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Abstract.

In the present paper, free vibration analysis of angle-ply laminated composite annular and circular plates is

performed by numerical methods. First-order shear deformation plate theory is used for kinematic relations. The related
governing equations of motion are discretized via differential quadrature and discrete singular convolution methods. Frequency
values are obtained for different lamina scheme, thickness-to-radius ratio, and mode numbers. The advantages and accuracy of

these two methods are also tested in detail.
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1. Introduction

Circular and annular plates are widely used as an
essential structural component in many important
engineering applications like aerospace, marine,
automobile, rocket, components of pressure vessels, and
petro-chemical industries. For different purposes and usage
aim, they are made of different composite materials.
Anisotropic, laminated, and functionally graded composites
are well known material types in application areas. During
the 50 years of engineering applications, material properties
and new materials have also been taken into consideration
for modeling. It is known that, laminated composite
materials have been widely chosen in many engineering
applications. High strength-to-weight ratio is the best for
design. In the literature, some plate and shell theories have
been used during the past years Qatu (2004), Soedel (2004),
Reddy (2003), Civalek (2004), Bisadi et al. (2012), Akgoz
and Civalek (2012, 2017). At first, mathematical model is
derived via any plate theories. Secondly, it is required to
solve these differential equations for mechanical model.
Also, there are large numbers of numerical methods for
solution of the governing equations (Leissa 1993),
Tornabene et al. (2014), Civalek (1998). Plate and shell
components are generally subjected to some dynamic loads
or free motion. By this time, free vibration analysis of
annular and circular plates has received great attention by
design engineers. Su et al. (2014, 2015) applied numerical
technique for vibration analysis of laminated sector and
annular plates. Stability and vibration analysis of composite
sector plates have been made by Sharma et al. (2005).
Three-dimensional frequency response of thick laminated
annular sector plates has been investigated by Malekzadeh
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(2009) via differential quadrature method. Tornabene et al.
(2013, 2014, 2016) gave detailed formulation and solution
of curved plates and shells. Strong form finite element
method (FEM) formulation for plates has also been derived
by Fantuzzi and Tornabene (2014). Civalek (2006a, b, 2007,
2008a, b, 2013a, b, 2017) presented discrete singular
convolution (DSC) solution for vibration problems of shells
and plates. Detailed unified formulation and solution for
beams, plates, and shells have given by Wang et al. (20164,
b), Avcar (2015, 2019). Free vibration of functionally
graded moderately thick annular sector plates has been
made by Saidi et al. (2011) and Pang et al. (2017).
Viswanathan et al. (2009) discussed free vibration of
layered annular circular plate of variable thickness using
spline function approximation. Kahare and Mittal (2016,
2017) presented some solutions of circular and annular
plates via FEM. Arefi et al. (2018) have been supplied
numerical solution for carbon nanotube reinforced (CNTR)
cylindrical pressure under thermals effect. Effect of thermal
gradients on stress/strain distributions in a thin circular
symmetric plate was analyzed by Aleksandrova (2016).
Hyperbolic shear deformation theory for bending, buckling,
and free vibration of sandwich plates made of functionally
graded materials (FGM) was adopted by Abdelaziz et al.
(2017). Hamzehkolaei et al. (2011) presented a numerical
solution for thermal effect on axisymmetric bending of
functionally graded circular and annular plates using
differential quadrature method (DQM). Thermal stresses
and deflections of functionally graded sandwich plates
using a new refined hyperbolic shear deformation theory
have been investigated by Bouchafa et al. (2015). Bouderba
et al. (2016) analyzed the thermal stability of functionally
graded sandwich plates using a simple shear deformation
theory. Benchohra et al. (2018) also gave a detailed solution
for functionally graded plates via new quasi-3D sinusoidal
shear deformation theory. Natural vibration characteristics
of a clamped circular plate in contact with fluid have been
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solved by Jhung et al. (2005) and Azimi (1988). Tahouneh
(2014) presented some numerical solution for free vibration
analysis of bi-directional functionally graded annular plates
resting on elastic foundations. Yousefzadeh et al. (2018)
examined the dynamic response of functionally graded
annular/circular plate in contact with bounded fluid under
harmonic load. Quasi-3D static analysis of two-directional
functionally graded circular plates was solved by Wu and
Yu (2018). Also, state space meshless method for the 3D
analysis of FGM axisymmetric circular plates has been
applied by Wu and Yu (2016). Civalek and Demir (2011,
2016) and Demir and Civalek (2017) used numerical
methods for nano modeling.

