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1. Introduction 

 

Couple stress theory is an extension to continuum theory 

that includes the effects of couple stresses, in addition to the 

classical direct and shear forces per unit area. This is a 

higher order continuum theory capable of predicting the 

size dependency at micro and nanoscale. First mathematical 

model to examine the materials with couple stresses was 

presented by Cosserat and Cosserat (1909).This theory 

could not establish the constitutive relationships. Mindlin 

and Tierstein (1962) and Koiter (1964) developed initial 

version of couple stress theory, based on the Cosserat 

continuum theory (1909).It involves four material constants 

for isotropic elastic materials where two of them are 

separate material length scale parameters which are very 

difficult to determine. So, modified couple stress theory (M-

CST) with one length scale parameter was presented by 

yang et al. (2002) using the balance law for moments of 

couple besides the balance laws for forces and moment of 

forces, with symmetric couple-stress tensor. This theory 

suffers from some inconsistencies. So, Hadjesfandiari et al. 

(2011) gave consistent couple stress theory (C-CST) with 

the skew-symmetric couple-stresses, which resolves all the 

discrepancies of modified couple stress theory. Modified 

couple stress theory was not applicable to anisotropic 

materials. Now a day, new modified couple stress theory 

(NM-CST) for anisotropic materials containing three length 

scale parameters has been used presented by Chen et al. 

(2014). Ke et al. (2011)investigated the size effect on 

dynamic stability of functionally graded microbeams based 

on a modified couple stress theory. Chen et al. (2011)  

                                           

Corresponding author, Associate Professor 

E-mail: parveenlata@pbi.ac.in 

 

 

presented a new modified couple stress model for bending 

analysis of composite laminated beams with first order 

shear deformation. Asghari (2012) studied the geometrically 

nonlinear micro-plate formulation based on the modified 

couple stress theory. Simsek et al. (2013) investigated the 

bending and vibration of functionally graded microbeams 

using a new higher order beam theory and the modified 

couple stress theory. Fang et al.(2013) examined the 

problem of thermoelastic damping in the axisymmetric 

vibration of circular microplate resonators using two 

dimensional couple stress heat conduction model. Ansari et 

al. (2014) studied the free vibration behavior of post-

buckled functionally graded (FG) Mindlin rectangular 

microplates based on the modified couple stress theory 

(MCST). Ansari et al. (2014) introduced an exact solution 

for the vibration analysis of piezoelectric microbeams for 

both Euler-Bernoulli and Timoshenko beam models using 

modified couple stress theory.  It was shown that when the 

length of microbeams is decreased, effects of 

piezoelectricity and size effects are more prominent. Shaat 

et al. (2014) studied the bending analysis of nano-sized 

Kirchhoff plates using modified couple-stress theory and 

surface elasticity theory of Gurtin and Murdochto consider 

the surface energy effects. Mehralian and TediBeni (2017) 

studied the buckling conduct of piezoelectrical cylindrical 

nanoshell subjected to conditions of uniform temperature, 

electrical and mechanical interactions on Winkler- 

Pasternak medium on the basis of modified couple stress 

theory and shell model. They illustrated the influence of 

various parameters e.g. thickness ratio, length ratio, 

material length scale parameter and Winkler and Pasternak 

foundation stiffness parameter on the critical buckling load. 

Free vibration frequencies of nonuniform microbeams were 

examined by Khaniki et al. (2017) on the basis of modified 

couple stress theory. Nonuniformity was introduced by 
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exponentially varying width among the microbeam, 

thickness remaining constant. By analytically solving the 

problem for various boundary conditions, effect of 

nonuniformity and small scale effects were observed on 

varying the frequency terms. Anaxisymmetric problem of 

thick circular plate in modified couple stress theory of 

thermoelastic diffusion using Laplace and Hankel 

transforms technique have been investigated by Kumar and 

Devi (2016). Kumar and Devi (2015) studied the influence 

of Hall current and rotation in thermoelastic diffusive media 

caused by ramp type loading on the basis of modified 

couple stress theory using Laplace and Fourier Transform 

techniques. Atanasov et al. (2017) examined the thermal 

effect on the free vibration and buckling of the Euler-

Bernoulli double microbeam system based on the modified 

couple stress theory using Bernoulli–Fourier method. Togun 

et al. (2017) presented the linear free vibration of a simply-

supported nanobeam by using modified couple stress theory 

and Hamilton’s principle. Also, they studied the effects of 

the length scale parameter and the Poisson’s ratio on natural 

frequency. Malikan investigated the buckling of a thick 

sandwich plate under the biaxial non-uniform compression 

using the modified couple stress theory with various 

boundary conditions. Abbas et al. (2009,2014) studied 

different problems under two-temperature generalized 

thermoelastic theory by finite element method.Alimirzaeiet 

al. (2019) presented the nonlinear static, buckling and 

vibration analysis of viscoelastic micro-composite beam 

reinforced by various distributions of boron nitride 

nanotube (BNNT) with initial geometrical imperfection by 

modified strain gradient theory (MSGT) using finite 

element method (FEM). Boukhlif et al. (2019) presented a 

dynamic investigation of functionally graded (FG) plates 

resting on elastic foundation using a simple quasi-3D higher 

shear deformation theory. Boulefrakh et al. (2019) 

employed a quasi 3D hyperbolic shear deformation model 

for bending and dynamic behavior of functionally graded 

(FG) plates resting on visco-Pasternak foundations. 

Bourada et al. (2019) presented the free vibration analysis 

of simply supported perfect and imperfect (porous) FG 

beams using a high order trigonometric deformation theory 

assuming that the material properties of the porous beam 

vary across the thickness. Boutaleb et al. (2019) studied the 

dynamic analysis of the functionally graded rectangular 

nanoplates. Chaabane et al. (2019) studied bending and free 

vibration responses of functionally graded beams resting on 

elastic foundation analytically. Karami et al. (2019) 

investigated the buckling behavior of functionally graded 

(FG) nanoplates made of anisotropic material (beryllium 

crystal as a hexagonal material). Karami et al. (2019) dealt 

with the size-dependent wave propagation analysis of 

functionally graded (FG) anisotropic nanoplates based on a 

nonlocal strain gradient refined plate model. Medani et al. 

(2019) studied the static and dynamic behavior of 

Functionally Graded Carbon Nanotubes (FG-CNT)-

reinforced porous sandwich (PMPV) polymer plate. Zarga 

et al. (2019) employed a simple quasi-3D shear deformation 

theory for thermo-mechanical bending analysis of 

functionally graded material (FGM) sandwich plates. 

Unlike the other high order shear deformation theories 

(HSDTs), they considered a new kinematic which includes 

undetermined integral variables. Othman and Marin (2017) 

studied the effect of thermal loading due to laser pulse on 

thermoelastic porous medium under G-N theory. Marin et 

al. (2017) studied the Saint-Venant’s problem in the context 

of the theory of porous dipolar bodies. Despite of this 

several researchers worked on different theory of 

thermoelasticity as Hassan et al. (2018),   

Marin and Nicaise (2016), Marin and Craciun (2017), 

Sharma et al. (2016), Marin et al. (2017), Jahangir et al. 

