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1. Introduction 

 

Indubitable, one of the most significant allotropes of 

carbon is graphene containing a single layer of carbon 

atoms organized in a honeycomb-like pattern. Due to the 

h a v i n g  e x t r a o r d i n a r y  p r o p e r t i e s  s u c h  a s 

lightness and strength, graphene can be abundantly applied 

in engineering structures such as aerospace structure 

(Kuzhir et al. 2013), bio-structures (Ali et al. 2017). On the 

other hand, Graphene sheets (GSs) are the two dimensional 

structures containing unbeatable lattice structures, supreme 

electronic and mechanical characteristics. So far, a number 

of techniques have been extended to attain GSs including 

Hummer method and exfoliation (Marina et al. 2016, Ali et 

a l .  2015) ,  exfo l ia t ion of  graphi te  in  so lvents , 

micromechanical exfoliation (Al-Sherbini et al. 2017, Tasis 

et al. 2013, Siddique et al. 2015). Until today, many 

investigation projects have been conducted to investigate 

the mechanical behaviors of the single-layered graphene 

sheet (SLGS) such as free and forced vibration (Sakhaee-

Pour et al. 2008, Song et al. 2017), buckling (Sakhaee-Pour  
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2009, Rouhi and Ansari 2012), and bending (Sobhy 2014, 

Wei et al. 2012) behaviors. A hybrid atomistic-structural 

element proposed by Sadeghi and Naghdabadi (2010) to 

investigate the infinitesimal and large amplitude of SLGS. 

Today, a life without nanotechnology is hard to imagine. 

Utilizing nanotechnology, materials can effectively be made 

stronger, lighter, more durable, more reactive, more sieve-

like, or better electrical conductors, among many other traits.  

Considering the importance of investigating the 

behavior of nanostructures, some researchers utilized 

empirical testing and atomistic simulation results (Chen et 

al. 2006, Stan et al. 2007) to demonstrate this theorem that 

by reducing the material size to the micro/nano scale, the 

effect of size-dependent materials becomes remarkable. 

Formerly, the weakness of the classical continuum theories 

to capture the size effect has been proved by researchers. 

Hence, certain higher-order continuum theories containing 

the independent internal length scale parameter have been 

developed (Eringen 1983, Lam et al. 2003, Yang et al. 2002, 

Lim et al. 2015). One of these non-traditional theories is 

called nonlocal elasticity theory proposed by Eringen (1983) 

including a material length scale term to predict the size 

effect. Because of modelling carbon nanotubes and 

fullerenes as GSs in applications, studying the behavior of 

GSs in micro/nano scale is a significant subject. By taking 

into account nonlocal elasticity theory in conjunction with 
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the first-order shear deformation theory (FSDT), Ansari et 

al. (2010) investigated the resonant frequencies of SLGS 

under various boundary conditions using generalized 

differential quadrature method (GDQM). The authors 

employed the molecular dynamics (MD) approach for 

estimating the suitable values of nonlocal parameter. 

Pradhan and Kumar (2010) studied the natural frequencies 

of orthotropic SLGS via nonlocal differential constitutive 

relations of Eringen (1983). Applying the kp-Ritz method 

with the nonlocal continuum assumption, Zhang et al. (2015) 

analyzed the free vibration of SLGS. Based on the nonlinear 

von Kármán terms and nonlocal elasticity theory, Ribeiro 

and Chuaqui (2019) examined the nonlinear modes of 

vibration of SLGS using Airy stress function. Kumar and 

Srivastava (2016) studied Elastic properties of CNT- 

and Graphene-reinforced nanocomposites using RVE. 

Hosseini and Zhang (2018) considered transient dynamic 

analysis and elastic wave propagation in a functionally 

graded graphene platelets (FGGPLs)-reinforced composite 

thick hollow cylinder, which is subjected to shock loading. 

Moradi-Dastjerdi and Behdinan (2019) studied 

thermoelastic static and free vibrational behaviors of 

axisymmetric thick cylinders reinforced with functionally 

graded (FG) randomly oriented graphene subjected to 

internal pressure and thermal gradient loads. Javani et al. 

(2019) studied buckling analyses of composite plate 

reinforced by Graphen platelate (GPL). Karami et al. (2018) 

used three-dimensional (3D) elasticity theory in conjunction 

with nonlocal strain gradient theory (NSGT) to develop for 

mechanical analysis of anisotropic nanoparticles. Ahmed 

Houari et ql. (2018) presented a closed-form solutions for 

exact critical buckling loads of nonlocal strain gradient 

functionally graded beams. Shahsavari et al. (2018) 

developed a high-order nonlocal strain gradient model for 

wave propagation analysis of porous FG nanoplates resting 

on a gradient hybrid foundation in thermal environment. 

