priori for the subsequent 

implementation to compute the required temperature load 

parameter in the post-buckling regime. The model is 

inducted further to solve different kind of numerical 

examples after the necessary verification. The examples 

have been covered the various aspects of the sandwich 

composite shell panels and the comprehensive 

understanding from the parametric study are listed in the 

following lines.  
 The model accuracy and capability have been sought 

clearly from the corresponding convergence and the 

comparison study.  

 In general, the critical temperature parameter in the 

post-buckling regime of the sandwich shell structure 

is increasing while the side-to-thickness ratio, the 

amplitude ratio, the core-to-face thickness ratio and 

the skew angle increases. However, the temperature 

value decreases when the curvature ratio and the 

length-to-width ratio of the shell panel increases. 

This is because of the alteration of structural stiffness 

due to the change in the geometrical parameter.   

 Also, it can be implied from the responses that the 

spherical shell geometry has the higher nonlinear 

buckling load parameter values in comparison to 

each kind of shell configurations (due to two equal 

curvature along its principal material direction). 

 

 

References 
 
Abdelaziz, H.H., Meziane, M.A.A, Bousahla, A.A., Tounsi, A., 

Mahmoud, S.R. and Alwabli, A.S. (2017), “An efficient 

hyperbolic shear deformation theory for bending, buckling and 

free vibration of FGM sandwich plates with various boundary 

conditions”, Steel Compos. Struct., 25(6), 693-704. 

https://doi.org/10.12989/scs.2017.25.6.693. 

Addou, F.Y., Meradjah, M., Bousahla, A.A., Benachour, A., 

Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), “Influences 

of porosity on dynamic response of FG plates resting on 

Winkler/Pasternak/Kerr foundation using quasi 3D HSDT”, 

Comput. Concrete, 24(4), 347-367. 

https://doi.org/10.12989/cac.2019.24.4.347. 

Akgöz, B. and Civalek, O. (2011), “Nonlinear vibration analysis 

of laminated plates resting on nonlinear two-parameters elastic 

foundations”, Steel Compos. Struct., 11(5), 403-421. 

https://doi.org/10.12989/scs.2011.11.5.403. 

Amaro, A.M., Reis, P.N.B., de Moura, M.F.S.F. and Neto, M.A. 

(2014), “Buckling analysis of laminated composite plates 

submitted to compression after impact”, Fibers Polym., 15(3), 

560–568. https://doi.org/10.1007/s12221-014-0560-x. 

Atmane, H.A., Tounsi, A. Bernard, F. (2017), “Effect of thickness 

stretching and porosity on mechanical response of a functionally 

graded beams resting on elastic foundations”, Int. J. Mech. 

Mater. Des., 13(1), 71-84. https://doi.org/10.1007/s10999-015-

9318-x. 

286

https://doi.org/10.1007/s12221-014-0560-x


 

Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure,,, 

Bedia, W.A., Houari, M.S.A., Bessaim, A., Bousahla, A.A., 

Tounsi, A., Saeed, T. and Alhodaly, M.S. (2019), “A new 

hyperbolic two-unknown beam model for bending and buckling 

analysis of a nonlocal strain gradient nanobeams”, J. Nano Res., 

57, 175-191. 

https://doi.org/10.4028/www.scientific.net/JNanoR.57.175. 

Bellifa, H., Bakora, A., Tounsi, A., Bousahla, A.A. and Mahmoud, 

S.R. (2017), “An efficient and simple four variable refined plate 

theory for buckling analysis of functionally graded plates”, Steel 

Compos. Struct., 25(3), 257-270. 

https://doi.org/10.12989/scs.2017.25.3.257. 

Bouhadra, A., Tounsi, A., Bousahla, A.A., Benyoucef, S. and 

Samy R. (2018), “Improved HSDT accounting for effect of 

thickness stretching in advanced composite plates”, Struct. Eng. 

Mech., 66(1), 61-73. 

https://doi.org/10.12989/sem.2018.66.1.061. 

Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., 

Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), “A simple 

quasi-3D HSDT for the dynamics analysis of FG thick plate on 

elastic foundation”, Steel Compos. Struct., 31(5), 503-516. 

https://doi.org/10.12989/scs.2019.31.5.503. 

Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi. A. 

and Mahmoud, S.R. (2019), “The effect of parameters of visco-

Pasternak foundation on the bending and vibration properties of 

a thick FG plate”, Geomech. Eng., 18(2), 161-178. 

https://doi.org/10.12989/gae.2019.18.2.161. 

Bourada, F., Amara, K., Bousahla, A.A., Tounsi, A. and 

Mahmoud, S.R. (2018), “A novel refined plate theory for 

stability analysis of hybrid and symmetric S-FGM plates”, 

Struct. Eng. Mech., 68(6), 661-675. 

https://doi.org/10.12989/sem.2018.68.6.661. 

Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, 

A.A., Tounsi, A., Tounsi A., and Mahmoud, S.R. (2019), 

“Dynamic Analysis of nanosize FG rectangular plates based on 

simple nonlocal quasi 3D HSDT”, Adv. Nano Res., 7(3), 189-

206. https://doi.org/10.12989/anr.2019.7.3.191. 

Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), 

“Thermal buckling analysis of cross-ply laminated plates using 

a simplified HSDT”, Smart Struct. Syst., 19(3), 289-297. 

https://doi.org/10.12989/sss.2017.19.3.289. 

Civalek, O. (2006), “Free vibration analysis of composite conical 

shells using the discrete singular convolution algorithm”, Steel 

Compos. Struct., 6(4), 353-366. 

https://doi.org/10.12989/scs.2006.6.4.353. 

Civalek, O. (2007a) “Linear vibration analysis of isotropic conical 

shells by discrete singular convolution (DSC)”, Struct. Eng. 

Mech., 25(1), 127-130. 

https://doi.org/10.12989/sem.2007.25.1.127. 

Civalek, O. (2008), “Vibration analysis of conical panels using the 

method of discrete singular convolution”, Commun. Numer. 

Meth. Eng., 24, 169-181. https://doi.org/10.1002/cnm.961. 

Civalek, O. and Acar, M.H. (2007b), “Discrete singular 

convolution method for the analysis of Mindlin plates on elastic 

foundations”, Int. J. Press. Vessels Pip., 84(9), 527-535. 

https://doi.org/10.1016/j.ijpvp.2007.07.001. 

Civalek, O. and Ulker, M. (2004), “Harmonic differential 

quadrature (HDQ) for axisymmetric bending analysis of thin 

isotropic circular plates”, Struct Eng. Mech., 17(1), 1-14. 

https://doi.org/10.12989/sem.2004.17.1.001. 

Cook, R.D, Malkus, D.S, Plesha, M.E. and Witt, R.J. (2009), 

Concepts and Applications of Finite Element Analysis, 4th 

edition, John Wiley & Sons Pvt. Ltd., Singapore. 

Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. 

and Mahmoud, S.R. (2019), “Static analysis of laminated 

reinforced composite plates using a simple first-order shear 

deformation theory”, Comput. Concrete, 24(4), 369-378. 

https://doi.org/10.12989/cac.2019.24.4.369. 

Draiche, K., Tounsi A. and Mahmoud, S.R. (2016), “A refined 

theory with stretching effect for the flexure analysis of 

laminated composite plates”, Geomech. Eng., 11(5), 671-690. 

https://doi.org/10.12989/gae.2016.11.5.671. 

El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and 

Mahmoud, S.R. (2017), “A simple analytical approach for 

thermal buckling of thick functionally graded sandwich plates”, 

Struct. Eng. Mech., 63(5), 585–595. 

https://doi.org/10.12989/sem.2017.63.5.585. 

Fahsi, A., Tounsi, A., Hebali, H., Chikh, A., Adda Bedia, E.A. and 

Mahmoud, S.R. (2017), “A four-variable refined nth-order shear 

deformation theory for mechanical and thermal buckling 

analysis of functionally graded plates”, Geomech. Eng., 13(3), 

385-410. https://doi.org/10.12989/gae.2017.13.3.385. 