(2015,2018,2019) and Lata and Kaur (2019,2019a), Ezzatet 

al.(2016), Sharma et al. (2015), Kumar et al. (2016), Lata 

(2018a, b). 

In the present investigation, our objective is to study the 

deformation in homogeneous isotropic modified couple 

stress thermoelastic medium with two temperatures using 

isothermal and insulated boundary conditions, with and 

without energy dissipationin the presence of mass diffusion 

sources. The medium is employed to the thermal and 

mechanical sources. Laplace and Fourier transform 

technique is applied to obtain the solutions of the governing 

equations. The displacement components, stress 

components, conductive temperature and couple stress are 

obtained in the transformed domain and are presented 

graphically for different values of displacement. The effect 

of 𝐾∗ on the resulting quantities is depicted graphically. 

Analysis is done without using the potential functions. In 

the absence of these equation of motion simplifies to the 

classical equations. 

 

 

2. Basic equations 
 

Following Kumar and Devi (2017) and Youssef 

(2013),the field equations for isotropic modified couple 

stress thermoelastic medium with mass diffusion, with and 

without energy dissipation in the absence of body forces, 

body couples are given by  

(a) Constitutive relationships 

𝑡𝑖𝑗 = 𝜆𝑒𝑘𝑘𝛿𝑖𝑗 + 2𝜇𝑒𝑖𝑗 −
1

2
𝑒𝑘𝑖𝑗𝑚𝑙𝑘,𝑙 − 𝛽1𝑇𝛿𝑖𝑗 − 𝛽2𝐶𝛿𝑖𝑗, (1) 

𝑚𝑖𝑗 = 2𝛼𝜒𝑖𝑗  (2) 

𝜒𝑖𝑗 =
1

2
(𝜔𝑖,𝑗 + 𝜔𝑗,𝑖) (3) 

𝜔𝑖 =
1

2
𝑒𝑖𝑗𝑘𝑢𝑘,𝑗. (4) 

(b) Equation of motion 

(𝜆 + 𝜇 +
𝛼

4
∆)𝛻(𝛻. 𝑢⃗ ) +  (𝜇 −

𝛼

4
∆)𝛻2𝑢⃗ − 𝛽1𝛻𝑇

− 𝛽2𝛻𝐶 = 𝜌𝑢⃗ ̈ 
(5) 

(c) Equation of heat conduction 

𝐾𝛻2𝜑 + 𝐾∗𝛻2𝜑̇ = 𝜌𝐶∗𝑇̈ + 𝛽1𝑇0∇. 𝑢,⃗⃗⃗  ̈ (6) 
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𝑇 = (1 − 𝛼1𝛻
2)𝜑 (7) 

(d) Equation of mass diffusion 

𝐷𝛽2𝛻
2(∇. 𝑢⃗ ) + 𝐷𝑎𝛻2𝑇 − 𝐷𝑏𝛻2𝐶 + 𝐶̇ + 𝜏𝐶̈ = 0 (8) 

Here 𝑢 = (𝑢, 𝑣, 𝑤)  is the components of displacement 

vector, 𝜎𝑖𝑗 are the components of stress tensor, 𝜀𝑖𝑗 are the 

components of strain tensor,𝑒𝑖𝑗𝑘 is alternate tensor, 𝑚𝑖𝑗are 

the components of couple-stress, 𝛼1 is the two temperature 

parameter,𝛽𝑖𝑗  is thermal tensor,𝑇  is thethermodynamical 

temperature,  𝜑 is the conductive temperature, 𝐾∗ is the 

coefficient of thermal conductivity,𝜒𝑖𝑗is curvature,𝜔𝑖is the 

rotational vector,  is the density, 𝐾𝑖𝑗  isthe thermal 

conductivity,𝐶∗ is the specific heat at constant strain, 𝑇0is 

the reference temperature assumed to be such that𝑇 𝑇0
⁄ ≪

1,𝐺𝑖 are the elasticity constants and , 𝛽1 = (3𝜆 + 2𝜇)𝛼𝑡 

,𝛽3 = (3𝜆 + 2𝜇)𝛼𝑡 . Here 𝛼𝑡  and 𝛼𝑣  are the coefficients 

of linear thermal expansion and diffusion expansion 

respectively, 𝐶is the mass concentration, 𝛼is the couple 

stress parameter, 𝑏is the coefficient describing the measure 

of mass diffusion effects ,𝑎is the coefficient describing the 

measure of thermoelastic diffusion, 𝐷is the thermoelastic 

diffusion constant, ∆ (=
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑧2 )  is the Laplacian 

operator ,𝛻 is del operator, 𝛿𝑖𝑗is Kronecker’s delta. 

 

 

3. Formulation and solution of the problem 
 

We consider a two dimensional homogeneous isotropic 

modified couple stress thermoelastic medium initially at 

uniform temperature 𝑇0 occupying the region of a half 

space 𝑧 ≥ 0  .A  rectangular coordinate system (𝑥, 𝑦, 𝑧) 

having origin on the surface 𝑧 = 0 has been taken. All the 

field quantities depend on (𝑥, 𝑧, 𝑡).The half surface is 

subjected to isothermal and insulated boundary conditions. 

The initial and regularity conditions are given by 

𝑢(𝑥, 𝑧, 0) =  0 =  𝑢̇(𝑥, 𝑧, 0) 

𝑣(𝑥, 𝑧, 0) =  0 = 𝑣̇(𝑥, 𝑧, 0) 

𝜑(𝑥, 𝑧, 0) =  0 = 𝜑̇(𝑥, 𝑧, 0)𝑓𝑜𝑟  𝑥3 ≥ 0,−∞ < 𝑥 < ∞ 

𝑢(𝑥, 𝑧, 0) = 𝑣(𝑥, 𝑧, 0) = 𝜑(𝑥, 𝑧, 0) = 0 𝑓𝑜𝑟  𝑡 > 0 𝑤ℎ𝑒𝑛  𝑧 → ∞. 