Karami et al. (2017) investigated the influences of triaxial 

magnetic field on the wave propagation behavior of 

anisotropic nanoplates. Karami et al. (2018) used a new 

size-dependent quasi-3D plate theory for wave dispersion 

analysis of functionally graded nanoplates while resting on 

an elastic foundation and under the hygrothermal 

environment. Marin (2008) proved the existence and 

uniqueness of the generalized solutions for the boundary 

value problems in elasticity of initially stressed bodies with 

voids (porous materials). Marin and Baleanu (2016) 

dedicated to the spatial behavior of the harmonic in time 

vibrations within the model of the linear thermoelasticity 

theory without dissipation energy for micropolar bodies. 

Marin (2016) formulated a heat-flux theory for taking into 

account a new set of state variables including the heat-flux 

vector and an evolution equation for it. Tornabene et al. 

(2018) studied free vibration of laminated nanocomposite 

plates and shells using first-order shear deformation theory 

and the Generalized Differential Quadrature (GDQ) method. 

Each layer of the laminate was modelled as a three-phase 

composite. A survey of several methods under the heading 

of strong formulation finite element method (SFEM) was 

presented by Tornabene et al. (2015). These approaches 

were distinguished from classical one, termed weak 

formulation finite element method (WFEM). Isogeometric 

approach, an efficient and useful numerical method, has 

been introduced by Hughes et al. (2005) which fulfills a gap 

between computer aided design (CAD) and finite element 

analysis (FEA). Main ideas of this method are to adopt the 

CAD basis functions (e.g., the NURBS) to the shape 

functions in the finite element analysis. Bilotta et al. (2010) 

proposed a three-dimensional finite element, named HC3, 

based on a quadratic B-spline interpolation of the 

displacement field for the linear elastic analysis of three-

dimensional problems. This proposed element was an 

extension of the high-continuity (HC) finite element 

presented by Aristodemo (1985) for two-dimensional 

elasticity which is the first investigation on the HC finite 

element. The accuracy and efficiency of the isogeometric 

analysis for structures such as beams and plates have been 

demonstrated by a number of works in these years, e.g., 

(Guo et al. 2014, Kapoor and Kapania 2012, Le-Manh and 

Lee 2014, Le-Manh et al. 2016, Malagu et al. 2012, Thai et 

al. 2012, Tran et al. 2015, 2016, Wang et al. 2015, Yu et al. 

2015). Soleimani et al. (2017) investigated the critical 

buckling loads of GSs under various values of nonlocal 

parameters and different boundary conditions using IGA 

based on NURBS. Also, IGA is taken into account to 

analyze the thermal buckling problem of composite 

laminated plates reinforced with GSs by Mirzaei and Kiani 

(2017). A variety of theoretical methods have been used to 

examine the mechanical and elastic properties of an ideal 

and flawless single-layer graphene sheet, including density 

functional theory (DFT), quantum mechanics, molecular 

dynamic simulation and continuous medium mechanics. Liu 

et al. (2007) found Young's modulus as 1.05 TPa for single-

layer graphene using the density functional technique. Jiang 

et al. (2009) investigated Young's modulus for different 

sizes of single-layer graphene at different temperatures 

using molecular dynamics. Shen et al. (2010) examined 

Young's and shear moduli of nanoscale structures at 

different temperatures. The analysis of failure and ultimate 

strength of single-layer graphene sheets was carried out by 

Ni et al. (2010), who showed that these nanostructures are 

much stronger in armchair alignment than zigzag alignment. 

Tsai and Tu (2010) examined the mechanical properties of 

graphene by molecular dynamics. The main problems with 

atomic models include time-consuming calculations and the 

subsequent limitation in the dimensions of molecular and 

atomic structures. Great efforts have therefore been made in 

recent years to develop nanoscale theories of continuous 

medium mechanics. To this end, Reddy et al. (2006) found 

Young's modulus as 0.669 TPa for single-layer graphene 

using continuous medium mechanics. Sakhaee-Pour (2009) 

and Georgantzinos et al. (2010) found Young's modulus 

values as 1.025 TPa and 1.367 TPa respectively, using the 

finite element technique, in which the atomic bonds were 

modelled as truss, beam or spring. 

Due to the fact that during the production process and 

under constrains conditions, it is possible SLGS may be 

defected (Compagnini et al. 2009, Martinez-Asencio and 

Caturla 2015, Sun et al. 2013, Rajasekaran et al. 2016), 

therefore, it is critical to study the influence of these 

structural defects such as vacancies on the mechanical 
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characteristics of SLGS. On the other hand, cut-outs or 

vacancies may be made to lighten the structure or to alter 

the resonant frequencies of SLGS. Graphene sheets appear 

as wrinkled when in equilibrium. These wrinkles can have a 

height of 7 Å. Moreover, defects called the ridge defect also 

appear on graphene sheets due to shearing strain (Udupa 

and Martini 2011). Bu et al. (2009) used molecular dynamic 

simulation to assess the mechanical properties of armchair-

structured graphene nanoribbons at 300 K. This simulation 

indicated the presence of 0.88-nm-high bulges and wrinkles 

in the nanoribbons equivalent to approximately a 5%-strain 

on the nanoribbon. Kvashnin et al. (2010) investigated the 

properties of circular graphene for various radii and also the 

effect of different densities of vacancy defects on the 

mechanical properties of single-layer graphene sheet. The 

Stone-Wales defect in graphene and other substances with a 

covalence bond configuration of the geometric type sp2 

were investigated by Ma et al. (2009). Tahouneh et al. 

