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1. Introduction 

 

Laminated composite structures are made-up from 

composite materials plies with desirable angle orientations 

to accomplish desirable and high-performance mechanical 

properties (i.e., minimum weight with required stiffness and 

strength properties) for a specified application. Sandwich 

structures are a special type of composite structures which 

consist of two thin but strong skins and thick core made up 

of soft material, Sayyad and Ghugal (2019a). Applications 

of sandwich composite beam and plate structures have been 

attractive in many disciplines such as mechanical, marine, 

military, aerospace, and aeronautical industries. Specially in 

aerospace industry, sandwich structures are used in landing 

gear doors, flap track fairings and spoilers, empennages, 

rudders, winglets, engine environment structures, Li et al. 

(2019). Hence, sandwich structures gained a lot of attention 

of many researchers and scientists to employ these materials 

in the design procedures and scientific researches. 

Silvestre and Camotim (2002a ,b) developed a 

comprehensive formulation of a generalized beam theory to  
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analyze the structural behavior of composite thin-walled 

members made of laminated plates and displaying arbitrary 

orthotropy. Wang and Shenoi (2004) analyzed the buckling 

of curved sandwich beams with a focus on debonding and 

buckling/wrinkling of the faces. Meyer-Piening (2006) 

studied static and buckling of an asymmetric square 

sandwich plate with orthotropic stiffness properties in the 

face layers. Silvestre (2007) developed previous model to 

investigate the buckling behavior of circular cylindrical 

shells and tubes. Assie et al. (2011) developed an effective 

numerical model to analyze the dynamic time response of 

orthotropic viscoelastic composite plates. Emam (2011) 

proved that the classical and first-order theories 

underestimate the amplitude of buckling while all higher 

order theories are very close for the static postbuckling 

response. Eltaher et al. (2012, 2013a,b) investigated 

mechanical responses of functionally graded (FG) 

nanobeams structures by using differential constitutive form 

of Eringen model. Basaglia et al. (2013) developed a finite 

element model based on the generalized beam theory to 

analyze the local, distortional and global post-buckling 

behavior of thin-walled steel frames. Şimşek and Reddy 

(2013) studied buckling of a FG microbeam embedded in 

elastic Pasternak medium by a unified higher order beam 

theory. Eltaher et al. (2014 a,b) modified previous model by 

considering shear effect to illustrate the mechanical 

bending, buckling and vibrational behaviors of thick 
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nanobeams. Nguyen and Nguyen (2015) and Nguyen et al. 

(2016) presented higher-order shear deformation theory in 

static, buckling and free vibration analysis of functionally 

graded (FG) sandwich beams. Meradjah et al. (2015) 

presented a modieid higher order shear and normal 

deformation theory for FG beams with zero transverse shear 

stress condition. Emam and Eltaher (2016) investigated 

buckling and postbuckling of temperature-moisture-

dependent composite beams in hygrothermal environments. 

MalekzadehFard et al. (2017) investigated free vibration 

and buckling of the cylindrical sandwich panel with 

magneto-rheological fluid layer by improved higher order 

sandwich panel theory. Kahya and Turan (2018) presented a 

finite element model based on the first-order shear 

deformation theory for free vibration and buckling analyses 

of FG sandwich beams. Mohamed et al. (2018) developed a 

novel numerical differential quadrature procedure to 

forecast nonlinear forced vibration of curved beam in 

locality of postbuckling modes. Akbas et al. (2018a,b) 

investigated thermal post-buckling analysis of a laminated 

composite beam subjected to uniform temperature rise with 

temperature dependent physical properties. Ebrahimi and 

Farazmandnia (2018) presented thermo-mechanical 

buckling of sandwich beams with a stiff core and face 

sheets made of FG carbon nanotube-reinforced composite 

within the framework of Timoshenko beam theory. Salami 

and Dariushi (2018) presented analytical and experimental 

investigation of geometrically nonlinear analysis of 

sandwich beams under low velocity impact. Emam et al. 

(2018) investigated the postbuckling and free vibration 

behaviors of imperfect composite nanobeams by using 

nonlocal elasticity differential model of Eringen within the 

nonlinear Bernoulli-Euler beam theory. Garg and Chalak 

(2019) presented a comprehensive review on analysis of 

laminated composite and sandwich structures under 

hygrothermal conditions. Li et al. (2019) examined 

nonlinear bending of sandwich beams with functionally 

graded (FG) negative Poisson’s ratio honeycomb core in 

thermal environments by using 3D full scale finite element 

method (FEM). Martins and Silvestre (2019) analyzed 

numerically elastic post-buckling behaviour and 

imperfection sensitivity of simply supported cylindrical 

steel panels under uniform compression. Chowdhury and 

Reddy (2019) and Nampally et al. (2019) investigated 

nonlinear deflection of sandwich beams made of architected 

lattice core by exploited geometrically exact micropolar 

Timoshenko beam. In the framework of FEM and Rayleigh-

Ritz method, Dabbagh et al. (2019) studied the influences 

of nanofllers' aggregation on the vibration frequency of 

multi-scale hybrid nanocomposites model by trigonometric 

shear deformation beam theory. Li et al. (2019) proposed 

mixed beam element model for static bending analysis of 

FG sandwich beam with higher-order shear theories. 

Sayyad and Ghugal (2019b) developed an analytical 

solution to investigate static behavior of FG sandwich 

curved beams by a sinusoidal beam theory. Ascione and 

Gherlone (2019) exploited the refined zigzag theory to 

study buckling and nonlinear static response of multilayered 

composite and sandwich beams. Eltaher et al. (2019a) 

predicted nonlinear postbuckling behaviors of curved 

carbon nanotube embedded in nonlinear elastic foundation 

by using modified energy equivalent model. Eltaher et al. 

(2019b) exploited nonlinear integro-partial-differential 

equation of periodic and aperiodic configuration buckled 

beam to study nonlinear vibration behaviors of buckled 

imperfect beam. Mohamed et al. (2019) exploited energy 

equivalent model in analyzing of postbuckling of imperfect 

carbon nanotubes resting on nonlinear elastic foundation. 

Chen et al. (2019) presented an analytical study on the 

flexural buckling of sandwich beams considering thermal-

induced nonuniform cross-sectional properties. Shen et al. 

(2019) investigated the axial compressive performance of 

circular concrete-filled steel tubular wrapped by CFRP belts 

partially by using a nonlinear FEM. Hamed et al. (2019) 

studied effects of porosity models on static behavior of size 

dependent functionally graded beam. Akbaş (2019) studied 

post-buckling of laminated composite beams under 

hygrothermal effect by using FEM. Abdelrahman et al. 

(2019) and Almitani et al. (2019) studied free and forced 

vibration of thin/thick beam structure by using semi-

analytical method. Eltaher and Mohamed (2019) illustrated 

the vibration perforated nanobeams with general boundary 

conditions by using nonlocal elasticity of Eringen.  