 

(a) Equations of motion in 𝑢 − 𝑤 plane are 

(𝜆 + 𝜇)
𝜕𝑒

𝜕𝑥
+ 𝜇𝛻2𝑢 +

𝛼

4
𝛻2 (

𝜕𝑒

𝜕𝑥
− 𝛻2𝑢) − 𝛽1

𝜕𝑇

𝜕𝑥

− 𝛽2

𝜕𝐶

𝜕𝑥
= 𝜌

𝜕2𝑢

𝜕𝑡2
, 

(9) 

(𝜆 + 𝜇)
𝜕𝑒

𝜕𝑧
+ 𝜇𝛻2𝑤 +

𝛼

4
𝛻2 (

𝜕𝑒

𝜕𝑧
− 𝛻2𝑤) − 𝛽1

𝜕𝑇

𝜕𝑧

− 𝛽2

𝜕𝐶

𝜕𝑧
= 𝜌

𝜕2𝑤

𝜕𝑡2
, 

(10) 

(b) Equation of heat conduction is 

𝐾𝛻2𝜑 + 𝐾∗𝛻2𝜑̇ = 𝜌𝐶∗(1 − 𝛼1𝛻
2)𝜑̈ + 𝛽1𝑇0

𝜕2𝑒

𝜕𝑡2
, (11) 

 

(c) Equation of mass diffusion is 

𝛽2𝛻
2e + 𝑎𝛻2𝑇 − 𝑏𝛻2𝐶 +

1

𝐷
(
𝜕𝐶

𝜕𝑡
+ 𝜏

𝜕2𝐶

𝜕𝑡2
) = 0 (12) 

And components of stress and couple stress 

𝑡33 = (
𝜕𝑤

𝜕𝑧
+

𝜕𝑢

𝜕𝑥
) + 2𝜇

𝜕𝑤

𝜕𝑥
− 𝛽1(1 − 𝛻2𝛼1)𝜑 − 𝛽2𝐶 (13) 

𝑡31 = 𝜇 (
𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
) −

𝛼

4
𝛻2 (−

𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
) (14) 

𝑚32 =
𝛼

2
(
𝜕2𝑢

𝜕𝑧2
−

𝜕2𝑤

𝜕𝑥𝜕𝑧
) (15) 

where 𝑒 =
𝜕𝑢

𝜕𝑥
+

𝜕𝑤

𝜕𝑧
. 

To facilitate the solution, the following dimensionless 

quantities are introduced 

 𝑥′ =
𝜔∗

𝑐1
𝑥,   𝑧 ′ =

𝜔∗

𝑐1
𝑧,  𝑢′ =

𝜔∗

𝑐1
𝑢,

 𝑤′ =
𝜔∗

𝑐1
𝑤,   𝑡′ = 𝜔∗𝑡,   𝑡𝑖𝑗

′

=
𝑡𝑖𝑗

𝛽1𝑇0

 , 𝑚𝑖𝑗
′ =

𝑚𝑖𝑗

𝑐1𝛽1𝑇0

, 𝑇′

=
𝛽1𝑇

𝜌𝑐1
2 , 𝜑′ =

𝛽1𝜑 

𝜌𝑐1
2 ,   𝑐′ =

𝛽2𝐶

𝜌𝑐1
2 , 𝑐1

2

=
𝜆 + 2𝜇

𝜌
 ,      𝜔∗2

=
𝜆

𝜇𝑡2 + 𝜌𝛼
 ,   𝛼1

′ =  
𝜔∗

𝑐1
𝛼1  

(16) 

Using the dimensionless quantities defined by (16) in the 

Eqs. (9)-(15) and after suppressing the primes yield 

𝑎8

𝜕𝑒

𝜕𝑥
+ 𝑎1𝛻

2𝑢 +
𝛼

4
𝑎2𝛻

2 (
𝜕𝑒

𝜕𝑥
− 𝛻2𝑢) −

𝜕𝑇

𝜕𝑥
−

𝜕𝐶

𝜕𝑥
=

𝜕2𝑢

𝜕𝑡2  
(17) 

𝑎8

𝜕𝑒

𝜕𝑧
+ 𝑎1𝛻

2𝑤 +
𝛼

4
𝑎2𝛻

2 (
𝜕𝑒

𝜕𝑧
− 𝛻2𝑤) −

𝜕𝑇

𝜕𝑧
−

𝜕𝐶

𝜕𝑧

=
𝜕2𝑤

𝜕𝑡2
, 

(18) 

∇2𝜑 +
𝐾∗

𝐾
𝛻2𝜑̇ = 𝑎3 (1 − 𝛼1

𝜔∗

𝑐1
𝛻2) 𝜑̈ + 𝑎4

𝜕2𝑒

𝜕𝑡2
, (19) 

𝛻2𝑒 + 𝑎5

𝜌𝑐1
2

𝛽1
𝜔∗𝛻2𝑇 − 𝑎6𝛻

2𝐶 + 𝑎7 (
𝜕𝐶

𝜕𝑡
+ 𝜏

𝜕2𝐶

𝜕𝑡2) = 0 (20) 

𝑡33 =
𝜆

𝛽1𝑇0

(
𝜕𝑤

𝜕𝑧
+

𝜕𝑢

𝜕𝑥
) +

2𝜇

𝛽1𝑇0

+ 2𝜇
𝜕𝑤

𝜕𝑥

−
𝜌𝑐1

2

𝛽1𝑇0

((1 − 𝛼1

𝜔∗

𝑐1
𝛻2)𝜑 − 𝐶), 

(21) 
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𝑡31 =
𝜇

𝛽1𝑇0
(
𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
) −

𝛼

4𝛽1𝑇0
(
𝜔∗

𝑐1
 )

2

𝛻2 (−
𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
) (22) 

𝑚32 =
𝛼𝜔∗

2𝛽1𝑇0𝑐1
2 (

𝜕2𝑢

𝜕𝑧2
−

𝜕2𝑤

𝜕𝑥𝜕𝑧
). (23) 

where 

𝑎1 =
𝜇

𝜌𝑐1
2 ,   𝑎2 =

𝜔∗2

𝜌𝑐1
4 ,   𝑎3 =

𝜌𝑐1
2𝐶∗

𝐾𝜔∗ ,

𝑎4 =
𝛽1

2𝑇0

𝜌𝐾𝜔∗ ,   𝑎5 =
𝑎𝜌𝑐1

2

𝛽1𝛽2
,

𝑎6 =
𝑏𝜌𝑐1

2

𝛽2
2 ,     𝑎7 =

𝜌𝑐1
4

𝛽2
2𝐷𝜔∗

,       𝑎8

=
(𝜆 + 𝜇)

𝜌𝑐1
2  

Applying Laplace and Fourier transformation defined by 

(𝑥1, 𝑥3,𝑠) = ∫ 𝑓
∞

0

(𝑥1, 𝑥3,𝑡)𝑒
−𝑠𝑡𝑑𝑡 (24) 

𝑓(𝜉, 𝑧, 𝑠) = ∫ 𝑓(𝑥, 𝑧, 𝑠)𝑒ἰ𝜉𝑥𝑑
∞

−∞

𝑥 (25) 

on the set of Eqs. (17)-(20), we obtain system of four 

homogeneous equations. These resulting equations have 

non trivial solution if the determinant of the coefficients of  

(𝑢̂, 𝑤̂, 𝜑̂, 𝐶̂)  vanishes, which yields the following 

characteristic equation 

𝑃
𝑑10

𝑑𝑧10 + 𝑄
𝑑8

𝑑𝑧8 + 𝑅
6

𝑑𝑧6 + 𝑆
𝑑4

𝑑𝑧4 + 𝑇
𝑑2

𝑑𝑧2 + 𝑈)(𝑢̂, 𝑤̂, 𝜑̂, 𝐶̂)

