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1. Introduction 

 

Recently, Nanocomposites have significant importance 

for engineering applications that require high levels of 

structural performance and multi-functionality. Carbon 

nanotubes reinforced are at a research stage. However, there 

are several potential applications for these composites, such 

as Automobile and Aerospace industry, Space applications, 

Sports industry, Electronic packaging, sensors, Battery and 

energy storage. Carbon nanotubes have better strength and 

stiffness than carbon fibres and hence have the potential in 

replacing carbon fibre reinforced in various applications. 

These materials are considered as one of the most 

promising reinforcement materials for high performance 

structural and multifunctional composites with vast 

application potentials (Esawiand Farag 2007). A detailed 

summary of the mechanical properties of CNTs can be 

found in (Salvetat-Delmotte and Rubio 2002). The 

exceptional mechanical properties of CNTs have shown 

great promise for a wide variety of applications, such as  
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nanotransistors, nanofillers, semiconductors, hydrogen 

storage devices, structural materials, molecular sensors, 

field-emission-based displays, and fuel cells, to name just a 

few (Endo et al. 2004). The addition of nano-sized fibers or 

nanofillers, such as CNTs, can further increase the merits of 

polymer composites (Wernik and Meguid 2011). These 

nanocomposites, easily processed due to the small diameter 

of the CNTs, exhibit unique properties (Thostenson et al. 

2001, Moniruzzaman and Winey 2006), such as enhanced 

modulus and tensile strength, high thermal stability and 

good environmental resistance. This behavior, combined 

with their low density makes them suitable for a broad 

range of technological sectors such as telecommunications, 

electronics (Valter et al. 2002) and transport industries, 

especially for aeronautic and aerospace applications where 

the reduction of weight is crucial in order to reduce the fuel 

consumption. For example, Qian et al. (2000) showed that 

the addition of 1 wt.% (i.e., 1% by weight) multiwall CNT 

to polystyrene resulted in 36-42% and ~25% increases in 

the elastic modulus and the break stress of the 

nanocomposite properties, respectively. In addition, 

Yokozeki et al. (2007) reported the retardation of the onset 

of matrix cracking in the composite laminates containing 

the cup-stacked CNTs compared to those without the cup-

stacked CNTs. Most studies on CNT-reinforced composites 

(CNTRCs) have focused on their material properties (Hu et 
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al. 2005, Fidelus et al. 2005, Bonnet et al. 2007, Hanand 

Elliott 2007, Odegard et al. 2003). Jin and Yuan (2003) 

determined the elasticity properties of single wall CNTs 

applying the molecular dynamic method. In fact, this 

macroscopic behavior was analyzed by studying the 

interaction of the atomic force and dynamic response in 

nanostructures affected by insignificant strain. Chang and 

Gao (2003) studied the dependence of single wall CNT 

elastic properties on its dimensions according to the 

molecular mechanics model. In fact, this model is one of the 

first studies for developing the analytical method 

application of molecular mechanic for modeling of 

nanostructures. Liu and Wang (2015) studied Thermal 

vibration of a single-walled carbon nanotube predicted by 

semiquantum molecular dynamics. Zhang and Wang (2018) 

investigated the nonlinear thermal vibrational behavior of 

single-layered BP (SLBP) via a nonlinear orthotropic plate 

model (OPM) and molecular dynamics (MD) simulations. 

Xu et al. (2016) studied the vibration of double-layered 

graphene sheets (DLGS) using A nonlocal Kirchhoff plate 

model with the van der Waals (vdW) interactions. The 

concept of FGM can be utilized for the management of a 

material’s microstructure so that the vibrational behavior of 

a plate/shell structure made of such material can be 

improved. In recent years, two kinds of FGMs are designed 

to improve mechanical behavior of plate/shell structures. 