(2018) investigated the effects of site and size of vacancy 

defects on the mechanical properties of graphene as an 

anisotropic structure using the lekhnitskii interaction 

coefficients and Molecular Dynamic approach. Jalali et al. 

(2016) investigated the influence of out-of-plane defects on 

vibrational analysis of single layered graphene sheets. 

Zhang et al. (2009) used the governing equations and 

simulation to indicate that the gas-identification property of 

chemical sensors increases significantly in graphene with 

the vacancy defect compared to defect-free graphene. Sun 

et al. (2014) also studied the effect of vacancy defects on 

the ultimate strength of graphene sheets. In another study 

(Sun et al. 2015), molecular dynamic modelling was used to 

investigate the effect of defects on the unique properties of 

graphene while considering graphene an anisotropic 

structure. This research work revealed that graphene 

properties are totally dependent on angular orientation. The 

authors showed that the mechanical properties of graphene 

sheets are least sensitive to vacancy defects at the angle of 

15 degree. Wu et al. (2015) found dynamic properties and 

relaxation time for a variety of graphene groups with 

vacancy defects using molecular dynamic simulation in 

Large-scale Atomic/Molecular Massively Parallel Simulator 

(LAMMPS). They showed that the maximum dynamic 

displacements of graphene increase with the number and 

size of vacancy defects. Based on theories relating to 

graphene molecular bonds, Xie et al. (2014) studied the 

effect of single- and double-vacancy defects on the photonic 

properties and thermal conductivity of graphene with 

defects and showed that the type of these defects has a 

significant effect on the photo and thermal conductivity of 

graphene. Neek-Amal and Peeters (2010) performed the 

MD simulation of nano-indentation of circular graphene 

sheets similar to the experiments of Lee et al. (2008). 

Utilizing quantum mechanics, Yanovsky et al. (2009) 

obtained mechanical properties of graphene sheets. 

Soleimani et al. (2019) investigated the effects of inevitable 

out-of-plane defects on the postbuckling behavior of single-

layered graphene sheets (SLGSs) under in-plane loadings 

based on nonlocal first order shear deformation theory. 

According to the nonlocal continuum assumption, the effect 

of defect modeled as eccentric hole on the elastic instability 

of an annular SLGS resting on elastic medium is 

analytically reported by Fadaee (2016) applying 

translational addition theorem. Dastjerdi et al. (2016) 

developed a nonlocal model based upon FSDT to analyze 

the bending problem of annular SLGS under with an 

eccentric vacant defect. The authors demonstrated that the 

influence of attendance of vacancy defect is extremely 

depends on the kinds of boundary conditions. Mirakhory et 

al. (2018) obtained the natural frequencies of the defected 

triangular GSs and reported that the defective equilateral 

triangular GSs have the highest values of resonance. 

Employing the Monte Carlo simulation based finite element 

method, Chu et al. (2018) investigated the natural 

frequencies of vacancy defected GSs. They indicated that 

an increase in the value of thickness and Young’s modulus 

of GSs leads to smaller values of natural frequencies. 

Despite the aforementioned extensive research on the 

vibration analysis of graphene sheets using nonlocal 

elasticity theory, to the authors’ best knowledge, still very 

little work has been done for vibration analysis of defected 

graphenes as a nonisotropic structure via molecular 

dynamic and continuum approaches. The aim of this study 

is to fill this apparent gap in this area by investigating the 

effects of vacancies on vibrational characteristic of SLGS. 

 

 

2. Isogeometric formulation for vibration analysis 
  
2.1 NURBS basis functions 
 
A brief fundamental of some technical features of B-

spline and NURBS basis functions for isogeometric 

analysis is presented. A detailed description of the NURBS, 

one may reach, e.g., see Piegl and Tiller (1997). A NURBS 

curve X(ξ) of order p is defined as 
n

i,p i

i 1

X( ) R ( )X ,


    (1) 

i,p i

i,p n

j,p jj 1

N ( )
R ( ) ,

N ( )


 
 

   

(2) 

where Ri,p stands for the univariate NURBS basis functions, 

iX  = (xi, yi); i =1, 2, . . . , n are a set of n control points, wi 

are a set of n weights corresponding to the control points 

that must be non-negative and Ni,p represents the B-spline 

basis function of order p. To construct a set of n B-spline 

basis functions of order p, a knot vector Ξ is defined in a 

parametric space as 

 1 2 n p 1 i i 1, ,..., , i 1,2,...,n p           

 