= 0 
(26) 

where 

𝑃 = 𝛾𝑝18 + 𝛾2𝑎6𝑝8, 
 

𝑄 = −𝛾𝑝19 + 𝑝13𝑝18 + (𝑎8 − 𝛾𝜉2)𝛾𝑎6𝑝8 + 𝛾𝑝26

− 𝑎6𝑝2𝛾𝜉2𝑎4𝑠
2 + 𝑝5𝛾𝜉2, 

 

𝑅 = 𝑝18𝑝21 + 𝑝13𝑝19 + (𝑎8 − 𝛾𝜉2)𝑝26 + 𝛾(𝑝27 − 𝑝20)

+ 𝜉2𝑎4𝑠
2 (𝛾𝑝23

− 𝑎6𝑝2 (𝑎1 +
𝛼

2
𝑎2𝜉

2)) + 𝛾𝜉2(𝑝6

− 2𝜉2) 
𝑆 = 𝑝19𝑝21 + 𝑝13𝑝20 − 𝛾𝑝15𝑝19 + (𝑎8 − 𝛾𝜉2)𝑝27

+ 𝛾𝑝8 − 𝜉2𝑎4𝑠
2(𝑎6𝑝2(𝑠

2 + 𝑝3𝜉
2)

+ 𝛾𝑝22 + 𝑝23 (𝑎1 +
𝛼

2
𝑎2𝜉

2)

+ 𝛾𝜉2(𝑝7 − 2𝜉2𝑝6) + (𝑠2 + 𝛾𝜉4) 
𝑇 = 𝑝20𝑝21 + 𝑝13𝑝15 + (𝑎8 − 𝛾𝜉2)(𝑝28 − 𝑝22)

− 𝜉2𝑎4𝑠
2((𝑎1 +

𝛼

2
𝑎2𝜉

2)

+ 𝑝23(𝑠
2 + 𝑝13𝜉

2) + 𝜉2(−2𝜉2𝛾𝑝7

+ (𝑠2 + 𝛾𝜉4)𝑝6 
 
 
 

𝑈 = 𝑝9𝑝21𝑝15 − 𝜉2𝑎4𝑠
2𝑝22(𝑠

2 + 𝑝13𝜉
2)

+ 𝑝7𝜉
2(𝑠2 + 𝑝13𝜉

2) 
 
The roots of the Eq. (24) are±𝜆𝑖(i =  1, 2, 3, 4, 5),using the 

radiation condition that 𝑢̂, 𝑤̂,  𝜑,̂ 𝐶 ̂ → 0  as 𝑥3 → ∞  the 

solution of Eq. (24) may be written as 

𝑢̂ = ∑𝐴𝑖𝑒
−𝜆𝑖𝑧

5

𝑖=1

 (27) 

𝑤̂ = ∑𝑄𝑖𝐴𝑖𝑒
−𝜆𝑖𝑧 ,

5

𝑖=1

 (28) 

𝜑̂ = ∑𝑅𝑖𝐴𝑖𝑒
−𝜆𝑖𝑧 ,

5

𝑖=1

 (29) 

𝐶̂ = ∑𝑆𝑖𝐴𝑖𝑒
−𝜆𝑖𝑧

5

𝑖=1

 (30) 

where 

𝑄𝑖

=

𝑝8𝑎6𝜆𝑖
8 − (𝑎1𝑎6𝑝8 − 𝛾 𝑝36)𝜆𝑖

6 + (−𝐸𝑎6𝑝8 + 𝑎1 𝑝36 − 𝛾𝐼𝐾 + 𝜉2𝑎4𝑠
2𝑝2(𝑎6 − 𝑎5) − 𝑝8𝜉

4)𝜆𝑖
4 +

(𝐸 𝑝36 + 𝑎1𝐼𝐾 − 𝑎4𝑠
2𝜉2(𝑝14𝑎6 + 𝑝2𝐾 − 𝑎5𝐿) − 𝜉2(−𝜉2𝑝8 + 𝐼))𝜆𝑖

2 + 𝐸𝐼𝐾

(𝑎4𝑠2𝑝2(𝑎5 + 𝑎6) − 𝑝8)𝜆𝑖
6 + ((−𝐺𝑎6𝑝8 +  𝑝29 𝑝36 − 𝑎4𝑠2(𝑎5𝐿 + 𝑝2𝐾 + 𝑝14𝑎6 + 𝑝8𝜉2))𝜆𝑖

4

+(𝐺 𝑝36 +  𝑝29𝐼𝐾 + 𝑎4𝑠2(𝑝14𝐾 + 𝑝14𝑎5𝜉2) + 𝐼𝜉2)𝜆𝑖
2 + 𝐺𝐼𝐾

  

𝑅𝑖

=

−𝛾(𝑝30+𝑎6𝑝25)𝜆𝑖
8 + (𝑎1𝑝32 − 𝑝25 + 𝛾(𝑝30 − 𝐹𝜉2𝑎6 + 𝜉2𝑝31))𝜆𝑖

6 + (𝐸𝑝32 − 𝑎1𝑝30 − 𝛾𝐺𝐾 + 𝜉2(𝐹(𝑝31 − 1) + 𝑝29))𝜆𝑖
4

+((𝑎1𝐺𝐾 − 𝐸𝑝30 + 𝜉2(𝐾𝐹2 + 𝐺 − 𝑝29𝜉
2))𝜆𝑖

2 + 𝐸𝐺𝐾 − 𝜉4

(𝑎4𝑠
2𝑝2(𝑎5 + 𝑎6) − 𝑝8)𝜆𝑖

6 + ((−𝐺𝑎6𝑝8 +  𝑝29 𝑝36 − 𝑎4𝑠
2(𝑎5𝐿 + 𝑝2𝐾 + 𝑝14𝑎6 + 𝑝8𝜉

2))𝜆𝑖
4

+(𝐺 𝑝36 +  𝑝29𝐼𝐾 + 𝑎4𝑠
2(𝑝14𝐾 + 𝑝14𝑎5𝜉

2) + 𝐼𝜉2)𝜆𝑖
2 + 𝐺𝐼𝐾

 