One is functionally graded fiber-reinforced composites that 

have a smooth variation of material volume fractions, 

and/or in-plane fiber orientations, through the radial 

direction. Another one is functionally graded metal/ceramic 

composites with continuous composition gradation from 

pure ceramic on one surface to full metal on the other 

(Matsunaga 2008). According to a comprehensive survey of 

literature, the authors found that there are few research 

studies on the mechanical behavior of functionally graded 

CNTRC structures. Shen (2009) for the first time suggested 

that the nonlinear bending behavior can be considerably 

improved through the use of a functionally graded 

distribution of CNTs in the matrix. He introduced the CNT 

efficiency parameter to account load transfer between the 

nanotube and polymeric phases. Compressive postbuckling 

and thermal buckling behavior of functionally graded 

nanocomposite plates reinforced by aligned, straight single-

walled CNTs (SWCNTs) subjected to in-plane temperature 

variation were reported by Shen and Zhu (2010) and Shen 

and Zhang (2010). They found that in some cases the 

CNTRC plate with intermediate CNT volume fraction does 

not have intermediate buckling temperature and initial 

thermal postbuckling strength. Marin et al. (2013) proved 

the uniqueness theorem and some continuous dependence 

theorems without recourse to any energy conservation law, 

or to any boundedness assumptions on the thermoelastic 

coefficients using the Lagrange identity. Composites with 

microstructure display nonlocal effects and can be 

effectively modeled through dipolar elasticity. A mixed 

initial boundary problem was addressed for dipolar 

thermoelasticity by Marin and Craciun (2017). Marin et al. 

(2017) investigated the theory of micropolar thermoelastic 

bodies whose micro-particles possess microtemperatures. 

They transformed the mixed initial boundary value problem 

into a temporally evolutionary equation on a Hilbert space 

and after that they proved the existence and uniqueness of 

the solution. Hassan et al. (2018) studied convective heat 

transfer performance and fluid flow characteristics of Cu-

Ag/water hybrid nanofluids. Othman and Marin (2017) 

studied the wave propagation of generalized thermoelastic 

medium with voids under the effect of thermal loading due 

to laser pulse with energy dissipation. Matsunaga (2000) 

investigated a two-dimensional, higher-order theory for 

analyzing the thick simply supported rectangular plates 

resting on elastic foundations. Yas and Sobhani (2010) 

studied free vibration characteristics of rectangular 

continuous grading fiber reinforced (CGFR) plates resting 

on elastic foundations using DQM. Three dimensional 

vibration analysis of multi-layered graphene sheets 

embedded in polymer matrix was investigated by 

Alibeigloo (2013). Tahouneh et al. (2013) studied 3D free 

vibration analysis of continuous grading fiber reinforced 

annular plates via 2D DQ method. Arefi (2015) suggested 

an analytical solution of a curved beam with different 

shapes made of functionally graded materials (FGMs). 

Bennai et al. (2015) developed a new refined hyperbolic 

shear and normal deformation beam theory to study the free 

vibration and buckling of functionally graded (FG) 

sandwich beams under various boundary conditions. 

Bouchafa et al. (2015) used refined hyperbolic shear 

deformation theory (RHSDT) for the thermoelastic bending 

analysis of functionally graded sandwich plates. Barka et al. 

(2016) studied thermal post-buckling behavior of imperfect 

temperature-dependent FG structures. Chen et al. (2017) 

investigated vibration and stability of initially stressed 

sandwich plates with FGM face sheets. Bouguenina et al. 

(2015) studied FG plates with variable thickness subjected 

to thermal buckling. Wu and Liu (2016) developed a state 

space differential reproducing kernel (DRK) method in 

order to study 3D analysis of FG circular plates. Park et al. 

(2016) used modified couple stress based third-order shear 

deformation theory for dynamic analysis of sigmoid 

functionally graded materials (S-FGM) plates. Tahouneh 

(2016) presented a 3-D elasticity solution for free vibration 

analysis of continuously graded carbon nanotube-reinforced 

(CGCNTR) rectangular plates resting on two-parameter 

elastic foundations. The volume fractions of oriented, 

straight single-walled carbon nanotubes (SWCNTs) were 

assumed to be graded in the thickness direction.  Moradi-

Dastjerdi and Momeni-Khabisi (2016) studied Free and 

forced vibration of plates reinforced by wavy carbon 

nanotube (CNT). The plates were resting on Winkler-

Pasternak elastic foundation and subjected to periodic or 

impact loading. Liew et al. (1996) employed the differential 

quadrature method for studying the Mindlin’s plate on 

Winkler foundation. Cheng and Batra (2000) used Reddy’s 

third-order plate theory to study steady state vibrations and 

buckling of a simply supported functionally gradient 

isotropic polygonal plate resting on a Pasternak elastic 

foundation and subjected to uniform in-plane hydrostatic 

loads. Ahmed Houari et al. (2018) presented a closed-form 

solutions for exact critical buckling loads of nonlocal strain 

gradient functionally graded beams. Tornabene et al. (2019) 