(3) 

The parametric space is assumed to be ξ ∈ [0, 1]. The knot 

vectors used for analysis purposes are generally open knot 

vectors to satisfy the Kronecker-delta property at boundary 

points (Roh and Cho 2004). The knot vector is said to be 

open if the knots are repeated p+1 times at the start and end 

of the vector. Given a knot vector, the univariate B-spline 

basis function Ni,p can be constructed by the following Cox-

de Boor recursion formula (Piegl and Tiller 1997) 
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i i 1

i,0

1 if
N ( )

0 otherwise



 
     

   
  

 

(4) 

and 

i p 1i
i,p i,p 1 i 1,p 1

i p i i p 1 i 1

N ( ) N ( ) N ( ),

p 1,2,3,...

 

  

   

  
    

   


 

(5) 

The B-spline functions which are constructed from the open 

knot vectors have the interpolation feature at the ends of the 

parametric space. A cubic B-spline basis functions with the 

interpolation feature at the ends of the parametric space are 

shown in Fig. 1. 

Generally, a NURBS surface of order p in ξ direction and 

order q in η direction can be expressed as 

 

(6) 

where p,q

i, jR  stands for the bivariate NURBS basis 

functions, 
i , jX  is a control mesh of n×m control points, 

and 
i, j  are the corresponding weights, while Ni,p and Mj,q 

are the B-spline basis functions defined on the Ξ and H knot 

vectors, respectively. The first derivative of p,q

i, jR ( , )  with 

respect to each parametric variable, e.g., ξ, is derived by 

simply applying the quotient rule to Eq. (6) as 
p,q

i, j

i,p

j,q i, j i,p j,q i, j

2

R ( , )

N ( ) W( , )
M ( ) W( , ) N ( )M ( )

(W( , ))

  




    
       

 

 

 
(7) 

and 

 
(8) 

 

 

 

Fig. 1 Cubic basis functions for an open knot vector 

Ξ={0,0,0,0,0.25,0.5,0.75,1,1,1,1} 

 

 
(9) 

To earn more detail about the NURBS and its 

characteristics, the reader is referred to Ref. (Piegl and 

Tiller 1997). It is worthwhile to note that in the IGA 

analysis, by using the isoparametric concept, the NURBS 

basis is employed for both the parametrization of the 

geometry and the approximation of the solution field, which 

is the plate deflection w(x) in this paper, as follows 
n m

h

I I

I 1

w (x( )) ( )w




   
 

(10) 

n m

I I

I 1

x( ) ( )x




   
 

(11) 

In all the above equations, ξ=(ξ,η) is the parametric 

coordinates, x=(x,y) is the physical coordinates,
Ix  

represents the control points of a n×m control mesh, 
Iw

represents the deflection of the plate at each control point, 

and 
I ( )   are the bivariate NURBS functions of order p 

and q in ξ and η directions, respectively. 

 

2.2 Governing equations for a SLGS 

    
As schematically illustrated in Fig. 2, a SLGS (uniform 

thickness h) is considered along with the cartesian 

coordinate system. The transverse displacement of the 

defected SLGS is expressed with 𝑤. 

Employing the classical laminated plate (Kirchhoff) 

assumption, the displacement parts (𝑢𝑥, 𝑢𝑦 , 𝑢𝑧)  for an 

optional point can be presented as (Liu 2003) 

 

(12) 

Utilizing Eq. (12), the linear strain components are 

denoted as 

 

 

 

Fig. 2 The Schematic of a SLGS 

n m
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i 1 j 1

n m
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 

 
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n m
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j,q i, j
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   
  
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 

x y z

T

x y z

w(x, y, t) w(x, y, t)
u z ,u z ,u w(x, y, t)

x y

u ,u ,u z z 1 w Tw
x y

 
    

 

  
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 

2 2 2

2 2

2 2 2

2 2

, , 2

, , 2

xx yy xy

T

xx yy xy

w w w
ε z   ε z   γ z  

x y x y

ε ε γ z        w w
x y x y
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   

   
     

    
L

 
(13) 

In which 𝜀𝑥𝑥 and 𝜀𝑦𝑦  demonstrate the normal strain 

members, and the term 𝛾𝑥𝑦 denotes the shear strain part. 

By taking into account the plane stress assumption and 

using the nonlocal constitutive equation of Eringen (1983), 

the nonlocal constitutive stress-strain relations for an 

orthotropic SLGS can be expressed as below 

1 12 2

nl 12 21 12 21
xx xx

2 nl 12 2 2
yy yy

12 21 12 21nl

xy xy

12

E E
0

(1 ) (1 )

E E
(1 ) 0

(1 ) (1 )

0 0 G

 
     
     

    
                    

 
 

 (14) 

Where 𝐸1 and 𝐸2 are, respectively, the Young’s moduli in 

orientations 1 and 2. Also, 𝐺12 refers to the shear modulus, 

and Poisson’s ratios are presented with 𝜗12  and 𝜗21 . 