In this manuscript, free vibration analysis of laminated
composite circular plate is performed via differential
quadrature (DQ) and discrete singular convolution (DSC).
The related governing equations of motion for circular plate
are obtained via conical shell equations. Effects of different
lay-up on frequencies of circular and annular laminated
plates are discussed. Also, performance of DSC method is
investigated in detail.

2. Solution methodology

Two different methods are used for solution. Firstly,
differential quadrature is used. In DQ, differential equation
transforms into a set of analogous algebraic equations as
below

oru N«
|, = T AR Uk, r=12,...., N, -1 1)
ox Xiolq
aSu NX .
= X BRu(xy);  s=12...N, -1 )
oy YTV ko
o0+ 9y _ 8 [ecu _ Ny © Ny ©
6x'6y5‘ xiyjiaxr{ays] xiyjik§1A'k 'mz::lBJmu( Xk’ym) (3)

The second, third, and fourth-order derivatives are
calculated via

N N
Bij= XAikAg Cy= %AikBkj,Dij: 2 A Cyj (4)
k=1 k=1 k=1

Discrete singular convolution (DSC) is suggested by
Wei (2001a, b) for the first time in order to fast solution of
the mathematical physics problems (Wang et al. 2012,
Civalek and Akgoz 2013, Gurses et al. 2012, Civalek and
Acar 2007, Demir et al. 2016, Civalek et al. 2016, Hou et
al. 2005, Civalek et al. 2010, Mercan and Civalek 2017). As
similar the other discrete numerical methods, the function
f () and its derivatives with respect to x coordinate at a grid
point x; are approximated by a linear sum of discrete values
f (x) in a narrow bandwidth [x-xum, X+Xy ] in DSC. Namely

d"f(x)

M
== 3
dxn

X = Xj k=-M

SO (= xi) f (xi) (5)

In this paper, the detailed formulation and mathematical
details of the DQ and DSC methods are not given;
interested readers may refer to the works of (Wei et al.
2001, Wei et al. 2002a, Wei et al. 2002b, Girses et al. 2009,
Baltacioglu et al. 2010, Baltacioglu et al. 2011, Civalek
2008, Civalek 2013, Duan et al. 2014, Civalek and Akgoz
2011, Mercan and Civalek 2016). It is mentioned that the
use of the regularized Shannon kernel (RSK) is very
effective. This kernel is as follows

sl - x ]| (- x)
5A,0(X Xk) (E/A)(X— Xk) exp[ 20-2 (6)
The solution is also made by DQM (Striz et al. 1995, Shu
and Xue 1997, Civalek 2004). Detailed formulations for DQ
and HDQ can be found in open literature.

3. Formulations

Consider a thick laminated circular plate as shown in
Fig. 1.
After using the only normal and rotary inertia (I, and I3),
terms, governing differential equations of motion via FSDT
can be given as
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Fig. 1 Geometry and notation of an annular plate
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LT cosa s -u-sina-COSa—(A22+A44) cosa —+A556 w
R & R*(x) R%(x) os
B Ging M, P Fw_ Ay ~w-cosZa+A558(/)*— Bie_ 0. 2
R(x) as R%(x) 6s> R*(x) ox  R(x) ox
. B,, . A 9)
+ Ass sina-p, ——%—sina-cosa-p, +—* 00,
R(x) R*(x) R(x) s
B 0 o’w
_ 222 .COS (Ds — Il >
R(x) 0s ot
B, ﬂ+ i ging - By 7o Bo 24, (Bt By) 0%
¢ R(X) X R? (x) TRt RK) s
(B22 + BS3) o Ass B,, cosa ow By, W-sinaCosa
R2(x) R(x) x R (x)
(10)
0%, sina dp, D, D33 0%,
+D,,—+ - sin — =
n o PrR xR0V TR a5
+ (Dy; +Dy;) %9, B (D222+ Dy,) 09, sina=1, 52(€x
R(x)  oxos R*(x) s ot
2 2 H
(B, +By) 9°u " (Bzzz"' Bs) a—usina+ 83357\2/_‘_ » sina ov
R(x)  oxos R°(x) os OX R(x) ox
ana»w- Bz, 02v+ Aus -V-COS o — Aus w, Bz, OS(X@
*¥R%(x) R?(x) 85>  R(X) R(x) & R2(x) os
, ) (11)
(Dyp + Ds3) 0°9, | (Dyy + Dy3) . O, _ 0o,