Sometimes in real application, sandwich beams are 

subjected to inplane loads with linear and parabolic 

distributions, Such as, the load on the stiffened plate in the 

ship structures, the load applied on the aircraft wings, or the 

load on the slabs of a multi-storey building, Panda and 

Ramachandra (2010). So, the performance and response of 

sandwich beam structures exposed to non-uniform in-plane 

compressive loading and shear loading is important in 

aircraft, civil and ship-building industries. Kang and Leissa 

(2005) and Panda and Ramachandra (2010) studied 

buckling stability of rectangular plate under linearly varying 

in-plane loading. Jun et al. (2016, 2017) exploited dynamic 

stiffness method and shear deformation theory to analyze 

the buckling and free vibration of axially loaded composite 

laminated beams. Osmani and Meftah (2018) investigated 

the lateral buckling of tapered thin walled bi-symmetric 

beams under combined axial and bending loads with shear 

deformations effects by using Ritz method. Nasrekani and 

Eipakchi (2019) analyzed static buckling stability of elastic 

cylindrical shells with varying thickness under combined 

axial and radial loads under assumption of first-order shear 

deformation theory. Karamanli and Aydogdu (2019) studied 

elastic buckling of isotropic, laminated composite and 

sandwich beams under numerous axially varying in-plane 

forces based on a modified shear deformable beam theory. 

Singh and Harsha (2019) used Navier’s method to 

investigate the buckling responses of FGM plate subjected 

to uniform, linear, and non-linear in-plane loads. Eltaher et 

al. (2020) studied static stability of a unified composite 

beams under varying axial loads.  

The present study is intended to study the buckling 

loads and their mode-shapes of composite sandwich 

laminated beam under varying axial load by using unified 

beam theories for the first time according to author’s 

knowledge and literature review. The sandwich beam is 

exposed to axial load with six different distributions, which 

are uniform load, linear and parabolic loads zero from left  
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side, linear and parabolic loads zero from right side, and 

symmetric parabolic load. Unified higher order beam 

theories are proposed to consider all slenderness ratios and 

shear deformation effect of sandwich beam structure. 

Numerical differential quadrature method (DQM) is 

exploited to convert the governing equilibrium differential 

equations into a set of algebraic equations that will be 

solved after that as an eigenvalue problem. The conversion 

of DQM in evaluating eigenvalues buckling loads are 

illustrated in comprehensive form. The manuscript is 

organized follows: Section 2 presents problem formulation 

including kinematics assumptions, constitutive equations, 

axial load functions, and derived equilibrium equations. 

Section 3 develops the solution procedure and discretization 

method of the sandwich composite beam structure using 

numerical differential quadrature method. Model validation 

and parametric studies are presented and discussed in 

section 4. Main remarks and conclusion are summarized in 

section 5. 

 

 

2. Mathematical formulation 
 

2.1 Axial load distribution 
 

 

 

 

 

The discrepancy of compressive load along the axial 

direction has many real applications, such as the stiffened 

structure of the blend wing, ship structures and multi-storey 

building. To investigate the behaviors of these structures 

accurately, the axial compressive load should be described 

by a uniform function. Hence, in this model the axial 

compressive load assumed to be varied constant, linear, and 

parabolic in the axial direction. The function describing the 

variation of axial load can be stated by Karamanli and 

Aydogdu (2019) 

𝑁𝑎𝑥𝑖𝑎𝑙 (𝑥) = 𝑁𝑎𝑚𝑝 [𝛼2 (𝑥 +
𝐿

2
)
2
+ 𝛼1 (𝑥 +

𝐿

2
) + 𝛼0] =

𝑁𝑎𝑚𝑝 𝐶(𝑥)  
(1) 

In which 𝑁𝑎𝑚𝑝 is the amplitude of load, that is positive 

if the load is compressive. The function of axial loads can 

be adjusted by constant parameters (𝛼𝑖) of the polynomial 

described in Eq. (1). The integral of each axially variable 

in-plane load through the length of the beam is equal to 

integral of the uniformly distributed in-plane load, to 

conform results of any profile of load distribution. The 

value of load profile coefficients described in Eq. (1) are 

presented in Table 1. The distribution of the axial load 

through the beam length is presented in Fig. 1. 

 

 

Fig. 1  shows the distribution of the axial in-plane load through the beam length 

Table 1 Values of the coefficient of the axial varying load profile 

Load Type Load Symbol 𝛼2 𝛼1 𝛼0 

Constant Load 𝑁𝑐𝑜𝑛  0 0 1 

Linear Load-zero from left side 𝑁𝐿𝐿  0 2 0 

Linear Load-zero from right side 𝑁𝐿𝑅  0 -2 2 

Parabolic Load-zero from left side 𝑁𝑃𝐿  3 0 0 

Parabolic Load-zero from right side 𝑁𝑃𝑅  3 -6 3 

Symmetric Parabolic Load 𝑁𝑃𝑆  -6 6 0 

243



 

Mohamed A. Eltaher and Salwa A Mohamed 

2.2 Unified theory of sandwich beam 
 
To consider the effect of shear deformation of thick 

beam, the unified beam theory is proposed. The kinematic 

displacement field of unified beam theory is described as 

𝑢1(𝑥, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑡) − 𝑧
𝜕𝑤0(𝑥,𝑡)

𝜕𝑥
+ 𝑓(𝑧)𝜑(𝑥, 𝑡)  (2) 

𝑢3(𝑥, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑡) (3) 

in which 𝑢1 and 𝑢3 are axial and transverse displacement, 

respectively, of any point in a beam domain. 𝑢0 and 𝑤0 

are the inplane and out of plane displacements along the 

mid-plane of the beam, respectively. The rotation of the 

normal to the mid-plane is 𝜑(𝑥, 𝑡) and 𝑓(𝑧) is a shear 

deformation function along the z-axis, that satisfies the zero 

shear conditions at the top and bottom lines. The shear 

distribution along the z-axis can be designated by one of the 

following functions, Sayyad and Ghugal (2017) 

Parabolic shear theory (PST)   

𝑓(𝑧) = 𝑧 (1 −
4𝑧2

3ℎ2
) 

(3a) 

Exponential shear theory (EST) 

𝑓(𝑧) = 𝑧𝑒−2(𝑧 ℎ⁄ )2
 

(3b) 

Trigonometric shear theory (TST) 

𝑓(𝑧) = (
ℎ

𝜋
)𝑠𝑖𝑛(𝜋𝑧 ℎ⁄ ) 

(3c) 

Hyperbolic shear theory (HST) 

𝑓(𝑧) = ℎ 𝑠𝑖𝑛ℎ(𝑧 ℎ⁄ ) − 𝑧 𝑐𝑜𝑠ℎ(1 2⁄ ) 
(3d) 

The proposed theories eliminate the needing for shear 

correction factor used in commonly Timoshenko beam 

theory. The strains accompanying with displacement fields 

defined by Eqs. (1)-(3) can be described by 

𝜀𝑥 =
𝜕𝑢0
𝜕𝑥

− 𝑧 −
𝜕2𝑤0
𝜕𝑥2

+ 𝑓(𝑧)
𝜕𝜑

𝜕𝑥
= 𝜀𝑥

0 + 𝑧𝑘𝑥
0 + 𝑓(𝑧)𝑘𝑥

2 (4a) 

𝛾𝑥𝑧 =
𝜕𝑓

𝜕𝑧
𝜑 = 𝑔(𝑧)𝑘𝑥𝑧

𝑠   (4b) 

in which  𝜀𝑥 is the normal strain along x-direction and 𝛾𝑥𝑧 

is a shear strain. The other normal (𝜀𝑦 , 𝜀𝑧) and shear 

(𝛾𝑥𝑦 , 𝛾𝑦𝑧 ) strain components are zeros.  