investigated free vibration analysis of arches and beams 
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made of composite materials via a higher-order 

mathematical formulation. Tornabene et al. (2017) studied 

free vibration analysis of composite sandwich plates and 

doubly curved shells with variable stiffness. The reinforcing 

fibers were located in the external skins of the sandwich 

structures according to curved paths. Tornabene et al. (2018) 

studied free vibration of laminated nanocomposite plates 

and shells using first-order shear deformation theory and the 

Generalized Differential Quadrature (GDQ) method. Each 

layer of the laminate was modelled as a three-phase 

composite. A survey of several methods under the heading 

of strong formulation finite element method (SFEM) was 

presented by Tornabene et al. (2015). Jabbari et al. (2013, 

2014) examined porosity distribution effect on buckling 

characteristics of saturated porous plates. Chen et al. (2015) 

studied static bending and buckling of metal foam porous 

beams with functionally graded (FG) porosities using a 

shear deformation beam model. 

In this research, free vibration analysis of metal foam 

plates reinforced with GPLs is carried out applying 3-D 

theory of elasticity model considering different porosity 

distributions. GPLs are distributed in the thickness direction 

with uniform and nonuniform models. Uniform, symmetric, 

and asymmetric distributions of porosity have been 

considered. 

 

 

2. Problem description 
 

Consider a rectangular plate with length a, width b, and 

thickness h as depicted in Fig. 1. The deformations defined 

with reference to a Cartesian coordinate system ( , , )x y z are

,u v and w in the ,x y and z directions, respectively. 

 

 
3. Porous GPL-reinforced plate model with different 
porosity distributions 
 

The structure has continuous grading of GPLs-

reinforcement through thickness direction. Three different 

GPL dispersion patterns, denoted by A, B, and C, are 

considered for each porosity distribution (Fig. 2). The GPL 

volume content VGPL is assumed to vary along the z-axis 

smoothly with its peak values (Sij, i,j=1, 2, 3) being 

determined based on the specific porosity distribution.  
 

 

Fig. 1 The sketch of a thick nanocomposite rectangular 

plate and setup of the coordinate system 

To facilitate a direct and meaningful comparison, the total 

amount of GPLs is kept the same for three different GPL 

distribution patterns. This leads to s1i≠s2i≠s3i (i=1, 2, 3).  

The mechanical properties of a porous plate with different 

types of porosity distributions can be expressed by 

1 0E(z) E (1 e (z))    (1) 

G(z) E(z) / 2(1 (z))  
 

(2) 

1 m(z) (1 e (z))    
 

(3) 

in which, for symmetric porosity distribution 

( ) cos( )zz
h

 
 

(4) 

for asymmetric porosity distribution 

( ) cos( )
2 4

zz
h

   
 

(5) 

and for uniform porosity distribution 

( )z 
 

(6) 

where E1, G1, and ρ1 are the maximum values of elasticity 

moduli, shear moduli and mass density. 

Also, e0 and em are the coefficients of porosity and mass 

density, respectively, defined by (Kitipornchai et al. 2017) 

2 2
0

1 1

2.3
0

m

E G
e 1 1

E G

1.121(1 1 e (z))
e

(z)

   

  




 
(7) 

Also based on the closed-cell grapheme-reinforcement 

scheme, Poisson’s ratio (z) can be expressed by 

(Kitipornchai et al. 2017) 

2

1(z) 0.221p (0.342p 1.21p 1)     
 

(8) 

In which 𝝊1is the Poisson’s ratio of pure matrix materials 

without pores and 

2.3
0p 1.121(1 1 e (z))   

 
(9) 

Also, λ(z) for uniform porosity distribution can be 

expressed by 

2.3

0 0

1 1 M h 0.121
( )

e e 1.121


  

 (10) 

In which 

h/2

h/2
M (1 p)dz


   

(11) 

According to the distribution patterns depicted in Fig. 2, the 

volume fraction of GPLs can be written as (i=1,2,3) 

 

 

i1

GPL i2

i3

S 1 cos( z / h ,Pattern A

V S 1 cos( z / 2h / 4 , Pattern B

S ,Pattern C


  



    





 (12) 
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The relation between the volume fraction of GPLs and their 

weight fraction WGPL can be expressed by 

h/2
GPL

m
h/2

GPL GPL
GPL GPL

M M

h/2

GPL m
h/2

W
(1 e (z))dz

W W

V (1 e (z))dz





 
 