+ + sina—* - Dy;—
R(x)  oxos R%(x) os OX
sinadp, Dy o D,, op,

Dagi o TR0 % R as =l

For modal analysis, the below harmonic functions can be
used

u(x,s,t) U (x,s,t)
v(X,s,t) V(x,s,t)
wW(x,s,t) +=e'""s W(x,s,1) (12)
o, (X,8,1) ¥, (X,8,1)
o, (x,s,t) W, (X,S,t))

If Eq. (12) is written in Egs. (7)-(11), the final governing
equations can be expressed as matrix form (Viswanathan et
al.2015, Mehditabar et al. 2018)

L+ Ly, + Lig + Ly + Ly — ph-0® =0 (13a)

Loy + Loy + Logt Ly +Lps —ph -0 =0 (13b)

Loy U+Ly, VAl Wby, @, +Ly - @, —ph-0® =0 (13c)
LypU+Ly-Va Lg- W Ly - @, + Ly - D, — ph* - 0°/12=0 (13d)
Lp-U+Lg, V4L WL, - @, +Lg- D, —ph®-0°/12=0 (13e)

Differential operators in Egs. (13(a))-(13(e)) are listed in
Appendix.

4. Numerical solution of equation of motion

After adopted DSC method, the equations of motion of
plate can also be written as (Viswanathan et al. 2015,
Mehditabar et al. 2018)

BSCL,, U+, VL WL, -, + %L, - ) — ph-0® =0
L, U+, -V +25CL,, W4+, - @ + %L, - @ — ph-0® =0
DLy U+, VL WLy, 0,4+ 7Ly - @, — ph-0® =0 (14)
O5CL,, -U+PCL,, - V+P5L - WL, - @ +%CL,s - D — ph® - 0” /12=0
BSCLg, -U+L, V4L WL, - @ +2CL - @, — ph* - 0? /12 =0
Discrete form of these differential operators are as
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DSC operator are given as
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Similarly, coefficients related partial derivations in
DQM can also be written as
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After discretization, the related equations in DQM form are
as follows

2oL, - U+0L,, VAL WL, @ +70L, - D — ph-0® =0
PUL,, - U+™0L,, V4L, - W+, - @ +°L,, - D, — ph-»® =0
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The following boundary conditions are used
Simply supported edge (S)

V=0, W =0, N,=0, M,=0, ¥;=0=0 (49)
Clamped edge (C)
U=0, V=0, W =0,%,=0, ¥;=0 (50)

From the above procedures, one can derive the general form
of eigenvalue equation as follows

[G{X } = ABI{X (51)

5. Results

In this study, the following material properties are used
E,/E,=40, G,=G,,=06E,,, G,/E, =05

Vip = Vi3 =V =0.25

All obtained results are listed in Tables 1-4 for
laminated composite circular plate. Two different boundary
conditions and two different lay-up (45/-45/-45/45) and
(30/-30/-30/30) are also considered. Frequency values for
laminated (30/-30/-30/30) and (45/-45/-45/45) circular
plates with clamped edges (h/R =0.1, E;/E,=40) and simply
supoorted edges are tabulated in Tables 1-3, respectively.
Frequency values for laminated (45/-45/-45/45) circular
plates with clamped edges (h/R =0.1, E,/E,=40) for
different thickness-to-radius ratio are also listed in Table 4.
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Several further examples are also solved and results are
presented in Tables 5-10. For comparison purpose,
frequency values of laminated (0/60/0) circular plates with
clamped edges (a/h=5) are listed in Table 5. The results
obtained by using FEM is also given in Table 5 by Kahare
and Mittal (2018, 2016) for comparison. It is shown that the
present results are in close agreement with the data given by
Kahare and Mittal (2018). Thus, the mesh size of 11x11 is
used in the next numerical examples, if otherwise is not
mentioned. Other comparisons have also made for angle-ply
laminated annular and results have been compared with the
results by Viswanathan et al. (2013). For this purpose,
Kevlar-49/epoxy (KGE) and Graphite Epoxy (AS4/3501-6)
(AGE) materials are used and clamped-clamped boundary
condition is considered. The obtained results are presented
in Table 6. According to this table, it can be said that the
results are in excellent agreement with the results of
Viswanathan et al. (2013).