The constitutive equation along lamina coordinates is 

described by 

{
 
 

 
 
𝜎𝑥
𝜎𝑦
𝜎𝑦𝑧
𝜎𝑥𝑧
𝜎𝑥𝑦}

 
 

 
 

=

[
 
 
 
 
 
�̅�11 �̅�12 0 0 �̅�16
�̅�12 �̅�22 0 0 �̅�26
0 0 �̅�44 �̅�45 0

0 0 �̅�45 �̅�55 0

�̅�16 �̅�26 0 0 �̅�66]
 
 
 
 
 

{
 
 

 
 
𝜀𝑥
𝜀𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}

 
 

 
 

  (5) 

At any fiber angle (𝜃) , the transformed reduced 

stiffnesses can be calculated by 

 

�̅�11 = 𝑄11 𝐶𝑜𝑠
4(𝜃) + 2[𝑄12 + 2𝑄66] 𝑆𝑖𝑛

2(𝜃)𝐶𝑜𝑠2(𝜃)
+ 𝑄22 𝑆𝑖𝑛

4(𝜃) (6a) 

�̅�12 = [𝑄11 +𝑄22 − 4𝑄66] 𝑆𝑖𝑛
2(𝜃)𝐶𝑜𝑠2(𝜃)

+ 𝑄12 [𝑆𝑖𝑛
4(𝜃) + 𝐶𝑜𝑠4(𝜃)] (6b) 

�̅�22 = 𝑄11 𝑆𝑖𝑛
4(𝜃) + 2[𝑄12 + 2𝑄66] 𝑆𝑖𝑛

2(𝜃)𝐶𝑜𝑠2(𝜃) +
𝑄22 𝐶𝑜𝑠

4(𝜃)  
(6c) 

�̅�44 = 𝑄44 𝐶𝑜𝑠
2(𝜃) + 𝑄55 𝑆𝑖𝑛

2(𝜃) (6d) 

�̅�55 = 𝑄44𝑆𝑖𝑛
2(𝜃) + 𝑄55  𝐶𝑜𝑠

2(𝜃) (6e) 

�̅�45 = [𝑄55 −𝑄44] 𝑆𝑖𝑛(𝜃) 𝐶𝑜𝑠(𝜃) (6f) 

�̅�16 = [𝑄11 −𝑄12 − 2𝑄66] 𝑆𝑖𝑛(𝜃)𝐶𝑜𝑠
3(𝜃)

+ [𝑄12 − 𝑄22 + 2𝑄66] 𝑆𝑖𝑛
3(𝜃)𝐶𝑜𝑠(𝜃) (6g) 

�̅�26 = [𝑄11 − 𝑄12 − 2𝑄66]  𝑆𝑖𝑛
3(𝜃)𝐶𝑜𝑠(𝜃)

+ [𝑄12 − 𝑄22 + 2𝑄66] 𝑆𝑖𝑛(𝜃)𝐶𝑜𝑠
3(𝜃) (6h) 

�̅�66 = [𝑄11 + 𝑄22 − 2𝑄12 − 2𝑄66]  𝑆𝑖𝑛
2(𝜃)𝐶𝑜𝑠2(𝜃)

+ 𝑄66 [𝐶𝑜𝑠
4(𝜃) + 𝑆𝑖𝑛4(𝜃)] (6i) 

The material stiffness constants can be expressed in 

engineering constants as 

𝑄11 =
𝐸1

1−𝜗12𝜗21
 ,   𝑄12 =

𝜗12𝐸2

1−𝜗12𝜗21
 , 𝑄22 =

𝐸2

1−𝜗12𝜗21
 ,  

𝑄44 = 𝐺23 , 𝑄55 = 𝐺13 , 𝑄66 = 𝐺12 
(7) 

Where 𝐸𝑖  , 𝐺𝑖𝑗  ,  𝜗𝑖𝑗  are the Young modulus, shear 

modulus, and Poisson’s ratio, respectively. Based on unified 

higher order shear theory, the force resultant ( 𝑁 ), the 

moment resultant (𝑀),  unified bending moment resultant 

(𝑃) and the shear force resultant are defined as 

{

𝑁
𝑀
𝑃
𝑅

} = [

𝐴 𝐵 𝐸 0
𝐵 𝐷 𝐹 0
𝐸 𝐹 𝐻 0
0 0 0 𝐹𝑠

] {

𝜀0

𝑘0

𝑘2

𝑘𝑠 

}  (8) 

The laminated in-plane rigidities (𝐴, 𝐵, 𝐷, 𝐸, 𝐹, 𝐻) and 

shear rigidity 𝐹𝑠  matrices appearing in Eq. (8) are 

evaluated by the following 

(𝐴𝑖𝑗  , 𝐵𝑖𝑗  , 𝐷𝑖𝑗) = ∫ �̅�𝑖𝑗[1 , 𝑧, 𝑧
2] 𝑑𝑧

ℎ/2

−ℎ 2⁄
   

 (𝑖, 𝑗 = 1,2,6) 
(9a) 

(𝐸𝑖𝑗  , 𝐹𝑖𝑗  , 𝐻𝑖𝑗) = ∫ �̅�𝑖𝑗  𝑓(𝑧) [1 , 𝑧, 𝑓(𝑧)] 𝑑𝑧
ℎ/2

−ℎ 2⁄

   (𝑖, 𝑗 = 1,2,6)  
(9b) 

(𝐹44
𝑠  , 𝐹45

𝑠  , 𝐹55
𝑠 ) = ∫  𝑔(𝑧)

ℎ/2

−ℎ 2⁄

∗ 𝑔(𝑧) [�̅�44 , �̅�45, �̅�55] 𝑑𝑧 
(9c) 

Meanwhile the only nonzero force and moment 

resultants are  𝑁𝑥, 𝑀𝑥  , 𝑃𝑥  and 𝑅𝑥𝑧 , the condensed in-

plane force, the bending moment, and unified bending  
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moment can be defined as functions of strain components 

by 

{

𝑁𝑥
𝑀𝑥
𝑃𝑥

} = [

�̅�11 �̅�11 �̅�11
�̅�11 �̅�11 �̅�11
�̅�11 �̅�11 �̅�11

] {

𝜀𝑥
0

𝑘𝑥
0

 𝑘𝑥
2

} (10) 

in which 

 [
�̅�11 �̅�11 �̅�11
�̅�11 �̅�11 �̅�11
�̅�11 �̅�11 𝐻11

] = [
𝐴11 𝐵11 𝐸11
𝐵11 𝐷11 𝐹11
𝐸11 𝐹11 𝐻11

] −

[

𝐴12 𝐴16 𝐵12 𝐵16 𝐸12 𝐸16
𝐵12 𝐵16 𝐷12 𝐷16 𝐹12 𝐹16
𝐸12 𝐸16 𝐹12 𝐹16 𝐻12 𝐻16

 ] 

[
 
 
 
 
 
𝐴22 𝐴26 𝐵22 𝐵26 𝐸22 𝐸26
𝐴26 𝐴66 𝐵26 𝐵66 𝐸26 𝐸66
𝐵22 𝐵26 𝐷22 𝐷26 𝐹22 𝐹26
𝐵26 𝐵66 𝐷26 𝐷66 𝐹26 𝐹66
𝐸22 𝐸26 𝐹22 𝐹26 𝐻22 𝐻26
𝐸26 𝐸66 𝐹26 𝐹66 𝐻26 𝐻66

 

]
 
 
 
 
 
−1

[
 
 
 
 
 
𝐴12 𝐵12 𝐸12
𝐴16 𝐵16 𝐸16
𝐵12 𝐷12 𝐹12
𝐵16 𝐷16 𝐹16
𝐸12 𝐹12 𝐻12
𝐸16 𝐹16 𝐻16]

 
 
 
 
 

   

(11) 

and the shear force can be represented as function of shear 

strain by 

𝑅𝑥𝑧 = (𝐹55 − 𝐹45
2 𝐹44⁄ )𝑘𝑥𝑧

𝑠 = (�̅�55)𝑘𝑥𝑧
𝑠   (12) 

 

2.3 Equilibrium equations 
 
The governing equations can be derived based on the 

Hamilton’s principle as, Meirovitch (2010) 

∫ (𝛿𝑇 − 𝛿𝑉 + 𝛿𝑊)𝑑𝑡
𝑡2
𝑡1

= 0  (13) 

In which 𝑇, 𝑉, and 𝑊 are the kinetic energy, potential 

energy, and work done by axial force, respectively. 𝛿 

denotes the first variation,  𝑡1 and 𝑡2 are arbitrary two 

instant times. In the current analysis, the problem is static 

stability of orthotropic composite and hence 𝛿𝑇=0.  