 
 
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



 
(13) 

In which ρGPL and ρM are mass density of GPL and metal 

matrix, respectively. Based on Halpin-Tsai micromechanical 

model, it is possible to obtain material properties of GPL-

reinforced metal matrix structures 

GPL GPL

L L GPL
1 MGPL

L GPL

GPL GPL

W W GPL
MGPL

W GPL

1 V3
E E

8 1 V

1 V5
E

8 1 V
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  

 

   
 

 

 (14) 

in which Em is Young’s modulus of the metal and 

GPL GPL GPL M
L GPL GPL L GPL

GPL M L

GPL GPL GPL M
W GPL GPL W GPL

GPL M W

(E / E ) 1
2l t , ,

(E / E )

(E / E ) 1
2w t ,

(E / E )


   

 


   

 

 (15) 

in which wGPL, lGPL and tGPL denote GPLs’ average width, 

length, and thickness, respectively. Finally, Poisson’s ratio 

of GPL-reinforced metal matrix implementing rule of 

mixture can be expressed by 

1 GPL GPL M MV V   
 

(16) 

where VM is the volume fraction of metal matrix (VM= 

1−VGPL). 

 

 

4. Theoretical formulations 
 

The mechanical constitutive relations that relate the 

stresses to the strains are as follows (Fung and Tong 2001) 

2ij kk ij ij    
 

(17) 

where  and  are the Lame constants, ij is the infinitesimal 

strain tensor and ij is the Kronecker delta. In the absence of 

body forces, the equations of motion are as follows 

2
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  
  
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(18) 

The infinitesimal strain tensor is related to the 

displacements as follows 

 

, , , ,

,

u v w u v
x y z xy

x y z y x

u w v w
xz yz

z x z y

   

 

    
    
    

   
   
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(19) 

where u , v and w are displacement components along the 

x, y and z axes, respectively. Upon substitution (20) into 

(18) and then into (19), the equations of motion are 

obtained in terms of displacement components. The related 

boundary conditions at z=-h/2 and h/2 are as follow 

0, 0, 0zx zy zz    
 

(20) 

Different types of classical boundary conditions at the edges 

of the plate can be stated as 

-Simply supported (S) 

0, 0, 0;w uyy   
 

(21) 

-Clamped (C) 

0, 0, 0;u v w  
 

(22) 

-Free (F) 

0, 0, 0yy xy yz    
 

(23) 

Here, plates with two opposite edges at x=-a/2 and a/2 

simply supported and arbitrary conditions at edges y=-b/2 

and b/2 are considered. For free vibration analysis, by 

adopting the following form for the displacement 

components the boundary conditions at edges x=-a/2 and 

a/2 are satisfied 

( , , , ) ( , , ) cos( ( 2) ) ,

( , , , ) ( , , ) sin( ( 2) ) ,

( , , , ) ( , , ) sin( ( 2) )

i tu x y z t U y z t m x a a em

i tv x y z t V y z t m x a a em

i tw x y z t W y z t m x a a em







 

 

 

 
(24) 

wherem is the wave number along the x- direction, isthe 

natural frequency and i (= 1 ) is the imaginary number. 

Substituting for displacement components from (24) into 

the equations of motion which obtained in terms of 

displacement components, the coupled partial differential 

equations are reduced to a set of coupled ordinary 

differential equations (ODE). The geometrical and natural 

boundary can also be simplified, however, for brevity 

purpose they are not shown here. 

 

 

5. DQM solution for equations of motion and 
boundary conditions 

 
It is necessary to develop appropriate methods to 

investigate the mechanical responses of continuously 

graded carbon nanotube-reinforced structures. But, due to 

the complexity of the problem, it is difficult to obtain the 

exact solution. In this paper, the differential quadrature 

method (DQM) approach is used to solve the governing 

equations of continuously graded carbon nanotube- 
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reinforced rectangular plates. One can compare DQM 

solution procedure with the other two widely used 

traditional methods for plate analysis, i.e., Rayleigh-Ritz 

method and FEM. The main difference between the DQM 

and the other methods is how the governing equations are 

discretized. In DQM the governing equations and boundary 

conditions are directly discretized, and thus elements of 

stiffness and mass matrices are evaluated directly. But in 

Rayleigh-Ritz and FEMs, the weak form of the governing 

equations should be developed and the boundary conditions 

are satisfied in the weak form. Generally by doing so larger 

number of integrals with increasing amount of 

differentiation should be done to arrive at the element 

matrices. Also, the number of degrees of freedom will be 
increased for an acceptable accuracy. The basic idea of the 