 
𝑆𝑖

=

(−𝛾𝑝34 + 𝛾(𝐹𝐼 + 𝑠2𝑎4𝑝14))𝜆𝑖
8 + (𝑎1𝑝34 + 𝛾(−𝑝33 + 𝐹𝑝8 + 𝑝35 + 𝑠2𝑎4𝜉

2𝑝2))𝜆𝑖
6 +

(𝐸𝑝34 + 𝑎1𝑝33 − 𝛾𝐺𝐼 + 𝑠2𝑎4𝑝14(1 + 𝛾𝜉2) + 𝐹𝑝35 − 𝑠2𝑎4𝜉
2𝑝2(𝐹 −  𝑝29))𝜆𝑖

4 +

(𝐸𝑝33 + (𝑎1𝐺 + 𝜉2𝐹2)𝐼 − 𝑠2𝑎4𝜉
2𝑝14 𝑝29 + 𝑝2(𝐺 + 𝐹))𝜆𝑖

2 + 𝐸𝐺𝐼

(𝑎4𝑠2𝑝2(𝑎5 + 𝑎6) − 𝑝8)𝜆𝑖
6 + ((−𝐺𝑎6𝑝8 +  𝑝29 𝑝36 − 𝑎4𝑠2(𝑎5𝐿 + 𝑝2𝐾 + 𝑝14𝑎6 + 𝑝8𝜉2))𝜆𝑖

4

+(𝐺 𝑝36 +  𝑝29𝐼𝐾 + 𝑎4𝑠2(𝑝14𝐾 + 𝑝14𝑎5𝜉2) + 𝐼𝜉2)𝜆𝑖
2 + 𝐺𝐼𝐾

 

 

𝛾 =
𝛼

4
𝑎,    𝑝1 = 𝑎7(𝑠 + 𝜏𝑠2),     𝑝2 = 𝛼1

𝜔∗

𝑐1
, 𝑝3

= 1 +
𝐾∗

𝐾
s, 𝑝4 = 𝑝3 + 𝑝2𝑠

2 ,

𝑝5 = 𝑠2𝑎4𝑎5𝑝2 − 𝑝4, 𝑝6

= −𝑠2𝑎4𝑎5(1 + 2𝑝2𝜉
2) + 2𝑝4𝜉

2

− 𝑎3𝑠
2,   𝑝7

= 𝑠2𝑎4𝑎5(𝜉
2 + 𝑝2𝜉

4) − 𝑝4𝜉
4

+ 𝑎3𝑠
2𝜉2 ,

𝑝8 = 𝑝3 − 𝑝2𝑠
2, 𝑝9

= 𝑝1 + 𝑎6𝜉
2,   𝑝10

= −𝑝8𝜉
2 − 𝑎3𝑠

2,
𝑝11 = −𝑠2𝑎4𝑎5𝑝2 + 𝑝8,
𝑝12

= 𝑠2𝑎4𝑎5(1 + 𝑝2𝜉
2) − 𝑎3𝑠

2

+ 𝑝2𝑠
2𝜉2,   
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 𝑝13 = 𝑎1 + 𝛾𝜉2, 𝑝14 = 1 + 𝑝2𝜉
2 , 𝑝15

= 𝑠2𝜉2 − 𝑝13𝜉
2, 𝑝16

= 𝑝6𝑝8 − 𝑝10𝑎6 ,   𝑝17

= 𝑎6𝑝4 − 𝑝2𝑝9 , 𝑝18

= −𝑎6𝑝8(𝑎8 + 𝑝13) + 𝑎4𝑎6𝑝2𝑠
2

+ 𝑝11 , 𝑝19

= 𝑎16(𝑎8 + 𝑝13) −  𝑝8𝑎6𝑝15

− 𝑝11𝜉
2 + 𝑝18 , 𝑝20

= 𝑝9(𝑎8 + 𝑝13) + 𝑝16𝑝15 + 𝑎4𝑝14𝑠
2

− 𝑝18𝜉
2, 𝑝21 =  𝐵 + 𝑎1𝜉

2, 𝑝21

=  𝐵 + 𝑎1𝜉
2, 𝑝22

= 𝑝1 + 𝑝2𝑎6𝜉
4

+ (𝑎6 + 𝑝1𝑝2)𝜉
2,  𝑝23

= 𝑝1𝑝2 + 𝑎6 + 2𝑎6𝑝2𝜉
2,

 𝑝24 = −𝑝8𝜉
4 − 𝑎3𝑠

2𝜉2 
 𝑝13 = 𝑎1 + 𝛾𝜉2, 𝑝14 = 1 + 𝑝2𝜉

2 , 𝑝15 = 𝑠2𝜉2 − 𝑝13𝜉
2, 𝑝16

= 𝑝6𝑝8 − 𝑝10𝑎6 ,   𝑝17

=  𝑎6𝑝4 − 𝑝2𝑝9 , 𝑝18

=  −𝑎6𝑝8(𝑎8 + 𝑝13) + 𝑎4𝑎6𝑝2𝑠
2

+ 𝑝11 , 𝑝19

=  𝑎16(𝑎8 + 𝑝13) − 𝑝8𝑎6𝑝15 − 𝑝11𝜉
2

+ 𝑝18 , 𝑝20

=  𝑝9(𝑎8 + 𝑝13) + 𝑝16𝑝15 + 𝑎4𝑝14𝑠
2

− 𝑝18𝜉
2, 𝑝21 =  𝐵 + 𝑎1𝜉

2, 𝑝21

=  𝐵 + 𝑎1𝜉
2, 𝑝22

=  𝑝1 + 𝑝2𝑎6𝜉
4 + (𝑎6 + 𝑝1𝑝2)𝜉

2,  𝑝23

=  𝑝1𝑝2 + 𝑎6 + 2𝑎6𝑝2𝜉
2,

 𝑝24 = −𝑝8𝜉
4 − 𝑎3𝑠

2𝜉2 

 𝑝24 = −𝑝8𝜉
4 − 𝑎3𝑠

2𝜉2,  𝑝25 = 𝛾𝜉2,
 𝑝26

= (𝑎8 − 𝑝25)𝑝8𝑎6

+ 𝛾(𝑝10𝑎6 + 𝑝8𝑝9) + 𝑎3𝑠
2𝑝2𝑎6

− 𝑎8,
 𝑝27

= (𝑎8 − 𝑝25)(𝑝10𝑎6 + 𝑝8𝑝9)
+ 𝛾𝑝10𝑝9−𝑎4𝑠

2𝑝23

+ (−𝑎4𝑎5 + 𝑎3)𝑠
2 + 2𝜉2𝑝8 

 𝑝28 = (𝑎8 − 𝑝25)𝑝10𝑝9 + 𝑎4𝑠
2(𝑝22 + 𝑎4𝑎5𝜉

2),
 𝑝29 = (𝑎8 + 𝑝13),  𝑝30

= 𝐺𝑎6 +  𝑝29𝐾 − 𝜉2,
 𝑝31 = −𝐹𝑎6 + 𝛾𝐾 + 1,  𝑝32

= − 𝑝29𝑎6 + 1,  𝑝33

= 𝐺𝑝8 + (𝑎8 + 𝑝13) 𝐼 + 𝑎4𝑠
2𝑝14,

 𝑝34 = (𝑎8 + 𝑝13)𝑝8−𝑎4𝑠
2𝑝2,  𝑝35

= 𝐹𝑝8 + 𝛾𝐼 − 𝑎4𝑠
2 𝑝2,  𝑝36

= (−𝐼𝑎6 + 𝑝
8
𝐾), 𝐸 =  −(𝜉2 + 𝑠2), 𝐹

= 𝑎8 −
𝛼

4
𝜉2𝑎2 , 𝐺

= −(𝑠2 + 𝜉2𝑎1 +
𝛼

4
𝜉4𝑎2 ) , 𝐼

= (− 𝑝3+𝑝2𝑠
2)𝜉2−𝑎3𝑠

2, 𝐾
=  𝑝1 + 𝑎6𝜉

2, 𝐿 =  𝑝14 + 𝑝2𝜉
2 

 
 