Based on the unified laminated beam shear theory, the 

potential energy can be given by  

 

 

 

 

 

𝑉 =
𝑏

2
 ∫ (𝑁𝑥 𝜀𝑥

0 +𝑀𝑥 𝑘𝑥
0 + 𝑃𝑥  𝑘𝑥

2 + 𝑅𝑥𝑧𝑘𝑥𝑧
𝑠 )

𝐿/2

−𝐿/2

𝑑𝑥 (14) 

Substituting Eqs. (10) and (12) into Eq. (14), the 

potential energy can be rewritten in terms of strains as 

𝑉 =
𝑏

2
 ∫ [(�̅�11𝜀𝑥

0 + �̅�11𝑘𝑥
0 + �̅�11𝑘𝑥

2) 𝜀𝑥
0 +

𝐿/2

−𝐿/2

(�̅�11𝜀𝑥
0 + �̅�11𝑘𝑥

0 + �̅�11𝑘𝑥
2) 𝑘𝑥

0 + (�̅�11𝜀𝑥
0 +

�̅�11𝑘𝑥
0 + �̅�11𝑘𝑥

2) 𝑘𝑥
2 + (𝐹55 − 𝐹45

2 𝐹44⁄ )𝑘𝑥𝑧
𝑠 ∗

𝑘𝑥𝑧
𝑠 ] 𝑑𝑥   

(15) 

The work done by the axial distributed load is 

represented by 

𝑊 =
𝑏

2
 ∫ [𝑁𝑎𝑥𝑖𝑎𝑙 (∫ (

𝜕𝑤

𝜕𝑥
)
2𝑥

−𝐿/2
𝑑𝑥)] 𝑑𝑥

𝐿/2

−𝐿/2

  (16) 

𝛿𝑊 of Eq. (16) can’t be derived directly and a change of 

integration order is required. The order of integration can be 

altered based on the domain shown in Fig. 2. 

Hence, by changing the order of integration, the work 

done can be rewritten as 

𝑊 =
𝑏

2
 ∫ 𝑁𝑎𝑥𝑖𝑎𝑙 (�̅�) [(∫ (

𝜕𝑤

𝜕𝑥
)
2�̅�

−𝐿/2
𝑑𝑥)] 𝑑�̅�

𝐿/2

—𝐿/2

   

=
𝑏

2
 ∫ (

𝜕𝑤

𝜕𝑥
)
2

( ∫ 𝑁𝑎𝑥𝑖𝑎𝑙 (�̅�) 𝑑�̅�

�̅�=𝐿/2

�̅�=𝑥

)𝑑𝑥

𝐿/2

–𝐿/2

=
𝑏

2
 ∫ 𝑅(𝑥) (

𝜕𝑤

𝜕𝑥
)
2

𝑑𝑥

𝐿/2

–𝐿/2

 

(17) 

and the variational form of the work done can be presented 

as 

𝛿𝑊 = 𝑏 ∫𝑅(𝑥) (
𝜕𝑤

𝜕𝑥
) (

𝜕 (𝛿𝑤)

𝜕𝑥
) 𝑑𝑥

𝐿

2

–
𝐿

2

 (18) 

 

 

Fig. 2 Domain of the double integral in Eq. (2) 
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  =  𝑏 [[𝑅(𝑥) (
𝜕𝑤

𝜕𝑥
)𝛿𝑤]

−𝐿/2

𝐿/2

− ∫ [𝑅(𝑥) (
𝜕2𝑤

𝜕𝑥2
)

𝐿/2

–𝐿/2

+
𝑑𝑅(𝑥)

𝑑𝑥
 (
𝜕𝑤

𝜕𝑥
) ] 𝛿𝑤 𝑑𝑥] 

 

To compute 𝑅(𝑥) and (𝑥)/𝑑𝑥, substituting Eq. (1) into 

Eq. (17) and perform integration and then differentiate the 

results. 

𝑅(𝑥) = ∫ 𝑁𝑎𝑥𝑖𝑎𝑙 (�̅�) 𝑑�̅�
�̅�=𝐿/2

�̅�=𝑥
  

= 𝑁𝑎𝑚𝑝 (
𝛼2

3
𝐿3 +

𝛼1

2
𝐿2 +

𝛼0

2
𝐿 − (

𝛼2

3
(𝑥 +

𝐿

2
)
3

+
𝛼1

2
(𝑥 +

𝐿

2
)
2

+ 𝛼0𝑥))  
(19) 

𝑑𝑅(𝑥)

𝑑𝑥
= −𝑁𝑎𝑚𝑝 (𝛼2 (𝑥 +

𝐿

2
)
2

+ 𝛼1 (𝑥 +
𝐿

2
) + 𝛼0)

= −𝑁𝑎𝑚𝑝 𝐶(𝑥) 
(20) 

Computing the variation of potential energy (𝑉) and 

substituting the resultant equation and Eq. (18) into 

variation form of Hamilton Eq. (13), results in governing 

equilibrium equations of unified sandwich laminated beam 

under the distributed axial load as 

�̅�11 𝑢0
′′ − �̅�11𝑤0

′′′ + �̅�11𝜑
′′ = 0 (21a) 

�̅�11 𝑢0
′′′ − �̅�11𝑤0

′′′′ + �̅�11𝜑
′′′ + 𝑁𝑎𝑚𝑝[ 𝐶(𝑥)𝑤0

′ − 𝑅(𝑥)𝑤0
′′] = 0 (21b) 

�̅�55 𝜑 − �̅�11𝑢0
′′ + �̅�11𝑤0

′′′ − �̅�11𝜑
′′ = 0 (21c) 

subjected to the following boundary conditions 

[�̅�11 𝑢0
′ − �̅�11𝑤0

′′ + �̅�11𝜑
′]𝛿𝑢0 = 0 (22a) 

[−�̅�11 𝑢0
′′ + �̅�11𝑤0

′′′ − �̅�11𝜑
′′ +𝑁𝑎𝑚𝑝 𝑅(𝑥)𝑤0

′]𝛿𝑤0 = 0 (22b) 

 

 

 

[−�̅�11𝑢0
′ + �̅�11𝑤0

′′ − �̅�11𝜑
′]𝛿𝜑 = 0 (22c) 

[�̅�11 𝑢0
′ − �̅�11𝑤0

′′ + �̅�11𝜑
′]𝛿𝑤0

′ = 0 (22d) 

 

 

3. Numerical solution 

 
The governing equilibrium equations (Eq. (21)) of 

unified laminated sandwich beam under distributed axial 

load, shown in Fig. 3, are solved by the differential 

quadrature method DQM.  