Table 1 Frequency (2, = wR?\/p/E,1?) for laminated
(30/-30/-30/30) circular plates with clamped edges (h/R
:O.l, E1/E2:40)

Present DSC results-FSDT(N=9)

Modes N,=9 N,=11 N,=13 N,=15 N,=17
1 241030 24.1028 241028 24.1028 24.1028
2 36.2178  36.2175 36.2175 36.2175 36.2175
3 441162  44.1159 44.1159 44.1159 44.1159
4 51.2389 51.2384 51.2384 51.2384 51.2384
5 56.4077  56.4072 56.4072 56.4072 56.4072

It is concluded from the results that the lamination ang
les and mode numbers have major effect on frequency.
It is seen that for all three modes, the frequency para
meter decreases when increasing the thickness-to-
radius ratio and increases by the increasing value of mode n
umbers.

Frequency values of laminated (0/30/0) circular plates with
clamped and simply supported edges are listed in Tables 7
and 8 for different thickness and modes. It can be concluded
that as the value of the thickness increased frequency
decreased for both of edges. It is also concluded that when
the number of modes increased frequency values also
increased gradually.

It is apparent from the results given in Tables 9-11 that the
frequencies decrease monotonically as lamina angles
increase. However, the effect of thickness is significant for
circular and annular plate vibration. It is clearly shown from
these tables that present DSC method converges very fast as
the number of grid points increases. It can be also seen that
the present DQ and DSC methods show a very good
convergence, and solutions obtained from the DSC method
are smaller than those produced from the DQ method.

Table 3 Frequency (Q, =wR’+/p/ E,h? ) for laminated (45/-

45/-45/45) circular plates with clamped edges (h/R =0.1,
E1/E,=40)

Present DSC results-FSDT(N=9)

Table 2 Frequency (o, = wr?,/p/E,h? ) for laminated (45/-

45/-45/45) circular plates with simply supported edges (h/R
:O.l, E1/E2:40)

Modes Nx=9 Ny=11 Ny=13 Ny=15 Ny=17
1 25.1826  25.1826 25.1826 25.1826 25.1826
2 40.1075  40.1073 40.1073 40.1073  40.1073
3 44,0850  44.0845 44.0845 44.0845 44.0845
4 57.8141 57.8137 57.8137 57.8137 57.8137
5 58.0143  58.0136 58.0134 58.0134 58.0134

Present DQ results-(Ns=9)

Modes  N.=9 N=1l o N=13 o N@15 N=17 Table 4 Frequency (o, — wr?./,/E,n? ) Values of laminated
1 17.8034 ~ 17.8032 17.8032 17.8032 17.8032 (45/-45/-45/45) circular plates with clamped edges (h/R
2 32.1048 321045 32.1045 32.1045 32.1045 =0.1, Ey/E,=40) for different thickness
3 411987  41.1985 41.1985 41.1985 41.1985 Present DSC results (N,=11)

4 52.0370  52.0366 52.0366 52.0366 52.0366 Mod h/R Ns=11 Ns=13 Ns=15 Ng=17
5 54.1032  54.1028 54.1028 54.1028 54.1028 0.001 46.7548 46.7548  46.7548  46.7548
Present DSC results-FSDT(N¢=9) 1 0.1 24.8539 24.8539  24.8539  24.8540

Modes N,=9 Ne=11  N=13 N&=15 N=17 0.2 15.0283 15.0283  15.0283  15.0284
1 17.8004  17.8004 17.8004 17.8004 17.8004 0.001 71.1438  71.1438  71.1438  71.1438
2 32,1037 321037 321037 32.1037 32.1037 2 0.1 40.1047  40.1047  40.1048  40.1051
3 411851  41.1853 41.1853 41.1853 41.1855 0.2 23.2196 23.2196 23.2196  23.2198
4 52.0340 52.0341 52,0341 520341 52.0343 0.001  111.0485 111.0485 111.0485 111.0485
5 53.9895 53.9903 53.9903 53.9903 53.9906 3 0.1 441173 441173 441173  44.1175

0.2 24.6046 24.6046 24.6046  24.6050
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Table 5 Comparison of frequency (Q = wa?./ph/ D ) Values
of laminated (0/60/0) circular plates with clamped edges

Present DSC

(a/h=5)
Khare Present DSC
and
Mod  Mittal 9x11  11x11  13x13  15x13

(2018)
1 66274 66402 66329 66329  6.6329
2 114553 114652 114639 114639 11.4639
3 132233 132515 13.2504 132504  13.2504
4 173143 173304 17.3293 17.3293  17.3293
5 182085 183125 183117 183117 183117
6 215002 216192 21.6185 216185 21.6185