4. Boundary condition 
 
The boundary conditions at 𝑧 = 0 are given by 

    𝑡33(𝑥, 𝑧, 𝑡) = −𝐹1𝜓1(𝑥)𝛿(𝑡) (31) 

Where 𝛿(𝑡)  is the Dirac delta function, 𝐹1 is the 

magnitude of the force applied,𝜓1(𝑥) specify the source 

distribution function along 𝑥axis. 

𝑡31(𝑥, 𝑧, 𝑡) = 0 (32) 

𝑚32(𝑥, 𝑧, 𝑡) = 0 (33) 

Mass concentration boundary condition: we consider the 

boundary plane 𝑧 = 0 is iso-concentrated surface, so 

𝐶 = 0 (34) 

Thermal boundary condition: Thermal boundary condition 

is taken as 

ℎ1

𝜕𝜙

𝜕𝑧
(𝑥, 𝑧, 𝑡) + ℎ2𝜙(𝑥, 𝑧, 𝑡) = 0 (35) 

where ℎ1 → 0  corresponds to isothermal boundaries and  

ℎ2 → 0 corresponds to insulated boundary. 

Substituting the values of𝑢̂,𝑤̂,𝜙̂, 𝐶̂from Eqs. (27)-(30) in 

the boundary conditions(31)-(34)and with the aid of (17)-

(25), we obtain the components of displacement, normal 

stress, tangential stress, tangential couple stress and 

conductive temperature and mass concentration as 

    𝑢 =
−𝐹1𝜓1̂(𝜉)

∆
∑𝐵1𝑖

5

𝑖=1

𝑒−𝜆𝑖𝑧 (35) 

𝑤 =
−𝐹1𝜓1̂(𝜉)

∆
∑𝑄𝑖𝐵1𝑖

5

𝑖=1

𝑒−𝜆𝑖𝑧 (36) 

𝜑 =
−𝐹1𝜓1̂(𝜉)

∆
∑𝑅𝑖𝐵1𝑖

5

𝑖=1

𝑒−𝜆𝑖𝑧 (37) 

𝐶 =
−𝐹1𝜓1̂(𝜉)

∆
∑𝑆𝑖𝐵1𝑖

5

𝑖=1

𝑒−𝜆𝑖𝑧 (38) 

𝑡31 =
−𝐹1𝜓1̂(𝜉)

𝛽1𝑇0∆
∑(𝜇(ἰ𝜉𝑄𝑖 + 𝜆𝑖)

5

𝑖=1

−
𝛼

4
(
𝜔∗

𝑐1
 )

2

(−𝜉2 + 𝜆𝑖
2)(𝜆𝑖

+ ἰ𝜉𝑄𝑖))𝐵1𝑖𝑒
−𝜆𝑖𝑧, 

(39) 

𝑡33 =
−𝐹1𝜓1̂(𝜉)

𝛽1𝑇0∆
∑(𝜆(ἰ𝜉 − 𝜆𝑖𝑄𝑖) − 2𝜇𝑄𝑖𝜆𝑖

5

𝑖=1

− 𝜌𝑐1
2 (1 − 𝛼1

𝜔∗

𝑐1
(−𝜉2 + 𝜆𝑖

2))𝑅𝑖

− 𝑆𝑖)𝐵1𝑖𝑒
−𝜆𝑖𝑧 

(40) 

𝑚32 =
−𝛼𝐹1𝜓1̂(𝜉)𝜔

∗

2𝛽1𝑇0∆𝑐1
2 ∑(𝜆𝑖

2 + ἰ𝜉𝑄𝑖𝜆𝑖)𝐵1𝑖𝑒
−𝜆𝑖𝑧

5

𝑖=1

 (41) 
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Where 

𝐵11 = ∆1/𝐴11, 

𝐵21 = −∆2/𝐴12, 

𝐵31 = ∆3/𝐴13, 

𝐵41 = −∆4/𝐴14, 

𝐵51 = ∆5/𝐴15, 

𝐴1𝑖 = 𝜆
ἰ𝜉 − 𝜆𝑖𝑄𝑖

𝛽1𝑇0

−
2𝜇𝑄𝑖𝜆𝑖

𝛽1𝑇0

−
𝜌𝑐1

2

𝛽1𝑇0

((1 − 𝛼1

𝜔∗

𝑐1

(−𝜉2 + 𝜆𝑖
2))𝑅𝑖 − 𝑆𝑖), 

𝐴2𝑖 =
𝜇

𝛽1𝑇0

(ἰ𝜉𝑄𝑖 + 𝜆𝑖) −
𝛼

4𝛽1𝑇0

(
𝜔∗

𝑐1

 )
2

(−𝜉2 + 𝜆𝑖
2)(𝜆𝑖 + ἰ𝜉𝑄𝑖), 

 

𝐴3𝑖 =
𝛼𝜔∗

2𝛽1𝑇0𝑐1
2
(𝜆𝑖

2 + ἰ𝜉𝑄𝑖𝜆𝑖), 

𝐴4𝑖 = 𝑆𝑖 

𝐴5𝑖 = (−ℎ1𝜆𝑖 + ℎ2)𝑅𝑖 , 
∆= ∆1 − ∆2 + ∆3 − ∆4 + ∆5, 

∆1= 𝐴11(𝐴22(𝐴33𝐷1 − 𝐴34𝐷2 + 𝐴35𝐷3)
− 𝐴23(𝐴32𝐷1 − 𝐴34𝐷4 + 𝐴35𝐷5)
+ 𝐴24(𝐴32𝐷2 − 𝐴33𝐷4 + 𝐴35𝐷6)
− 𝐴25(𝐴32𝐷3 − 𝐴33𝐷5 + 𝐴34𝐷6), 

∆2= 𝐴12(𝐴11(𝐴33𝐷1 − 𝐴34𝐷2 + 𝐴35𝐷3)
− 𝐴13(𝐴31𝐷1 − 𝐴34𝐷7 + 𝐴35𝐷8)
+ 𝐴14(𝐴31𝐷2 − 𝐴33𝐷7 + 𝐴35𝐷9)
− 𝐴15(𝐴31𝐷3 − 𝐴33𝐷8 + 𝐴34𝐷9), 