Let the beam length be discretized by the Chebyshev–

Gauss–Lobatto distribution as 

𝑥𝑖 = −
𝐿

2
+
𝐿

2
(1 − 𝑐𝑜𝑠 (𝜋

𝑖−1

𝑁−1
)) ,    𝑖 = 1,2,⋯ ,𝑁   (23) 

Using the DQM, different order derivatives of a function 

at a given node can be approximated using a weighted sum 

of the function values at all discrete nodes in its domain. 

The first order derivative of function f(x) at node xi can 

be approximated using the DQM as follows 

𝑑𝑓

𝑑𝑥
|
𝑥=𝑥𝑖

=∑ 𝒹𝑖𝑗   𝑓𝑗
𝑁

𝑗=1
   ,    𝑖 = 1,2,⋯ ,𝑁  (24) 

where 𝑓𝑗 = 𝑓(𝑥𝑗)  and 𝒹ij  denote the corresponding 

weighting coefficients. The weighting coefficients can be 

expressed as follows, Shu (2000) 

𝒹𝑖𝑗 =
1

𝑥𝑗 − 𝑥𝑖
(
𝑃𝑖
𝑃𝑗
) ,   𝑖 ≠ 𝑗         𝑎𝑛𝑑        𝒹𝑖𝑖

= − ∑ 𝒹𝑖𝑗

𝑁

𝑗=1,𝑗≠𝑖

    
(25) 

where 

𝑃𝑖 = ∏ (𝑥𝑖 − 𝑥𝑗)
𝑁
𝑗=1,𝑗≠𝑖 , 𝑖, 𝑗 = 1,2,⋯ ,𝑁    (26) 

In matrix form, let the discrete values of 𝑓𝑖 = 𝑓(𝑥𝑖) at 

different nodes be given as a vector                 

 𝑓 = [𝑓1, 𝑓2, ⋯ , 𝑓𝑁]
𝑇 . Also, let its first derivative vector 

be F, then 

 

Fig. 3 Geometry of Multilayer Composite beam under the axial distributed loads 
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𝐹 = 𝒟(1) 𝑓  (27) 

where 𝒟(1) = [𝒹ij] is the weighting 𝑁 × 𝑁 matrix of the 

first order derivative. The weighting coefficients matrices 

for higher-order derivatives can be determined via matrix 

multiplication. Let the matrices 𝒟(1), 𝒟(2), 𝒟(3) and 𝒟(4) 

be respectively the coefficients matrices corresponding to 

the first, second, third and fourth derivatives. The unknown 

variables in Eq. (21) are discretized to three unknown 

vectors  U = [u1, u2, … , ui, … , uN]
T , W =

[w1, w2, … , wi, … , wN]
T,  and  φ =

[φ1, φ2, … , φi, … , φN]
T  where  ui = u0(xi) , wi = w0(xi) 

and φi = φ0(xi) , i = 1,2,⋯ , N.   Also, the given axial 

load functions C(x) and  R(x)  appearing in Eq. 19 are 

discretized respectively as known vectors C =
[c1, c2, … , ci, … , cN]

T and R = [r1, r2, … , ri, … , rN]
T. 

Accordingly, terms as u0
′  , w0

′′′, φ′′  are discretized 

respectively by the vectors 𝒟(1)U,𝒟(3)W  and  𝒟(2)φ . 

However, to discretize the function ( R(x)w0
′′ − C(x)w0

′ ) 
in Eq. 21(b), special matrices multiplications operators are 

essential. The first is the element by element operator  ′ ∘ ′  

defined for matrices 𝒜,ℬ , 𝒞 having the same dimensions 

such that 𝒞 = 𝒜 ∘  ℬ  implies that  𝒞ij = 𝒜ij ℬij . The 

second is the vector matrix multiplication operator  ′⨂′  

defined for a vector 𝒱 and matrix 𝒜  having the same 

number of rows such that 𝒞 = 𝒱⨂𝒜  implies that 𝒞ij =

𝒱i ℬij . The discrete vector of ( R(x)w0
′′ − C(x)w0

′ )  is 

given by  V = R ∘ (𝒟(2)W) − C ∘ (𝒟(1)W) . Using the 

operator ⨂ , this vector can be better written as V =

(R⨂𝒟(2))W − (C⨂𝒟(1))W or as V = SW where matrix 

S is defined by 

S = (R⨂𝒟(2)) − (C⨂𝒟(1)) (28) 

The discrete algebraic system corresponding to Eqs. 

(30) can now be written as 

[

A̅11𝒟
(2) −B̅11𝒟

(3) E̅11𝒟
(2)

B̅11𝒟
(3) −D̅11𝒟

(4) F̅11𝒟
(3)

−E̅11𝒟
(2) F̅11𝒟

(3) F̅55I − H̅11𝒟
(2)

] [
U
W
φ
]

= Namp [
O O O
O S O
O O O

] [
U
W
φ
] 

(29) 

where I is the identity matrix of order 𝑁 and O is the 

zero matrix of order 𝑁 × 𝑁. The boundary conditions Eq. 

(22) are discretized and properly substituted into Eq. (29). 

The resulting system is a generalized eigenvalue problem 

that can easily be solved for the eigenvalues (buckling loads) 

and eigenvectors (mode-shapes). The amplitude of 

fundamental buckling load 𝑁𝑎𝑚𝑝  is the smallest 

eigenvalue of the system. 

 

 

4. Numerical results 

 
The validation, stability of DQM, and parametric studies 

will be presented through this section in details. First, the 

validation of the proposed model in analysis of buckling 

stability of composite laminated structure will be presented 

in the first subsection to prove the accuracy of this model. 

After that, the stability of DQM in analysis of buckling 

loads and mode shapes and the effect of grid points are 

presented and discussed. The last subsection, effects of load 

functions, beam theories, slenderness ratio, sandwich ratio, 

and boundary condition on both buckling stability and 

buckling modes of sandwich beam will be discussed in 

comprehensive way. All material data proposed through 

analysis are  
𝐸1

𝐸2
= 𝑣𝑎𝑟𝑖𝑒𝑑; 𝐸3 = 𝐸2; 𝐺12 = 𝐺13 = 0.5𝐸2; 

𝐺23 = 0.2𝐸2; 𝜐12 = 𝜐13 = 𝜐23 = 0.25. 

 

4.1 Validation 
 
The current model is compared with results published 

by Karamanli and Aydogdu (2019), in which material 

properties are 
𝐸1

𝐸2
= 25 , 𝐸3 = 𝐸2 ; 𝐺12 = 𝐺13 = 0.5𝐸2 ; 

𝐺23 = 0.2𝐸2 ; 𝜐12 = 𝜐13 = 𝜐23 = 0.25  and geometrical 

properties are 3 layers with equal thicknesses, total 

thickness is h, and L/h=20. The dimensionless of first 

buckling load of symmetric [0°/θ/0°] clamped laminated 

beam is shown in Table 2, at different loading function and 

orientation. As concluded form this table, by increasing 

orientation angle, the critical buckling is decreased. The 

maximum and minimum critical buckling loads are 

observed where parabolic load varied from the right 𝑁𝑃𝑅 , 
and parabolic load varied from left 𝑁𝑃𝐿 , respectively. 

Similar phenomena and identical results (i.e.; within error 

percentage of 0.5%) are forecast from previous work as 

present in Table 2. 