Gao, G.W., Tang, E.L., Feng, M.H., Han, Y.F., Li, Y., Liu, M., Xu, 

Y.L., Wang, L., Lin, X.C., Wang, R.Z., Cheng, Y.G., Zhao, 

L.L., Liang, Z.G., Wang, J.R., Zhao, G.J., Gao, Q. and Zheng, 

T.Z. (2018), “Research on dynamic response characteristics of 

CFRP/Al HC SPs subjected to high-velocity impact”, Def. 

Technol., 14(5), 503-512. 

https://doi.org/10.1016/j.dt.2018.06.017. 

Garg, A.K., Khare, R.K. and Kant, T. (2006), “Free vibration of 

skew fiber-reinforced composite and sandwich laminates using 

a shear deformable finite element model”, J Sand. Struct Mater., 

8(1), 33-53. https://doi.org/10.1177/1099636206056457. 

Girish, J. and Ramachandra, L.S. (2005), “Postbuckling and 

vibration analysis of Antisymmetric angle-ply composite plates”, 

J. Therm. Stresses, 28(11), 1145-1159. 

https://doi.org/10.1080/014957390967866. 

Hause, T., Librescu, L. and Camarda, C.J. (1998), “Postbuckling 

of anisotropic flat and doubly-curved sandwich panels under 

complex loading conditions”, Int. J. Solids Struct., 35(23), 

3007–3027. https://doi.org/10.1016/S0020-7683(97)00360-0. 

Juhász, Z. and Szekrényes, A. (2015a), “Progressive buckling of a 

simply supported delaminated orthotropic rectangular 

composite plate”, Int. J. Solids Struct., 69-70, 217-229. 

https://doi.org/10.1016/j.ijsolstr.2015.05.028. 

Juhász, Z. and Szekrényes, A. (2015b), “Estimation of local 

delamination buckling in orthotropic composite plates using 

Kirchhoff plate finite elements”, Math. Prob. Eng., 

http://doi.org/10.1155/2015/749607. 

Jung, W.Y., Han, S.C., Lee, W.H. and Park, W.T. (2016), “Post-

buckling analysis of laminated composite shells under shear 

loads”, Steel Compos. Struct., 21(2), 371-394. 

https://doi.org/10.12989/scs.2016.21.2.373. 

Kaci, A., Houari, M.S.A., Bousahla, A.A., Tounsi, A. and S.R. 

Mahmoud, S.R. (2018), “Post-buckling analysis of shear-

deformable composite beams using a novel simple two-

unknown beam theory”, Struct. Eng. Mech., 65(5), 621-631. 

https://doi.org/10.12989/sem.2018.65.5.621. 

Karami, B., Janghorban, M. and Tounsi, A. (2018), “Variational 

approach for wave dispersion in anisotropic doubly-curved 

nanoshells based on a new nonlocal strain gradient higher-order 

shell theory”, Thin-Wall. Struct., 129, 251-264. 

https://doi.org/10.1016/j.tws.2018.02.025. 

Khayat, M., Poorveis, D. and Moradi, S. (2016), “Buckling 

analysis of laminated composite cylindrical shell subjected to 

lateral displacement-dependent pressure using semi-analytical 

finite strip method”, Steel Compos. Struct., 22(2), 301-321. 

https://doi.org/10.12989/scs.2016.22.2.301. 

Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A. 

and Mahmoud, S.R. (2019), “Analytical modeling of bending 

and vibration of thick advanced composite plates using a four-

variable quasi 3D HSDT”, Eng. Comput., 

https://doi.org/10.1007/s00366-019-00732-1. 

Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Bedia, 

E.A.A. and Mahmoud, S.R. (2019), “A refined quasi-3D shear 

287

https://doi.org/10.4028/www.scientific.net/JNanoR.57.175
https://doi.org/10.1016/j.dt.2018.06.017
https://doi.org/10.1177/1099636206056457
https://doi.org/10.1080/014957390967866
https://doi.org/10.1016/S0020-7683(97)00360-0
https://doi.org/10.1016/j.ijsolstr.2015.05.028
http://doi.org/10.1155/2015/749607
https://doi.org/10.1007/s00366-019-00732-1


 

Pankaj V. Katariya and Subrata Kumar Panda 

deformation theory for thermo-mechanical behavior of 

functionally graded sandwich plates on elastic foundations”, J 

Sand. Struct Mater., 21(6), 1906-1926. 

https://doi.org/10.1177/1099636217727577. 