∆3= 𝐴13(𝐴11(𝐴22𝐷10 − 𝐴24𝐷11 + 𝐴35𝐷8)
− 𝐴13(𝐴31𝐷1 − 𝐴34𝐷7 + 𝐴35𝐷8)
+ 𝐴14(𝐴21𝐷11 − 𝐴22𝐷14 + 𝐴25𝐷13)
− 𝐴15(𝐴21𝐷12 − 𝐴22𝐷15 + 𝐴24𝐷13),   

∆4= 𝐴14(𝐴21(𝐴32𝐷2 − 𝐴33𝐷4 + 𝐴35𝐷6)
− 𝐴22(𝐴31𝐷2 − 𝐴33𝐷7 + 𝐴35𝐷9)
− 𝐴23(𝐴31𝐷4 − 𝐴32𝐷7 + 𝐴35𝐷16)
− 𝐴25(𝐴31𝐷6 − 𝐴32𝐷9 + 𝐴33𝐷16), 

∆5= 𝐴15(𝐴21(𝐴32𝐷3 − 𝐴33𝐷5 + 𝐴34𝐷6)
− 𝐴22(𝐴31𝐷3 − 𝐴33𝐷8 + 𝐴34𝐷9)
− 𝐴23(𝐴31𝐷5 − 𝐴32𝐷8 + 𝐴34𝐷16)
− 𝐴24(𝐴31𝐷6 − 𝐴32𝐷9 + 𝐴33𝐷16), 

𝐷1 = 𝐴44𝐴55 − 𝐴54𝐴45, 𝐷2 = 𝐴43𝐴55 − 𝐴53𝐴45,
𝐷3 = 𝐴43𝐴54 − 𝐴53𝐴44, 𝐷4

= 𝐴42𝐴55 − 𝐴52𝐴45, 𝐷5

= 𝐴42𝐴54 − 𝐴52𝐴44 , 𝐷6

= 𝐴42𝐴53 − 𝐴52𝐴43, 𝐷7

= 𝐴41𝐴55 − 𝐴51𝐴45, 𝐷8

= 𝐴41𝐴54 − 𝐴51𝐴44, 𝐷9

= 𝐴41𝐴53 − 𝐴51𝐴43, 𝐷10

= 𝐴34𝐴45 − 𝐴44𝐴35, 𝐷11

= 𝐴32𝐴45 − 𝐴42𝐴35, 𝐷12

= 𝐴32𝐴44 − 𝐴42𝐴34, 𝐷13

= 𝐴31𝐴42 − 𝐴41𝐴32, 𝐷14

= 𝐴31𝐴45 − 𝐴41𝐴35, 𝐷15

= 𝐴31𝐴42 − 𝐴41𝐴32, 𝐷16

= 𝐴41𝐴52 − 𝐴51𝐴42 
 
 

5. Inversion of the transformations 
 
To obtain the solution of the problem in physical 

domain, we must invert the transforms in Eqs. (35)-(41). 

Here the displacement components, normal and tangential 

stresses, conductive temperature and couple stress are 

functions of 𝑧 , the parameters of Laplace and Fourier 

transforms 𝑠 and 𝜉 respectively and hence are of the form 

𝑓 (𝜉 , 𝑧, 𝑠).  To obtain the function 𝑓(𝑥, 𝑧, 𝑡)  in the 

physical domain, we first invert the Fourier transform using 

𝑓̅(𝑥, 𝑧, 𝑡) =
1

2𝜋
∫ 𝑒−ἰ𝜉𝑥𝑓(𝜉 , 𝑧 , 𝑠)

∞

−∞

𝑑𝜉

=
1

2𝜋
∫  |𝑐𝑜𝑠 (𝜉 𝑥)𝑓𝑒

∞

−∞

−  𝑖𝑠𝑖𝑛(𝜉 𝑥)𝑓0|𝑑𝜉 .  

(50) 

where 𝑓𝑒and 𝑓0 are respectively the odd and even parts 

of𝑓(𝜉 , 𝑧 , 𝑠). Thus the expression (24) gives the Laplace 

transform 𝑓(̅ξ , 𝑧, s) of the function𝑓(𝑥, 𝑧, 𝑡). Following 

Honig and Hirdes (1984), the Laplace transform 

function𝑓(̅𝜉 , 𝑧, 𝑠) can be inverted to 𝑓(𝑥, 𝑧, 𝑡).  

The last step is to calculate the integral in Eq. (50). The 

method for evaluating this integral is described in Press et 

al.(1986). It involves the use of Romberg’s integration with 

adaptive step size. This also uses the results from successive 

refinements of the extended trapezoidal rule followed by 

extrapolation of the results to the limit when the step size 

tends to zero. 
 
 
6. Results and disscussions 

 
For numerical computations, following Sherief and 

Saleh (2005), we take the isotropic material (thermoelastic 

diffusion solid) as 
𝜆 = 7.76 × 1010𝐾𝑔𝑚−1𝑠−1   , 𝜇 = 3.86 ×
1010𝐾𝑔𝑚−1𝑠−1,   𝑇0 = 293𝐾, 𝐶∗ = 3831 ×
103𝐽𝐾𝑔−1𝐾−1, 𝛼𝑡 = 1.78 × 10−5𝐾−1 , 𝛼𝑐 = 1.98 ×
10−4𝑚3𝐾𝑔−1, 𝑎 = 1.02 × 104𝐾−1𝑚2𝑠−1, 𝑏 = 9 ×
105𝑚5𝑠−2𝐾𝑔−1, 𝜏 = 0.5𝑠, 𝜌 = 8.954 × 103𝐾𝑔𝑚−3, 𝐾 = 1, 𝐷 =
.85 × 10−8𝐾𝑔𝑠𝑚3, 𝛼𝜆 = 7.76 × 1010𝐾𝑔𝑚−1𝑠−1   , 𝜇 =
3.86 × 1010𝐾𝑔 = .05𝐾𝑔𝑚𝑠−2, 𝐾∗ =  0.3831 ×

103𝑊 𝑚−1, 𝛼1 = .02  ,and 𝐹1  is the force of constant 

magnitude of 1N. 

Components of displacement, stress, conductive 

temperatureand couple stress are computed numerically. 

Software GNU Octave has been used to determine and 

compare the values of normal stress, tangential stress, 

couple stress, conductive temperature and components of 

displacement for homogeneous isotropic thermoelastic 

medium with distance 𝑥  for two different values of 𝐾∗ 

graphically. 

(a) In Figs. 1-7, solid line with centre symbol 

(− 𝑜−) corresponds to 𝐾∗ =  0 and solid line 

with centre symbol (− Δ −)  corresponds 

to𝐾∗ =  0.3831 for isothermal boundaries. 

In Figs. 8-14, solid line with centre symbol (− 𝑜−) 

corresponds to 𝐾∗ =  0 and solid line with centre symbol 

(− Δ −)  corresponds to 𝐾∗ =  0.3831  for insulated 
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boundaries. 
 