 

4.2 DQM convergence 
 
To investigate the convergence behavior of DQM 

combined with the numerical evaluation of the eigenvalues, 

several figures are presented to study the effects of 

orthtropy ratio (  𝐸1/𝐸2) , slenderness ratio (𝐿/ℎ) , 

sandwich ratio (ℎ2/ℎ1), and boundary conditions. 

The effects of number of grid points N on the numerical 

results of buckling loads of sandwich structures with 

different axial load types, different boundary condition and 

𝐿 = 20ℎ , ℎ2/ℎ1  = 1,   𝐸1/𝐸2  = 2  are presented in 

Table 3. As concluded from table, the results of buckling 

load is more conformal and stable through grid points 15 ≤
𝑁 ≤ 35 for this condition. It is observed the maximum 

deviation for SS, CC, CS, and CF are 0.15%, 0.007%, 

0.38% and 5.0%, respectively. The maximum deviation 5% 

is observed for CF boundary condition at load type of 

𝑵𝑷𝑳 and N=35. A qualitative analysis of Table 3 and mode 

shapes are presented in Fig. 4. To clarify and simplify 

analysis, the mode-shapes are evaluated at N=30, however, 

the buckling load are computed in the full range 15 ≤ 𝑁 ≤
35 with 2 increment. According to Fig. 4, the mode shapes 

and critical buckling loads are consistent and stable for the 

range of grid point 15 ≤ 𝑁 ≤ 35 in case of thin beam 

𝐿 = 20ℎ and small value of orthotropy   𝐸1/𝐸2  = 2. 
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Table 2 Buckling loads of clamped-clamped symmetric [0°/θ/0°] laminated beam under different axial loads at  
𝐿

ℎ
= 20 

 Angle 𝑵𝒄𝒐𝒏  𝑵𝑳𝑳  𝑵𝑳𝑹  𝑵𝑷𝑳  𝑵𝑷𝑹  𝑵𝑷𝑺  

Present  

0° 47.6967 36.7846 64.0139 33.1590 76.8934 45.5210 

30° 45.7375 35.3262 61.1048 31.8632 73.0642 43.6035 

45° 43.7170 33.8308 58.0637 30.5377 69.0205 41.6204 

60° 41.5712 32.2509 54.8007 29.1402 64.6492 39.5109 

90° 39.2181 30.5249 51.2045 27.6157 59.8270 37.1984 

Karamanli and 

Aydogdu (2019) 

 

0° 47.6910 36.7832 63.9673 33.1581 76.5962 45.5185 

30° 45.7322 35.3248 61.0559 31.8623 72.7507 43.6015 

45° 43.7122 33.8296 58.0117 30.5369 68.6904 41.6192 

60° 41.5672 32.2499 54.7439 29.1395 64.3122 39.5108 

90° 39.2151 30.5241 51.1407 27.6152 59.5063 37.1994 

Table 3 Normalized first buckling load for SS, CC using different grid points N  (𝑳 = 𝟐𝟎𝒉 , 𝒉𝟐/𝒉𝟏  = 𝟏,   𝑬𝟏/𝑬𝟐  = 𝟐) 

 SS CC 

N Load Type Load Type 

 𝑵𝒄𝒐𝒏  𝑵𝑳𝑳  𝑵𝑳𝑹  𝑵𝑷𝑳  𝑵𝑷𝑹  𝑵𝑷𝑺  𝑵𝒄𝒐𝒏  𝑵𝑳𝑳  𝑵𝑳𝑹  𝑵𝑷𝑳  𝑵𝑷𝑹  𝑵𝑷𝑺  

15 17.890 14.801 22.361 13.650 25.647 17.663 68.685 51.950 98.202 46.453 125.733 66.734 

17 17.893 14.805 22.359 13.654 25.638 17.667 68.685 51.950 98.201 46.453 125.737 66.733 

19 17.897 14.809 22.360 13.658 25.634 17.671 68.685 51.950 98.200 46.453 125.735 66.732 

21 17.901 14.813 22.363 13.661 25.633 17.676 68.684 51.950 98.199 46.453 125.734 66.732 

23 17.905 14.816 22.366 13.664 25.634 17.680 68.684 51.950 98.198 46.453 125.732 66.731 

25 17.908 14.819 22.368 13.667 25.635 17.683 68.684 51.950 98.198 46.453 125.732 66.731 

27 17.910 14.821 22.370 13.669 25.635 17.685 68.684 51.950 98.198 46.453 125.731 66.731 

29 17.912 14.822 22.371 13.670 25.635 17.686 68.684 51.950 98.198 46.453 125.730 66.731 

31 17.912 14.823 22.371 13.670 25.635 17.687 68.684 51.950 98.198 46.453 125.731 66.731 

33 17.913 14.823 22.371 13.671 25.634 17.688 68.684 51.951 98.198 46.452 125.730 66.729 

35 17.913 14.824 22.370 13.671 25.633 17.688 68.683 51.950 98.198 46.453 125.730 66.730 

 CS CF 

15 49.376 36.535 73.698 32.165 96.193 49.114 7.890 5.212 15.696 4.345 26.557 8.488 

17 49.351 36.525 73.628 32.162 96.108 49.072 7.835 5.164 15.693 4.293 26.554 8.488 

19 49.330 36.516 73.571 32.160 96.027 49.039 7.787 5.121 15.689 4.249 26.528 8.488 

21 49.314 36.509 73.528 32.157 95.964 49.013 7.748 5.089 15.683 4.214 26.485 8.489 

23 49.301 36.504 73.495 32.155 95.917 48.994 7.720 5.064 15.681 4.188 26.468 8.488 

25 49.293 36.500 73.472 32.154 95.884 48.980 7.701 5.045 15.673 4.168 26.452 8.487 

27 49.286 36.497 73.456 32.153 95.862 48.970 7.685 5.031 15.676 4.156 26.395 8.486 

29 49.283 36.495 73.446 32.152 95.847 48.964 7.671 5.024 15.662 4.142 26.411 8.495 

31 49.280 36.494 73.440 32.152 95.838 48.960 7.668 5.013 15.667 4.138 26.390 8.488 

33 49.278 36.494 73.434 32.152 95.834 48.958 7.666 5.015 15.636 4.133 26.405 8.483 

35 49.277 36.492 73.435 32.151 95.828 48.955 7.653 5.003 15.632 4.128 26.444 8.476 

248



 

Buckling and stability analysis of sandwich beams subjected to varying axial loads 

 

 

 

By changing the orthotropy ratio (𝐸1/𝐸2) from 2 to 25, 

instability analysis is observed in Fig. 5. For a case in hand, 

the simply supported and clamped free boundary conditions 

are stable for a whole range of grid points N. However, 

instability in buckling loads and mode shapes are observed  

 

 

 

for fully clamped and clamped-simply BCs. For example, 

second buckling mode shapes appears when N=15 in case 

of CS and CF and oscillations are observed in cases of CC. 

It is found that the stable region of N in buckling analysis 

for the current case should be  20 ≤ 𝑁 ≤ 35. 