Modes

11x11 13x11 13x13 15x13

1 7.5891 7.5891 7.5891 7.5891
2 13.7251  13.7247  13.7247  13.7247
3 17.6043  17.6033 17.6033  17.6033
0.05 4 22.7068  22.7056 22.7056  22.7056
5 249377 249371 249369  24.9369
6 33.0880 33.0864 33.0861 33.0861

Table 6 Comparison of frequency values of laminated
annular plates (30/-30/30/-30) with C-C edges

Viswanathan Present DSC results
Modes et al. (2013) (Ns=9)
N,=9 N=11 NE=13 N=17
1 0.26977  0.2706  0.2703  0.2703  0.2703
2 0.689585  0.6918  0.6911  0.6911  0.6911
3 1.246933 1.2480 1.2473 1.2473 1.2473

Table 7 Frequency (Q:a)az,/ph/ D) values of laminated
(0/30/0) circular plates with clamped edges

h/a Modes Present DSC
9x11 13x11 13x13 15x13
1 6.5298 6.5294 6.5294 6.5294
2 10.7335  10.7328  10.7328 10.7328
3 13.5211 13.5207  13.5207  13.5207
02 4 17.0040 17.0034 17.0034 17.0034
5 18.1031  18.1025 18.1025 18.1025
6 22.0074  22.0053 22.0051 22.0051
Present DSC
Modes
11x11 13x11 13x13 15x13
1 7.3298 7.3295 7.3295 7.3295
2 12.8911 12.8903 12.8903  12.8903
3 16.4645  16.4637 16.4637  16.4637
4 20.7156  20.7149  20.7149  20.7149
0.1 5 22,7408  22.7397  22.7397  22.7397
6 29.2314  29.2305 29.2303  29.2303

Table 8 Frequency (Q:a)az,/ph/D ) values of
laminated (0/30/0) circular plates with simply supported

edges
Present DSC
h/a Modes
9x11 13x11 13x13 15x13
1 3.6424 3.6417 3.6417 3.6417
2 7.8019 7.8012 7.8012 7.8012
3 10.3705 10.3689  10.3689  10.3689
02 4 136158 13.6146 13.6146 13.6146
5 149583 149571 149571 14,9571
6 17.3121  17.3108 17.3108 17.3108
Present DSC
Modes
9x11 13x11 13x13 15x13
1 3.8011 3.8004 3.8004 3.8004
2 8.7450 8.7442 8.7442 8.7442
3 11.5351 115339 115339  11.5339
01 4 16.0558  16.0547 16.0547  16.0547
5 175911 175883 175883  17.5883
6 234708 234691 23.4691  23.4691
Present DSC
Modes
9x11 13x11 13x13 15x13
1 3.8269 3.8265 3.8265 3.8265
2 9.0134 9.0127 9.0127 9.0127
0.05 3 12.0341  12.0329 12.0329 12.0329
4 16.9475  16.9467 16.9467  16.9467
5 18.6019  18.6010 18.6008  18.6008
6 247280  24.7265 247263  24.7263
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Table 9 Fundamental frequency (Q = wa?,/ph/D ) Of laminated annular plates (b/a=0.1;a/h=5) with S-S edges
Lamina Khare and Mittal Present DSC
scheme (2018) 9x11 11x11 13x13 15x13
0/15/0 10.0299 10.0675 10.0660 10.0657 10.0657
0/30/0 9.8554 9.8694 9.8687 9.8683 9.8683
0/45/0 9.6677 9.6848 9.6836 9.6832 9.6832
0/60/0 9.5606 9.5736 9.5728 9.5725 9.5725
0/75/0 9.5485 9.5580 9.5573 9.5569 9.5569
Table 10 Fundamental frequency (Q=wa?,/ph/D) Of laminated annular plates (b/a=0.5) with C-C edges
ah Lamina Present DSC results
scheme 9x11 11x11 13x11 13x13 15x13
0/15/0 35.1020 35.1018 35.1009 35.1009 35.1009
5 0/30/0 34.6868 34.6857 34.6857 34.6857 34.6857
0/45/0 33.9338 33.9334 33.9325 33.9325 33.9325
0/60/0 33.5375 33.5371 33.5362 33.5362 33.5362
Lamina Present DSC results
scheme 9x11 11x11 13x11 13x13 15x13
0/15/0 57.0262 57.0254 57.0250 57.0250 57.0250
0/30/0 56.0035 56.0030 56.0028 56.0028 56.0028
10 0/45/0 54.8942 54.8934 54.8931 54.8931 54.8931
0/60/0 53.8175 53.8172 53.8168 53.8167 53.8167
Lamina Present DSC results
scheme 9x11 11x11 13x11 13x13 15x13
0/15/0 76.0491 76.0482 76.0482 76.0482 76.0482
0/30/0 73.6420 73.6417 73.6410 73.6409 73.6409
20 0/45/0 71.6643 71.6635 71.6634 71.6634 71.6634
0/60/0 70.2846 70.2834 70.2831 70.2831 70.2831
Furthermore, some detailed performance of the present NN
DSC method based on two different kernels, some further _ 1 3
L= 7 2. 208 Sy (52)
convergence analyses are also made and accuracy of the (N +1)2 Ll it ] ]
two different kernels is examined for laminated plate. For ==
this, the method of DSC based on the two different kernels,
FEM (Civalek 1998), and DQM are performed. It is also 1 N N 2
known (Wei 2000, Wei 2001) that the range of some , = 5 ZZ‘S” Su‘ (53)
parameters arises in comparing the numerical efficiency of (N +1) i=0 j=0
DSC method such as r, N and kernel types and some of
them can be significant for some ranges. In this study, —
three different error measures are taken into consideration E — Sij —S” (54)
=