0 0.5 1 1.5 2 2.5
distance x

0

200000000

400000000

600000000

800000000

d
is

p
la

c
e

m
e

n
t 
u

K

K

 

Fig. 1 Variation of distance  u with the distance 

 x(isothermal boundary) 
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Fig. 2 Variation of distance  w withthe distance 

 x(isothermal boundary) 

 
 

0 0.5 1 1.5 2 2.5
distance x

0

50000

100000

150000

200000

250000

c
o

n
d

u
c
ti
v
e

 t
e

m
p

e
ra

tu
re

 

K

K

 
Fig. 3  Variation of conductive temperatureφwith the 

distance  x(isothermal boundary) 
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Fig. 4 Variation of mass concentration C  with the 

distance  x(isothermal boundary) 
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Fig. 5 Variation of normal stress t33  with the distance 

 x(isothermal boundary) 
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Fig. 6 Variation of tangential stresst31 with the distance 

 x(isothermal boundary) 
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Fig. 7 Variation of couple stress m32with the distance 

 x(isothermal boundary) 
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Fig. 8 Variation of distance  u  with the distance 

 x(insulated boundary) 
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Fig. 9 Variation of distance  w  with the distance 

 x(insulated boundary) 
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Fig. 10 Variation of conductive temperatureφ with the 

distance  x (insulated boundary) 
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Fig. 11 Variation of mass concentration C with the 

distance  x (insulated boundary) 
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Fig. 12 Variation of normal stress t33 with the distance 

 x(insulated boundary) 
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Fig. 13 Variation of tangential stress  t31  with the 

distance  x (insulated boundary) 
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Fig. 14 Variation of couple stressm32 with the distance 

 x(insulated boundary) 

 

 

Figs. 1-7 shows the variation of displacement 

component 𝑢 , displacement component  𝑤 , conductive 

temperature 𝜑  , normal stress 𝑡33 , tangential stress 𝑡31 , 

couple stress 𝑚32with the distance𝑥 resp. for two different 

cases  𝐾∗ =  0.3831 and 𝐾∗ =  0 for isothermal 

boundaries and Figs. 8-14 corresponds to insulated 

boundaries. Displacement has oscillatory effect on all the 

physical components mentioned above. 
 
(a) Isothermal boundary 
 
In Fig. 1 displacement𝑢  decreases as 𝑥 increases for 

𝐾∗ =  0 and decreases for0 ≤ 𝑥 ≤2and the increases very 

slightly corresponding to 𝐾∗ = .3831 . In Fig. 2 

displacement 𝑤 varies oscillatory with small amplitude for 

𝐾∗ =  0 and varies oscillatory with large amplitude for 

𝐾∗ = .3831. The value of 𝑤 is less for 𝐾∗ = .3831 

than 𝐾∗ =  0 in the range 1.25 ≤ 𝑥 ≤ 1.75. In Fig. 3, 

corresponding to variation of conductive temperature both 

the curves are oscillatory with opposite behavior. In Fig. 4 

value of mass concentration decreases monotonically 

for 0 ≤ 𝑥 ≤ 1.5and increases monotonically for the rest of 

the range. Amplitude are greater for curve corresponding to 

𝐾∗ =  0 than 𝐾∗ = .3831. in Fig.3 and Fig.4 In Fig. 

5curve  depicting the variation of 𝑡33,corresponding to 

𝐾∗ =  0 decreases regularly 0 ≤ 𝑥 ≤ 2and increases for 

rest .Curve corresponding to 𝐾∗ = .3831 is oscillatory 

with blunt amplitude. In Fig. 6variation of 𝑡31 is similar to 

that of displacement𝑤 except that curve corresponding to 

𝐾∗ =  0 has large but thick amplitude. In Fig.7 value of 

couple stress decreases for0 ≤ 𝑥 ≤ 1.5and increases in the 

rest. Amplitudes of the curves are large. 

 

(b) Insulated boundary 
In Fig. 8 value of displacement 𝑢  decreases 

monotonically for 0 ≤ 𝑥 ≤ 1.5  and increases smoothly in 

the rest of the range corresponding to 𝐾∗ = 0   and 

decreases smoothly from 𝑢 = 325  to 𝑢 = 70 

appx.corresponding to𝐾∗ = .3831.In Fig. 9displacement𝑤 

shows oscillatory conduct with the distance 𝑥. Values of 𝑤 

for 𝐾∗ = .3831  are greater than that of  𝐾∗ = 0  i.e. 

curve corresponding to 𝐾∗ = 0.3831 is at higher position. 

In Fig. 10curves corresponding to 𝐾∗ = 0 and 𝐾∗ =
.3831. In Fig. 11 Value of Ccorresponding to  𝐾∗ =
 0.3831 decreases for 0 ≤ 𝑥 ≤ 1.5   and follow 

descending oscillatory behavior in rest of distance axes,  

and corresponding to  𝐾∗ =  0decreases for 0 ≤ 𝑥 ≤ 1.5  

and increases in rest.  In Fig. 12 normal stress curves 

corresponding to  𝐾∗ = 0.3831 and  𝐾∗ =  0 are 

oscillatory crossing each other at 𝑥 = 1.3 and 𝑥 = 2.3. 

Value of normal stress is higher near the loading 

surface.In Fig. 13 variation of the curves are similar  to 

variation of the curve for the variation of couple stress in 

Fig. 14 except the magnitude/value of normal stress and 

couple stress. Curves decreases monotonically for 0 ≤ 𝑥 ≤
1.5 and increases monotonically for the rest of the range 

for both the cases of 𝐾∗. Amplitude are smaller for curves 

corresponding to 𝐾∗ =  0than 𝐾∗ = .3831in both the Figs. 

 
 
7. Conclusions 
 

From the graphs, it is clear that there is a significant 

impact of thermal conductivity on the deformation of 

various components of stresses, displacement, conductive 

temperature, couple stress with two temperature. The effect 

of thermal conductivity in isotropic modified couple stress 

thermoelastic with two temperature and insulated and 

isothermal boundaries has an imperative impact in the 

investigation of the deformation of the body. As distance 𝑥 

varied from the point of application of the source, the 

components of normal stress, tangential stress, couple stress 

and conductive temperature pursue an oscillatory pattern. It 
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is seen that as the disturbances travel through different 

constituents of the medium, the variations of displacement 

components, normal stress 𝑡33, tangential stress 𝑡31 and 

conductive temperature 𝜑, it suffers  changes, result in an 

varying/ non- uniform pattern of curves. The trend of curves 

exhibits the effect of 𝐾∗on the medium and satisfies the 

required condition of the research. The results of this 

problem exceptionally valuable in the two dimensional 

problem of homogeneous isotropic thermoelastic solid with 

two temperature which has various geophysical and 

industrialised applications and helpful for designers of new 

materials. 
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