Furthermore, the symbol 𝜇 = (𝑒0𝑎)
2 is the nonlocal term, 

which is able to consider the small scale effect into the 

governing equations of the motion. However, 𝑒0 refers to 

the calibration coefficients, which can be determined from 

experiment or the results of MD simulation. It should be 

noted that here, 𝑎 is the internal characteristic length and 

∇2=
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
 demonstrates the two-dimensional 

Laplacian operator. Applying the linear strain components 

of Eq. (13) and the nonlocal constitutive stress-strain 

relations of Eq. (14), the stress resultants in terms of 

transverse deflection of an orthotropic SLGS can be written 

as (Hosseini Hashemi et al. 2015) 

 

 

 

2 2
2

11 122 2

2 2
2

22 122 2

2
2

66

1 ,

1 ,

1 2

xx

yy

xy

w w
M μ D D

x y

w w
M μ D D

y x

w
M μ D

x y

 
    

 

 
    

 


   

 

 (15) 

where 

 
2

2

( , , ) , ,

h

nl nl nl

xx yy xy xx yy xy

h

M M M σ σ σ zdz



 
 

(16) 

 

(17) 

It is noteworthy that for free vibration problem, the 

matrix-vector expressions of the strain energy Π𝑈  and 

kinetic energy Π𝑇 can be defined as 

1 1
Π ,Π

2 2

T T

U T

V V

ε σdV  ρu udV   
 

(18) 

 

 

Where V stands for the volume of orthotropic SLGS. 

Now, Hamilton’s variational principle is used to achieve the 

governing differential equations of motion equation 

(Norouzzadeh and Ansari, 2018) 

2

1

t

T U

t

( )dt 0   
 

(19) 

By substituting the deflection w from Eq. (10), the final 

undamped dynamic discrete equations for free vibration 

analysis in the present isogeometric method can be derived 

as 

0Mw Kw 

 

(20) 

where w and w  are the vectors of the deflection and 

acceleration at the control points. K and M, respectively, 

stand for global stiffness and mass matrices which are 

defined as 

T

IJ I J
A

K B DB dA 
 

(21) 

3

J JI I

IJ
A

2

I J

h
( )( )

12 x x y yM dA

h (1 )

   
  

     
     

  
(22) 

T
2 2 2

I I I
I 2 2

B 2
x y x y

      
    

    

 

(23) 

In the above-mentioned equations,  and h are the density 

and thickness of the plate, respectively. A general solution 

for the homogenous equation given in Eq. (20) can be 

written as 

i tw we 

 

(24) 

Here i is the imaginary unit, indicates natural frequency, t 

represents time, and w  is the eigenvector. By substituting 

Eq. (24) into Eq. (20), the natural frequency of the free 

vibration of the plate can be obtained by solving the 

following eigenvalue equation 

2(K M)w 0 

 

(25) 

 

2.3. Essential Boundary conditions  
 
In this paper, we use a simple and efficient technique 

which was first proposed by Kiendl et al. (2009) for 

analysis of shell structures. In this technique, clamped 

boundary conditions can be imposed by simply fixing the 

deflection of the plate at the first two rows of control points 

from the desired boundary. This is based on the fact that the 

slopes at the boundary of a NURBS surface are defined by 

the first two rows of control points from this boundary 

(Kiendl et al. 2009). Simply supported boundary condition 

is also imposed by fixing the deflection of the first row of 

control points from the boundary. 

 

 

3. Numerical simulations 
 

3.1 Validation and comparison study for   
isogeometric approach 

3 3
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To show the correctness and validity of the achieved 

formulation, several numerical examples with different 

boundary conditions are investigated in this section. The 

obtained results of present isogeometric approach are 

verified by comparing with other numerical or analytical 

solutions available in the literature. Firstly, Natural 

frequencies of an isotropic square plate without considering 

nonlocal term, and three types of boundary condition 

including Free (F), Simply supported (S) and Clamped (C) 

are investigated. The natural frequencies of a free square  

 

 

 

 

 

 

 

plate are listed in Table 1. It is observed that the calculated  

results are in good agreement with the results of other 

research works. In this table, HOE denotes eight-nodes 

semi-loof thin shell element (4*4 mesh); LOE denotes four-

noded iso-parametric shell element (8*8 mesh). The first 

three frequencies corresponding to the rigid displacements 

are zero and are not reported. Natural frequencies of a 

simply supported and fully clamped square plates are 

computed using the present method. The results are shown 

in Tables 2 and 3, from these tables, one can find that  

Table 1 Comparison study of the non-dimensional natural frequencies of completely free isotropic square plate 