DQM is the derivative of a function, with respect to a space 

variable at a given sampling point, is approximated as a 

weighted linear sum of the sampling points in the domain of 

that variable. In order to illustrate the DQ approximation, 

consider a function defined on a rectangular domain and the 

boundary conditions. As a result, at each domain grid point 

with j=2…, Ny-1 and k=2…, Nz-1, the discretized 

equations take the following forms 
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Fig. 2 Porosity distribution and GPL dispersion patterns 
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(27) 

where y
Aij

, zAij
and y

Bij
, zBij

are the first and second order DQ 

weighting coefficients in the y- and z-directions, 

respectively. In a similar manner the boundary conditions 

can be discretized. 

 

In order to carry out the eigenvalue analysis, the domain 

and boundary nodal displacements should be separated. In 

vector forms, they are denoted as {d} and {b}, respectively. 

Based on this definition, the discretized form of the 

equations of motion and the related boundary conditions 

can be represented in the matrix form as 

Equations of motion 

  
 

 
    2 0

b
K K M ddb dd

d


  
     

  
 

(28) 

and boundary conditions 

       0K d K bbd bb 

 

(29) 

Eliminating the boundary degrees of freedom in (28) using 

(29), this equation becomes 

      2- 0K M d 
 

(30) 

where         -1
- .K K K K Kdd db bb bd The above eigenvalue 

system of equations can be solved to find the natural 

frequencies and mode shapes of the plate. 

 
 
6. Convergence and comparison studies 

 

Firstly, the results are compared with those of 1-D 

conventional functionally graded rectangular plates, and 

then, the results of the presented formulations are given in 

the form of convergence studies with respect to Nz and Ny, 

the number of discrete points distributed along the thickness 

and width of the plate, respectively. The boundary 

conditions of the plate are specified by the letter symbols, 

for example, S-C-S-F denotes a plate with edges x=-a/2 and 

a/2 simply supported (S), edge y=-b/2 clamped (C) andedge 

y=b/2 free (F). As an example to study the accuracy of the 

presented method, In Table 1, the first sevennon-

dimensional natural frequency parameters of simply 

supported thick FG plate are compared with those of 

Matsunaga (2008) and Yas and Sobhani (2010). According 

to the data presented in the table 1, excellent solution 

agreements can be observed between the present method 

and those of the other methods. Based on the above studies, 

a numerical value of 13N Nz y  is used for the next 

studies. The material property and geometry parameters of 

GPLs are WGPL=1.5 μm, lGPL=2.5 μm, tGPL l.5 nm, 

EGPL=1.01 TPa, ρGPL=1062.5 kg/m3, 𝝊=0.186 (Rafiee et al. 

2009, Liu et al. 2007), and the material properties of metal 

are EM = 130 GPa, ρM = 8960 kg/m3, 𝝊M= 0.34 

(Kitipornchai et al. 2017). 

In this study, the non-dimensional natural frequency is 

as follows 

2b 3 2h D ,D E h 12(1 )m m m m m2
      

  
(31) 

where ρM, EM and 𝝊M are mechanical properties of Copper. 
 

 

220



 

Vibration analysis of FG porous rectangular plates reinforced by graphene platelets 

 
 

 
 
7. Benchmark results 

 

Influences of porosity coefficient on vibration frequency 

of GPL reinforced rectangular plate with respect to length-

to- width ratio (a/b) is shown in Figs. 3, 4 and 5. It is clear 

that a porous nanocomposite plate has lower natural 

frequencies than a perfect plate (e0=0). In other words, 

increasing porosity coefficient results in smaller natural 

frequencies due to the reduction in the bending rigidity of 

the nanocomposite plate. Therefore, for better 

understanding of mechanical behavior of nanocomposite 

plates, it is crucial to consider porosities inside the material 

structure. One can also see that vibration frequencies are 

significantly decreased with the increasing in length-to- 

width ratio (a/b). This is because nanocomposite plates with 

higher length-to-width ratio (a/b) are more flexible leading 

to smaller vibration frequencies.  