  

Simply Supported (SS) 

 

 

 

 
Clamped-Simply (CS) 

 

 

 

 

Clamped-Clamped (CC) 

Continued- 
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Clamped-Free (CF) 

Fig. 4 Convergence analysis of buckling loads and modeshapes of sandwich composite beam. With different boundary 

conditions at 𝐿 = 20ℎ , ℎ2/ℎ1  = 1,   𝐸1/𝐸2  = 2  

 

 

 

 
Simply Supported (SS) 

 

 

 

 
Clamped-Simply (CS) 
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Clamped-Clamped (CC) 

 

 

 

 

Clamped-Free (CF) 

Fig. 5 Convergence analysis of buckling loads and modeshapes of sandwich composite beam. With different boundary 

conditions at 𝐿 = 20ℎ , ℎ2/ℎ1  = 1,   𝐸1/𝐸2  = 25 

 

 

 

 

Simply Supported (SS) 
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Fig. 6 illustrates the effect of grid points of DQM on the 

buckling loads and mode shapes for a thick beam 𝐿 = 5ℎ 

at ℎ2/ℎ1  = 1 𝑎𝑛𝑑   𝐸1/𝐸2  = 25. As predicated from 

previous figure, the buckling analysis of simply supported 

sandwich beam and associated mode shapes are stable for a 

full range of DQM grid points. However, instability appears  

 

 

 

for the other BCs. For CS boundary, the buckling analysis 

results should be studied with number of grid points less 

than 30. Over this range, higher order buckling modes exist. 

To calculate accurate buckling loads and associated mode 

shape for a thick sandwich CC and CF beams, the grid 

points of DQM should be less than 25, and 20, respectively.  

 

 

 

 
Clamped-Simply (CS) 

 

 

 

 
Clamped-Clamped (CC) 

 

 

 

 
Clamped-Free (CF) 

Fig. 6 Convergence analysis of buckling loads and modeshapes of sandwich composite beam. With different boundary 

conditions at 𝐿 = 5ℎ , ℎ2/ℎ1  = 1,   𝐸1/𝐸2  = 25 
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By comparing Fig. 3 with Figs. 4 and 5, it can conclude 

that, increasing the orthotropy ratio needs more grid points 

larger than 20 for accurate results. However, reduction in 

grid points (less than 20) is required in the case of thick 

sandwich beam 𝐿 = 5ℎ. 

 

 

Figs. 7 and 8 illustrate the effect of sandwich ratio on 

the buckling and mode shape stability and convergence at  

𝐿 = 20ℎ  𝑎𝑛𝑑  𝐸1/𝐸2  = 25. As shown, the numerical 

results are more significant by changing the sandwich ratio 

from 1 to 3 or 10 as shown in Figs. 7 and 8. It is clear the 

simply supported beam is more stable and insensitive to 

sandwich ratio, slenderness ratio and orthotropy ratio.  
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Fig. 6 Convergence analysis of buckling loads and modeshapes of sandwich composite beam. With different boundary 

conditions at 𝐿 = 20ℎ , ℎ2/ℎ1  = 3,   𝐸1/𝐸2  = 25 
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However, the stability and the number of grid points of 

clamped-clamped boundary condition of sandwich beam are 

more sensitive to sandwich ratio, slenderness ratio and 

orthotropy ratio. In case of clamped-simply condition at 

sandwich ratio ℎ2/ℎ1  = 10, the instability is observed at 

the middle grid points of 15 ≤ 𝑁 ≤ 35. It is also observed, 

results are also depending on the type of loads. Higher 

mode shape may appear rather than the real modes as 

illustrated in CS boundary condition (Fig. 7). 

 

4.3 Parametric studies 
 
Through this subsection, the sandwich beam is assumed 

to be symmetric [0°/90°/0°]  and 𝑬𝟏/𝑬𝟐 = 𝟐𝟓. The first 

critical buckling load of sandwich clamped-clamped beam 

at different beam theories and different loading functions 

are presented in Table 4. Results in this table are computed 

by using N=25 for (𝐿/ℎ =20,  ℎ2/ℎ1 <10), N=35 for (𝐿/ℎ 

=20, ℎ2/ℎ1=10), and N=19 for 𝐿/ℎ =5. As shown, the 

highest buckling load is observed in case of exponential  

 

 

shear theory (EST) and the lowest buckling load is noticed 

in case of hyperbolic shear theory (HST) for most of 

slenderness and sandwich ratios. However, in case of  

𝐿/ℎ = 20 and ℎ2/ℎ1 = 1&3, the buckling load of HST 

and EST is the highest one and smallest one, respectively. 

Which means opposite observation rather than other cases. 

It is noted that, the buckling loads for PST and HST are 

very close to each other, even by changing the sandwich 

ratio ℎ2/ℎ1. For all beam theories, the highest buckling is 

noticed when 𝑵𝑷𝑹 load is applied, and the smallest 

buckling load is detected when 𝑵𝑷𝑳 load is dominated. 

Effects of load type and sandwich ratio on the buckling 

load of clamped-clamped sandwich thin beam with two 

beam theories are illustrated in Fig. 8. As shown, the 

buckling load is decreased by increasing the sandwich ratio. 

This reduction due to increasing the thickness of mid-layer 

(angle =90° ) which has a lesser stiffness than the outer 

layers (angle =0° ).  It is also observed that the buckling 

load is dependent on loading type. As shown, the highest 

and lowest buckling loads are noticed in case of 𝑵𝑷𝑹  and 

𝑁𝑃𝐿 , respectively. 

 

 

 

 
Clamped-Clamped (CC) 

 

 

 

 
Clamped-Free (CF) 

Fig. 7 Convergence analysis of buckling loads and modeshapes of sandwich composite beam. With different boundary 

conditions at 𝐿 = 20ℎ , ℎ2/ℎ1  = 10,   𝐸1/𝐸2  = 25 
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Table 4 Dimensionless of 1st buckling load of symmetric [𝟎°/𝟗𝟎°/𝟎°] CC COLB based on different beam 

shear theories and subjected to different axial in plane loads,(𝑬𝟏/𝑬𝟐 = 𝟐𝟓) 

   
Load Type 

  
Beam Theory  𝑵𝒄𝒐𝒏  𝑵𝑳𝑳  𝑵𝑳𝑹  𝑵𝑷𝑳  𝑵𝑷𝑹  𝑵𝑷𝑺  

𝑳/𝒉 = 𝟓 

ℎ2/ℎ1 = 1 

PST 5.3464 4.3222 6.6678 3.9902 7.7799 5.0006 

EST 5.6126 4.4742 7.1649 4.1042 8.4829 5.2866 

TST 5.4826 4.4073 6.9094 4.0386 8.1172 5.1292 

HST 5.3432 4.3211 6.6475 3.9963 7.9008 4.9364 

ℎ2/ℎ1 = 3 

PST 3.8619 3.1690 4.7121 2.9452 5.4283 3.6024 

EST 4.0202 3.2604 4.9920 3.0148 5.8050 3.7561 

TST 3.9342 3.2074 4.8566 2.9713 5.6016 3.6687 

HST 3.8603 3.1664 4.7092 2.9435 5.2984 3.6190 

ℎ2/ℎ1 = 10 

PST 3.1665 2.6795 3.6826 2.5207 4.0953 2.9447 

EST 3.3809 2.8316 3.9821 2.6528 4.4771 3.1467 

TST 3.2664 2.7489 3.8252 2.5807 4.2750 3.0412 

HST 3.1508 2.6797 3.6732 2.5262 4.0816 2.9453 

𝑳/𝒉 = 𝟐𝟎 

ℎ2/ℎ1 = 1 

PST 38.7107 30.2848 49.9851 27.4408 57.8860 36.7466 

EST 38.0053 29.7512 49.0810 26.9639 57.0413 36.0695 

TST 38.3384 30.0040 49.4968 27.1909 57.4114 36.3888 

HST 38.7475 30.3113 50.0364 27.4648 57.9380 36.7819 

ℎ2/ℎ1 = 3 

PST 30.7555 24.1358 39.3173 21.8929 44.9919 29.1528 

EST 30.5378 23.9676 39.0736 21.7422 44.8773 28.9468 

TST 30.6071 24.0229 39.1322 21.7922 44.8570 29.0115 

HST 30.7720 24.1486 39.3414 21.9041 44.9878 29.1695 

ℎ2/ℎ1 = 10 

PST 21.8417 16.8624 29.2777 15.2030 35.0217 20.8793 

EST 22.1602 17.0911 29.7951 15.4019 35.7775 21.1971 

TST 21.9862 16.9655 29.5119 15.2933 35.3625 21.0208 

HST 21.8299 16.8542 29.2545 15.1949 34.9950 20.8664 

 