Mode 
 Present method 

(12*12) 

Liu and Chen 

(2001) 

Analytical solution  

(Abbassian et al. 1987) 

      FEM (Abbassian et al. 1987) 

        HOE          LOE            

4 3.670 3.670 3.670         3.567   3.682 

5 4.427 4.429 4.427         4.423   4.466 

6 4.927 4.930 4.926         4.875   4.997 

7 5.900 5.901 5.929         5.851   5.942 

8 5.900 5.901 5.929         5.851   5.942 

9 7.818 7.832 7.848         7.820   8.079 

Table 2 Comparison study of the non-dimensional natural frequencies of simply supported isotropic square plate 

Mode 
Present method 

(12*12) 

Analytical solutions  

(Abbassian et al. 1987) 

Liu and Chen (2001) 

 Regular nodes        Irregular nodes 

1 4.443 4.443 4.443 4.453 

2 7.025 7.025 7.031 7.033 

3 7.025 7.025 7.036 7.120 

4 8.886 8.886 8.892 8.912 

5 9.938 9.935 9.959 9.966 

6 9.938 9.935 9.966 10.010 

7 11.329 11.327 11.341 11.345 

8 11.329 11.327 11.341 11.540 

9 12.971 - 13.032 12.994 

10 12.971 - 13.036 13.064 

Table 3 Comparison study of the non-dimensional natural frequencies of fully clamped isotropic square plate 

Mode 
Present method 

(12*12) 

Analytical solutions 

 (Abbassian et al. 1987) 

Liu and Chen (2001) 

  Regular nodes        Irregular nodes 

1 5.999 5.999 6.017 5.999 

2 8.568 8.568 8.606 8.596 

3 8.568 8.568 8.606 8.602 

4 10.401 10.407 10.439 10.421 

5 11.469 11.472 11.533 11.507 

6 11.496 11.498 11.562 11.528 

7 12.829 - 12.893 12.925 

8 12.829 - 12.896 12.986 

9 14.468 - 14.605 14.570 

10 14.468 - 14.606 14.604 
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present results are in good agreement with those of the other 

solutions.  

To testify the validity of the present method, a 

comparison between the fundamental natural frequency 

obtained for an isotropic square nanoplate against different 

values of the nonlocal parameters with those obtained by 

other researchers (Norouzzadeh and Ansari 2018, Nguyen et 

al. 2015, Aghababaei and Reddy 2009) is indicated in Table 

4. By briefly reviewing the computed results in this table, 

the accuracy of present formulations is determined. 

 
3.2. Molecular dynamic approach 
 
3.2.1 MD Simulation of pristine and defected single 

layer graphene sheets 

All simulations are carried out with open source well-

known software i.e., large-scale atomic/molecular 

massively parallel simulator (LAMMPS) package, using 

adaptive intermolecular reactive bond order (AIREBO) 

potential which is a suitable potential function for 

simulation of C-C bonding interaction (Stuart et al. 2008, 

Plimpton 1995). 

Before applying strain, the sample is relaxed over 25 ps 

and the time step is selected to be 0.5 fs. The isothermal-

isobaric (NPT) and isothermal-isovolumetric (NVT) 

ensembles are used for the simulation. Since the present 

continuum model does not consider thermal effects, all MD 

simulations are performed at low temperature conditions, 

i.e., 2 K. After the graphene sample has reached equilibrium, 

the strain is applied to the sample along the x- and y- 

direction at a rate of 0.001 ps (Fig. 2) and virial stress is 

used as a measure of mechanical stress of the graphene 

sheets (Tsai 1979, Zhou 2003, Subramaniyan et al. 2008).   

 

3.2.2 Validation of MD approach for defect-free single 
layer graphene sheet 

Recently mechanical properties of graphene sheet have 

been investigated both experimentally and theoretically 

(Ansari et al. 2012, Lee et al. 2008). Before discussion on 

obtained results from simulation, for validation of 

numerical model and computer simulation code first we 

compare the results obtained from simulation of a mono  

 

 

 

layer graphene with theoretical and experimental results of 

other papers. Fig. 3 illustrates schematic of a graphene sheet 

under tension loading in two directions: (a) armchair and (b) 

zigzag. Fig. 4 depicts stress-strain curve for graphene sheet 

under tension loading in both armchair and zigzag 

directions. The Young’s and shear modulus can be 

estimated from a linear portion of the stress-strain curve 

from zero to 0.02 strain. The simulated Young’s modulus in 

the first strain is 906.09 and 965.73 TPa for zigzag and 

armchair graphene sheet, respectively. This is also in good 

agreement with the experimental results of 1.0 TPa (Lee et 

al. 2008). However, the reported Young’s modulus in the 

literature has a wide range of dispersion ranging from 0.5 to 

1.4 TPa as shown in Table 5. 

The value of shear modulus (Gxy) is 306.51 GPa. It 

shows that shear modulus of pristine graphene is high 

compared to other common materials as well as its tensile 

properties. In order to validate our results we have found 

that our predicted shear modulus of graphene is in good 

agreement with experimental value of 280 GPa and 

simulation value of 280 GPa which have been recently 

reported (Liu et al. 2012, Min and Aluru 2011). 
 