 

 

 

 

 

 

The combined effects of porosity distribution and GPL 

distribution pattern on the fundamental frequency are 

investigated in Fig. 6 in which the fundamental natural 

frequency at various GPL weight fractions is presented. 

Symmetric GPL pattern A is proved to be the best 

dispersion method, followed by the uniform pattern C 

which is slightly better than the asymmetric pattern B. 
Results indicate that plate with non-uniform symmetric 

porosity distribution 1 and symmetric GPL pattern A have 

the largest fundamental frequencies, i.e., the highest 

effective stiffness under the same GPL weight fraction, 

suggesting that a nanocomposite plate in which both 

internal pores and nanofillers are symmetrically distributed 

can offer the best structural performance. It should be noted 

this tendency has been seen in other types of boundary 

conditions but for the sake of brevity, they are not reported 

here. 
 
 

 

Fig. 3 Variation of natural frequency of Uniform GPL-reinforced plates versus length-to-width ratio (a/b) for SCSC 

boundary condition (1 wt. %) 

 

Fig. 4 Variation of natural frequency of Uniform GPL-reinforced plates versus length-to-width ratio (a/b) for SSSS 

boundary condition (1 wt. %) 
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Table 1 Convergence behavior and accuracy of the first seven non-dimensional natural frequencies )( CC Eh   of 

a simply supported FG plate against the number of DQ grid points (b/h = 2).
 