Fig. 8 Effect of sandwich ration on buckling load of clamped-calmped PST and EST at L/h=20 
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A complete comparison between parabolic shear theory 

and exponential shear theory with different slenderness 

ratio, sandwich ration and boundary conditions are 

presented in Table 5. These results are computed using  

 

 

 

 

N=29 for L/h=10, 20, 50 and N=19 for L/h=5. As presented 

in this table, the two beam theories are very close to each 

other for different slenderness ratio and sandwich ratio at 

specific load type and boundary conditions. 

 

Table 5 Dimensionless of 1st buckling load symmetric [0°/90°/0°] LCBs subjected to different axial in plane loads 

(𝐸1/𝐸2 = 25) 

  

In-plane Load Type In-plane Load Type 

 𝐿

ℎ
↓ 

𝑵𝒄𝒐𝒏  𝑵𝑳𝑳  𝑵𝑳𝑹  𝑵𝑷𝑳  𝑵𝑷𝑹  𝑵𝑷𝑺  𝑵𝒄𝒐𝒏  𝑵𝑳𝑳  𝑵𝑳𝑹  𝑵𝑷𝑳  𝑵𝑷𝑹  𝑵𝑷𝑺  

ℎ2
ℎ1
↓ SS Unified (PST) SS Unified (EST) 

3 

5 3.388 2.805 4.105 2.608 4.674 3.199 3.492 2.864 4.290 2.653 4.931 3.303 

10 7.772 6.533 9.274 6.077 10.334 7.502 7.796 6.531 9.359 6.069 10.480 7.522 

20 12.010 10.007 14.717 9.257 16.623 11.784 11.996 9.990 14.713 9.240 16.634 11.768 

50 14.198 11.760 17.692 10.849 20.236 14.012 14.195 11.757 17.689 10.846 20.233 14.008 

8 

5 2.735 2.315 3.208 2.168 3.564 2.592 2.863 2.407 3.394 2.249 3.797 2.716 

10 5.860 4.930 7.003 4.582 7.780 5.696 5.965 5.009 7.158 4.651 7.979 5.800 

20 8.200 6.822 10.097 6.306 11.442 8.065 8.245 6.857 10.163 6.336 11.526 8.110 

50 9.223 7.635 11.508 7.043 13.178 9.105 9.234 7.644 11.524 7.050 13.197 9.116 

  
CS Unified (PST) CS Unified (EST) 

3 

5 3.702 3.032 4.521 2.811 5.193 3.467 3.833 3.106 4.765 2.866 5.530 3.595 

10 11.093 9.092 13.213 8.356 14.723 10.458 11.106 9.050 13.403 8.307 15.080 10.466 

20 25.837 19.760 34.839 17.647 41.138 24.987 25.680 19.646 34.617 17.549 40.933 24.831 

50 38.139 28.322 56.318 24.983 72.821 37.781 38.082 28.283 56.213 24.950 72.663 37.719 

8 

5 3.096 2.601 3.631 2.433 4.049 2.894 3.276 2.727 3.894 2.541 4.383 3.064 

10 9.526 7.682 11.368 7.000 12.482 9.025 9.805 7.872 11.843 7.163 13.116 9.296 

20 19.108 14.449 26.652 12.845 32.514 18.624 19.306 14.586 27.000 12.963 33.039 18.830 

50 25.212 18.685 37.468 16.467 48.750 25.028 25.260 18.719 37.552 16.496 48.879 25.078 

  
CC Unified (PST) CC Unified (EST) 

3 

5 3.862 3.169 4.712 2.945 5.428 3.602 4.020 3.260 4.992 3.015 5.805 3.756 

10 11.779 9.825 13.807 9.143 15.345 11.005 11.848 9.821 14.084 9.106 15.813 11.074 

20 30.755 24.136 39.317 21.893 44.997 29.153 30.537 23.968 39.073 21.742 44.878 28.947 

50 51.933 39.415 73.430 35.294 92.955 50.295 51.826 39.337 73.254 35.226 92.702 50.187 

8 

5 3.217 2.713 3.761 2.551 4.199 2.995 3.419 2.857 4.050 2.675 4.563 3.182 

10 10.244 8.507 11.837 7.874 12.921 9.600 10.607 8.754 12.403 8.089 13.650 9.940 

20 23.679 18.347 31.393 16.564 37.114 22.585 24.007 18.582 31.931 16.770 37.900 22.913 

50 34.780 26.339 49.525 23.564 63.150 33.751 34.883 26.413 49.695 23.628 63.398 33.855 

  
CF Unified (PST) CF Unified (EST) 

3 

5 2.646 1.905 3.618 1.656 4.295 2.488 2.634 1.902 3.666 1.665 4.484 2.512 

10 4.602 3.199 8.216 2.714 11.637 5.060 4.783 3.419 8.042 2.817 11.402 4.957 

20 5.832 3.816 11.404 3.167 18.202 6.380 5.812 3.797 11.379 3.153 18.118 6.309 

50 6.166 4.040 12.530 3.335 21.094 6.807 6.160 4.036 12.543 3.330 21.039 6.807 

8 

5 2.128 1.511 3.004 1.285 3.389 2.054 2.165 1.529 3.137 1.312 3.662 2.111 

10 3.427 2.269 6.133 1.814 8.919 3.573 3.271 2.233 6.305 1.832 8.814 3.533 

20 3.816 2.513 7.653 2.070 12.369 4.188 3.821 2.509 7.643 2.077 12.464 4.197 

50 3.989 2.613 8.091 2.160 13.667 4.394 3.985 2.612 8.109 2.158 13.667 4.396 
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5. Conclusions 
 

This manuscript presented a comprehensive study of 

static stability buckling loads and mod-shapes of composite 

laminated sandwich beams under distributed in-plane axial 

load. Six functions are proposed to describe the distribution 

of compressive load through the axial direction. Unified 

higher order shear deformation theories are proposed to 

include the shear effects, extension bending, and rigidity of 

the beam structure. Numerical differential quadrature 

method (DQM) with the Chebyshev–Gauss–Lobatto 

distribution is exploited to solve the govern equilibrium 

equations and derive the critical buckling loads and their 

mode-shapes. The stability and conversion of proposed 

model with different grid discretization points are studies 

and presented in details. The most finding are:-  

 

 Critical buckling loads and mode shapes are dependent 

on orthtropy ratio, slenderness ration, sandwich ratio, 

loading type and boundary conditions.  

 The numerical results of critical buckling loads and 

mode shapes are sensitive to the number of grid points. 

 In sometimes, the higher grid points are preferred as in 

most case. However, the lowest grid points are stable, 

such as, in case of C-C and C-S in Fig. 6.  

 The results of beam theories are conformal and close to 

each other. However, EST and HST gives higher and 

smaller values, respectively, rather than other theories. 
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