3.2.3 Effect of vacancy defect type and degree on 

mechanical properties of graphene sheets 
The simulated pristine graphene consists of 1008 carbon 

atoms with a size of 5 nm*5 nm with periodic boundary 

conditions applied along two planar x and y directions (Fig. 

2). 

In our study, the effects of several usual defects, SV or 

DV defects, on Young’s and shear modulus are investigated. 

The SV and DV defects are respectively created by 

removing one carbon atom and two adjacent atoms on the 

pristine graphene sheet, as shown in Fig. 5. 

Figs. 6 and 7 show the effect of different types and 

degree of defects on the Young’s modulus of graphene 

sheets. Here the defect degree of vacancies considered as 

the number of removed atoms to the total number of atoms 

for the pristine graphene. According to the Table 6 with the 

increasing of defect degree the amount of shear modulus 

decreasing. It is observed that both kinds of defects 

decrease the Young’s and shear modulus of graphene and  

Table 4 Non-dimensional natural frequency of fully simply supported isotropic square nanoplate 

a/h μ (nm2) 
Present 

method 

Norouzzadeh and 

Ansari (2018) 

  Nguyen et al. (2015) 

  RPT     Quasi-3D                   

Aghababaei and Reddy (2009)  

TSDT      FSDT    CPT 

10 0 0.0955 0.0931 0.0930 0.0920 0.0935 0.0930 0.0963 

 1 0.0874 0.0850 0.0850 0.0841 0.0854 0.0850 0.0880 

 2 0.0811 0.0788 0.0788 0.0779 0.0791 0.0788 0.0816 

 3 0.0759 0.0738 0.0737 0.0729 0.0741 0.0737 0.0763 

 4 0.0717 0.0696 0.0695 0.0688 0.0699 0.0696 0.0720 

20 0 0.0240 0.0239 0.0239 0.0239 0.0239 0.0239 0.0241 

 1 0.0219 0.0218 0.0218 0.0218 0.0218 0.0218 0.0220 

 2 0.0203 0.0202 0.0202 0.0202 0.0202 0.0202 0.0204 

 3 0.0190 0.0189 0.0189 0.0189 0.0189 0.0189 0.0191 

 4 0.0179 0.0178 0.0178 0.0178 0.0179 0.0178 0.0180 
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the detrimental effect increases with the increasing of 

defects degree, but the degree of the detrimental effects 

differ with defect type. The Young’s and shear modulus of a 

graphene with SV defects are much smaller than graphene 

with DV defects.  
 

 

 

 

 

 

 

Figs. 8-11 show the influence of different vacancy types 

and degrees on the stress-strain curve of a 5*5 nm perfect 

and defected graphene. These figures show that vacancies 

greatly reduce the tensile strength and fracture strain for 

both zigzag and armchair graphene sheets. Figs. 12(a)-12(c) 

shows the influence of different vacancy types and degrees  

 

Fig. 3 Single graphene sheet under tension loading in: (a) Armchair direction and (b) Zigzag direction 

 

Fig. 4 The Stress-Strain curves of pristine graphene sheet with tensile loading applied in armchair and zigzag directions 

Table 5 A comparison of the computed mechanical properties in the present study and the ones reported in the literature 

Study Method Young’s modulus (TPa) 

Present Molecular Dynamic 0.965 

Lee et al. (2008) Experimental 1± 0.1 

Jiang et al. (2009) Molecular Dynamic 1.1 

Shen et al. (2010) Molecular Dynamic 0.905 

Ni et al. (2010) Molecular Dynamic 1.13 

Tsai and Tu (2010) Molecular Dynamic 0.912 

Kvashnin et al. (2010) Molecular Mechanics 1.39 (average) 

Reddy et al. (2006) Continuum mechanics 0.669 

Liu et al. (2007) Density Functional Theory 1.05 

Sakhaee-Pour (2009) Finite Element 1.025 

Georgantzinos et al. (2010) Finite Element 1.367 

Neek-Amal and Peteers (2010) Molecular Dynamic 0.501 ±0.032 

Yanovsky et al. (2009) Quantum mechanics 0.737 
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Fig. 5 Vacancy defects in single layer graphene sheets 

 

Fig. 6 The influence of defect degree on the Ey of single layer graphene sheet 

 

Fig. 7 The influence of defect degree on the Ex of single layer graphene sheet 
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Fig. 8 The Stress-Strain curves of perfect and SV defected Armchair graphene sheet 

 

Fig. 9 The Stress-Strain curves of perfect and DV defected Armchair graphene sheet 

Table 6 The effect of defect degree of Single and Double vacancy defects on the shear modulus 

Defect degree (%) Gxy (GPa) for SV defect Gxy (GPa) for DV defect 

0 306.51 306.51 

0.198 276.07 291.54 

0.396 246.81 269.48 

0.595 240.47 262.91 

0.793 221.15 251.49 

0.992 186.56 239.52 

1.190 182.27 237.16 

1.38 179.96 220.52 

1.58 178.17 215.12 

1.78 156.29 204.43 
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on the fracture stage of a 5*5 nm perfect and defected 

graphene. It is crystal clear that the vacancies have a big 

effect on the shape of fractures. 
 