P Nz Ny 1  
2  3  

4  
5  

6  
7  

0 7 7 0.5569 0.9395 0.9735 1.3764 1.5072 1.6064 1.7384 

  9 0.5570 0.9396 0.9741 1.3771 1.5083 1.6071 1.7401 

  13 0.5570 0.9396 0.9740 1.3774 1.5088 1.6076 1.7407 

 9 7 0.5573 0.9398 0.9735 1.3771 1.5087 1.6074 1.7403 

  9 0.5572 0.9400 0.9742 1.3777 1.5090 1.6079 1.7406 

  13 0.5572 0.9400 0.9741 1.3778 1.5096 1.6086 1.7405 

 13 7 0.5571 0.9401 0.9735 1.3779 1.5094 1.6083 1.7411 

  9 0.5572 0.9400 0.9742 1.3777 1.5090 1.6078 1.7405 

  13 0.5572 0.9400 0.9742 1.3777 1.5090 1.6078 1.7406 

  Matsunaga (2008) 0.5572 0.9400 0.9742 1.3777 1.5090 1.6078 1.7406 

  Yas and SobhaniAragh (2010) 0.557243 0.940041 - - 1.508987 - 1.740602 

0.5 7 7 0.4829 0.8222 0.8700 1.2250 1.3332 1.4364 1.5401 

  9 0.4828 0.8229 0.8707 1.2258 1.3337 1.4367 1.5429 

  13 0.4830 0.8224 0.8706 1.2254 1.3338 1.4370 1.5424 

 9 7 0.4833 0.8225 0.8701 1.2251 1.3335 1.4365 1.5402 

  9 0.4835 0.8240 0.8708 1.2257 1.3340 1.4370 1.5431 

  13 0.4836 0.8233 0.8707 1.2258 1.3340 1.4369 1.5426 

 13 7 0.4836 0.8227 0.8701 1.2251 1.3334 1.4366 1.5402 

  9 0.4835 0.8231 0.8708 1.2259 1.3338 1.4370 1.5431 

  13 0.4835 0.8233 0.8709 1.2259 1.3339 1.4370 1.5425 

  Matsunaga (2008) 0.4835 0.8233 0.8709 1.2259 1.3339 1.4370 1.5425 

  Yas and SobhaniAragh (2010) 0.482849 0.822358 - - 1.332605 - 1.541085 

1 7 7 0.4367 0.7476 0.7997 1.1158 1.2154 1.3085 1.4059 

  9 0.4374 0.7477 0.8001 1.1165 1.2159 1.3090 1.4075 

  13 0.4373 0.7478 0.8005 1.1163 1.2162 1.3088 1.4077 

 9 7 0.4368 0.7477 0.7998 1.1159 1.2157 1.3088 1.4068 

  9 0.4374 0.7477 0.8003 1.1165 1.2161 1.3090 1.4076 

  13 0.4374 0.7478 0.8006 1.1165 1.2162 1.3090 1.4078 

 13 7 0.4368 0.7477 0.7999 1.1159 1.2158 1.3088 1.4070 

  9 0.4375 0.7478 0.8003 1.1165 1.2162 1.3091 1.4076 

  13 0.4375 0.7478 0.8005 1.1165 1.2163 1.3091 1.4077 

  Matsunaga (2008) 0.4375 0.7477 0.8005 1.1166 1.2163 1.3091 1.4078 

  Yas and SobhaniAragh (2010) 0.437396 0.747514 - - 1.216035 - 1.407459 

4 7 7 0.3565 0.5988 0.6249 0.8724 0.9589 1.0000 1.1029 

  9 0.3577 0.5995 0.6355 0.8729 0.9589 1.0007 1.1038 

  13 0.3577 0.5996 0.6349 0.8728 0.9589 1.0003 1.1030 

 9 7 0.3569 0.5989 0.6250 0.8726 0.9589 1.0001 1.1032 

  9 0.3579 0.5997 0.6357 0.8731 0.9589 1.0008 1.1040 

  13 0.3578 0.5997 0.6351 0.8730 0.9589 1.0005 1.1032 

 13 7 0.3571 0.5991 0.6252 0.8727 0.9589 1.0001 1.1033 

  9 0.3579 0.5997 0.6357 0.8731 0.9589 1.0008 1.1040 

  13 0.3579 0.5997 0.6352 0.8731 0.9589 1.0008 1.1040 

  Matsunaga (2008) 0.3579 0.5997 0.6352 0.8731 0.9591 1.0008 1.1040 

  Yas and SobhaniAragh (2010) 0.357758 0.599494 - - 0.958764 - 1.103674 

10 7 7 0.3306 0.5454 0.5657 0.7866 0.8588 0.9043 0.9838 

  9 0.3311 0.5460 0.5662 0.7890 0.8588 0.9047 0.9841 

  13 0.3310 0.5459 0.5661 0.7881 0.8588 0.9050 0.9846 

 9 7 0.3308 0.5455 0.5659 0.7870 0.8588 0.9044 0.9840 

  9 0.3313 0.5461 0.5664 0.7892 0.8588 0.9048 0.9842 

  13 0.3312 0.5460 0.5663 0.7883 0.8588 0.9051 0.9846 

 13 7 0.3309 0.5455 0.5660 0.7871 0.8588 0.9045 0.9840 

  9 0.3313 0.5461 0.5664 0.7892 0.8588 0.9049 0.9844 

  13 0.3313 0.5461 0.5664 0.7884 0.8588 0.9051 0.9847 

  Matsunaga (2008) 0.3313 0.5460 0.5664 0.7885 0.8588 0.9050 0.9847 

  Yas and SobhaniAragh (2010) 0.331146 0.545833 - - 0.858445 - 0.984365 
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8. Conclusions 

 

This paper deals with vibration analysis of functionally 

graded porous nanocomposite plate where the internal pores 

and graphene platelets (GPLs) are distributed in the matrix 

uniformly or non-uniformly according to three different 

patterns. The 2-D differential quadrature method as an efficient 

and accurate numerical tool is used to discretize the governing 

equations and to implement the boundary conditions. The 

influence of boundary conditions, length-to-width ratio (a/b) 

and dispersion pattern of GPLs on the fundamental  

 

 

 

 

frequency of the FG plates are investigated. From this study 

some conclusions can be made as following: 

 It is observed that a porous nanocomposite plate 

has lower natural frequencies than a perfect plate 

(e0=0). 

 Vibration frequencies are significantly decreased 

with the increasing in length-to- width ratio (a/b). 

 According to the results, Symmetric GPL pattern A 

is proved to be the best dispersion method, 

 

Fig. 5 Variation of natural frequency of Uniform GPL-reinforced plates versus length-to-width ratio (a/b) for SFSF 

boundary condition (1 wt. %) 

 

Fig. 6 Effect of GPL on the fundamental frequency of nanocomposite SCSC rectangular plate (e0=0.5, a/b=4). 
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followed by the uniform pattern C which is slightly 

better than the asymmetric pattern B. 

 It is observed that plate with non-uniform 

symmetric porosity distribution 1 and symmetric 

GPL pattern A have the largest fundamental 

frequencies. 

Results show that for better understanding of 

mechanical behavior of nanocomposite plates, it is crucial 

to consider porosities inside the material structure 
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