Matsunaga, H. (2005), “Thermal buckling of cross-ply laminated 

composite and sandwich plates according to a global higher-

order deformation theory”, Compos. Struct., 68(4), 439-454. 

https://doi.org/10.1016/j.compstruct.2004.04.010.  

Matsunaga, H. (2006), “Thermal buckling of angle-ply laminated 

composite and sandwich plates according to a global higher-

order deformation theory”, Compos. Struct., 72(2), 177-192. 

https://doi.org/10.1016/j.compstruct.2004.11.016. 

Meksi, R., Benyoucef, S., Mahmoudi, A., Tounsi, A., Bedia, 

E.A.A. and Mahmoud, S. (2019), “An analytical solution for 

bending, buckling and vibration responses of FGM sandwich 

plates”, J Sand. Struct Mater., 21(2), 727-757. 

https://doi.org/10.1177/1099636217698443. 

Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and 

Mahmoud, S.R. (2017), “A new and simple HSDT for thermal 

stability analysis of FG sandwich plates”, Steel Compos. Struct., 

25(2), 157-175. https://doi.org/10.12989/scs.2017.25.2.157. 

Nikrad, S.F. and Asadi, H. (2015), “Thermal post-buckling 

analysis of temperature dependent delaminated composite 

plates”, Thin Wall. Struct., 97, 296-307. 

https://doi.org/10.1016/j.tws.2015.09.027. 

Panda, S.K. and Singh, B.N. (2009), “Thermal post-buckling 

behaviour of laminated composite cylindrical/hyperboloid 

shallow shell panel using nonlinear finite element method”, 

Compos. Struct., 91(3), 366-374. 

https://doi.org/10.1016/j.compstruct.2009.06.004. 

Park, T., Lee, S.Y., Seo, J.W. and Voyiadjis, G.Z. (2008), 

“Structural dynamic behavior of skew sandwich plates with 

laminated composite faces”, Compos.: Part B, 39, 316-326. 

https://doi.org/10.1016/j.compositesb.2007.01.003. 

Reddy, J.N. (2004a), An Introduction to Nonlinear Finite Element 

Analysis, Oxford University Press, Cambridge, UK. 

Reddy, J.N. (2004b), Mechanics of Laminated Composite Plates 

and Shells: Theory and Analysis, 2nd edition, CRC Press, Boca 

Raton, FL. 

Sadamoto, S., Tanaka, S., Taniguchi, K., Ozdemir, M., Bui, T.Q., 

Murakami, C. and Yanagihara, D. (2017), “Buckling analysis of 

stiffened plate structures by an improved meshfree flat shell 

formulation”, Thin Wall. Struct., 117, 303-313. 

https://doi.org/10.1016/j.tws.2017.04.012. 

Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), 

“Thermal buckling analysis of SWBNNT on Winkler 

foundation by non-local FSDT”, Adv. Nano Res., 7(2), 89-98. 

Shiau, L.C. and Kuo, S.Y. (2004), “Thermal postbuckling 

behavior of composite sandwich plates”, J. Eng. Mech., 130(10), 

1160–1167. https://doi.org/10.1061/(ASCE)0733-

9399(2004)130:10(1160). 

Singh, G., Rao, V.G. and Iyengar, N.G.R. (1993), “Thermal post-

buckling behavior of laminated composite plates”, AIAA J., 

32(6), 1336-1338. https://doi.org/10.2514/3.12143. 

Singh, V.K. and Panda, S.K. (2014), “Nonlinear free vibration 

analysis of single/doubly curved composite shallow shell 

panels”, Thin Wall. Struct., 85, 341-349. 

https://doi.org/10.1016/j.tws.2014.09.003. 