 

4. Benchmark results 
 

Numerical computations are carried out in this section to 

better understand the impact of various parameters 

(nonlocal, mode number and boundary conditions) and DV 

and SV defects on the variation of the system natural 

frequency. In this study, we consider a graphene sheet with 

a size of 5*5 (nm). The mechanical properties of defected 

graphene for different defect degree have been estimated in 

the previous sections using molecular dynamic approach. 

   

 

 

 

 

 

The density and effective thickness of the graphene are 

assumed to be 2250 kg/m3 and 0.34 nm; respectively. 

According to the results reported in section 3.1, considering 

144 control points can lead to good results and convergence 

so other results are further calculated with this number of 

control points. 
The influence of missing carbon atoms number for both 

defect types including single and double vacancy defects is 

investigated in Figs. 13 and 14. These figures show that 

with increasing the number of missing carbons, the natural 

frequency of graphene decreases. Also, because of the 

softening effect of nonlocal term on the system, the natural 

frequency decreases by increasing nonlocal parameter. It is 

observed that the discrepancy between the branches 

decreases for high amount of nonlocal parameter. It should 

be noted this tendency has been seen in other mode  

 

Fig. 10 The Stress-Strain curves of perfect and SV defected Zigzag graphene sheet 

 

Fig. 11 The Stress-Strain curves of perfect and DV defected Zigzag graphene sheet 
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Fig. 12 Fracture of graphene sheets for different types and defect degrees; (a) perfect graphene, (b) SV defected graphene 

with 8 missing carbon atoms and (c) DV defected graphene with 8 missing carbon atoms. 

 

Fig. 13 The influence of missing carbon atoms number on the first natural frequency for completely clamped square 

graphene with Single Vacancy (SV) defects 
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Fig. 14 The influence of missing carbon atoms number on the first natural frequency for completely clamped square 

graphene with Double Vacancy (DV) defects 

 

Fig. 15 The influence of Single and Double vacancy defects on the first natural frequency of fully clamped graphene for 

μ=1 

 

Fig. 16 The influence of Single and Double vacancy defects on the first natural frequency of fully simply supported 

graphene for μ=1 
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numbers and boundary conditions but for the sake of 

brevity, they are not reported here. 
Figs. 15-17, show the effect of single and double 

vacancy defects on the natural frequency of graphene with 

different boundary conditions. These figures reveal that 

Single Vacancy (SV) clusters cause more reduction in the 

natural frequencies of SLGS than Double Vacancy (DV) 

clusters. The same trend has been seen for other mode 

numbers. 
 
 

5. Conclusions 
 

This paper deals with vibration analysis of vacancy 

defected graphene sheet as a nonisotropic structure using 

molecular dynamic and continuum approaches. The 

influence of structural defects on the vibration of graphene 

sheets is considered by applying the mechanical properties 

of defected graphene sheets. Molecular dynamic 

simulations have been performed to estimate the 

mechanical properties of graphene with single- and double- 

vacancy defects using open source software i.e., large-scale 

atomic/molecular massively parallel simulator (LAMMPS). 

The correctness of the obtained results is checked via 

comparing with existing data in the literature and good 

agreement is eventuated. As a result, the effectiveness and 

the accuracy of the present IGA approach have been 

demonstrated and it is shown that the IGA is efficient, 

robust and accurate in terms of nanoplate problems. From 

this study some conclusions can be made as following: 

 It is observed that both kinds of defects (SV and 

DV) decrease the Young’s and shear modulus of 

graphene and the detrimental effect increases with 

the increasing of defects degree. 

 The degree of the detrimental effects differ with 

defect type. The Young’s and shear modulus of the  

  

 

 

graphene with SV defects are much smaller than 

graphene with DV defects. 

 According to the results, with the increasing of 

defect degree the amount of shear modulus 

decreasing. 

 It is observed that SLGSs with all types of defects 

have lower natural frequencies compared to perfect 

SLGSs. 

 Single Vacancy (SV) clusters cause more reduction 

in natural frequencies of SLGSs than Double 

Vacancy (DV) clusters. 

 Results indicate that because of the softening effect 

of nonlocal parameter, the natural frequency 

decreases with increasing this parameter. 
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