Srinivas, S. and Rao, A.K. (1970), “Bending, vibration and 

buckling of simply supported thick orthotropic rectangular 

plates and laminates”, Int. J. Solids Struct., 6(11), 1463-1481. 

https://doi.org/10.1016/0020-7683(70)90076-4. 

Striz, A.G., Chen, W.L. and Bert, C.W. (1997), “Free vibration of 

plates by the high accuracy quadrature element method”, J 

Sound Vib., 202, 689-702. 

Thankam, V.S., Singh, G., Rao, G.V. and Rath, A.K. (2003), 

“Thermal post-buckling behaviour of laminated plates using a 

shear-flexible element based on coupled-displacement field”, 

Compos. Struct., 59(3), 351-359. https://doi.org/10.1016/S0263-

8223(02)00243-X. 

Wu, Y., Xing, Y. and Liu, B. (2018), “Analysis of isotropic and 

composite laminated plates and shells using a differential 

quadrature hierarchical finite element method”, Compos. Struct., 

205, 11-25. https://doi.org/10.1016/j.compstruct.2018.08.095. 

Yoshida, K., Sadamoto, S., Setoyama, Y., Tanaka, S., Bui, T.Q., 

Murakami C. and Yanagihara, D. (2017), “Meshfree flat-shell 

formulation for evaluating linear buckling loads and mode 

shapes of structural plates”, J. Mar. Sci. Technol., 22(3), 501-

512. https://doi.org/10.1007/s00773-017-0433-2. 

Zakeri, A.A. and Alinia, M.M. (2006), “An analytical study on 

post-buckling behaviour of imperfect sandwich panels subjected 

to uniform thermal stresses”, Thin Wall. Struct., 44(3), 344-353. 

https://doi.org/10.1016/j.tws.2006.03.001. 

Zaoui, F.Z., Ouinas, D. and Tounsi, A. (2019), “New 2D and 

quasi-3D shear deformation theories for free vibration of 

functionally graded plates on elastic foundations”, Compos. 

Part B, 159, 231-247. 

https://doi.org/10.1016/j.compositesb.2018.09.051. 

Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, 

S.R. (2019), “Thermomechanical bending study for functionally 

graded sandwich plates using a simple quasi-3D shear 

deformation theory”, Steel Compos. Struct., 32(3), 389-410. 

https://doi.org/10.12989/scs.2019.32.3.389. 

Zhai, Y., Su, J. and Liang, S. (2018), “Free vibration and buckling 

analysis of composite sandwich plates in thermal environment”, 

J Sand. Struct Mater., 

http://doi.org/10.1177/1099636218795375. 

Zine, A., Tounsi, A., Draiche, K., Sekkal, M. and Mahmoud, S.R. 

(2018), “A novel higher-order shear deformation theory for 

bending and free vibration analysis of isotropic and 

multilayered plates and shells", Steel Compos. Struct., 26(2), 

125-137. https://doi.org/10.12989/scs.2018.26.2.125. 

 
 

CC 

 

288

https://doi.org/10.1016/j.compstruct.2004.04.010
https://doi.org/10.1016/j.compstruct.2004.11.016
https://doi.org/10.1177/1099636217698443
https://doi.org/10.1016/j.tws.2015.09.027
https://doi.org/10.1016/j.compstruct.2009.06.004
https://doi.org/10.1016/j.compositesb.2007.01.003
https://doi.org/10.1016/j.tws.2017.04.012
https://doi.org/10.1061/(ASCE)0733-9399(2004)130:10(1160)
https://doi.org/10.1061/(ASCE)0733-9399(2004)130:10(1160)
https://doi.org/10.2514/3.12143
https://doi.org/10.1016/j.tws.2014.09.003
https://doi.org/10.1016/0020-7683(70)90076-4
https://doi.org/10.1016/S0263-8223(02)00243-X
https://doi.org/10.1016/S0263-8223(02)00243-X
https://doi.org/10.1007/s00773-017-0433-2
https://doi.org/10.1016/j.tws.2006.03.001
http://doi.org/10.1177/1099636218795375