to evaluate the accuracy and convergence of the kernels and
quality of the present transformation rules via DSC method.
These are as follows
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Table 11 Fundamental frequency (g):a)a{/p/Ezh2 ) of laminated circular plates (h/a=0.1) with clamped edge

Present DSC (Regularized Shannon’s delta-RSD kernel)

Lamina scheme

9x9 11x11 13x11 13x13 15x13
0/-0/-0/0 23.0193 23.0161 23.0158 23.0158 23.0158
15/-15/-15/15 24.5801 24.5748 24,5739 24.5739 24.5739
30/-30/-30/30 25.5076 25.5066 25.5063 25.5063 25.5063
45/-45/-45/45 25.0095 25.0084 25.0081 25.0081 25.0081
Present DSC Lagrange delta sequence-LDS kernel
Lamina scheme
9x9 11x11 13x11 13x13 15x13
0/-0/-0/0 23.1156 23.1073 23.1076 23.1073 23.1073
15/-15/-15/15 24.5968 24.5867 245871 24.5867 24.5867
30/-30/-30/30 25.5231 25.5135 25.5135 25.5135 25.5135
45/-45/-45/45 25.0213 25.02446 25.02450 25.02446 25.02446
Present DQ
Lamina scheme
9x9 11x11 13x11 13x13 15x13
0/-0/-0/0 23.0261 23.0243 23.0243 23.0243 23.0243
15/-15/-15/15 24.6023 24.6012 24.6012 24.6012 24.6012
30/-30/-30/30 25.5108 25.5094 25.5094 25.5094 25.5094
45/-45/-45/45 25.0120 25.0112 25.0107 25.0107 25.0107
6
—s—r=2.56
—B— r=1.98
—A—1=1.56

% Errors

Fig. 2 Convergence and accuracy of clamped annular laminated (30/-30/30/-30) plates for 6" mode frequency (Lagrange
delta sequence-LDS kernel) with grid numbers
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10

—o6e— 7x11
— O0—-9xl1

—a— 11x11

%Error

Fig. 3 Convergence of simply supported circular laminated (45/-45/45/-45) plates for 7" mode frequency (Shannon

kernel) with DSC regularization

—6— L1(r=2.86)
—B—-L2(r=2.86)

—— Er (r=2.86)

Fig. 4 Error analysis of clamped annular laminated (30/-30/30/-30) plates for 6" mode frequency (Regularized

Shannon’s delta-RSD kernel; r=2.86)

where S;; and S‘L-]- are the results calculated by DSC
method via different kernels and exact/analytic or reference
solution and E, denotes the relative errors.

Firstly, the errors for 6" frequency values of S-S annular
plate with angle-ply laminated scheme with respect to the
results given by Viswanathan et al. (2013) are figured in

Figs. 2 and 3, respectively for two different kernels. It is
shown from these figures that the results are efficient for
N=11 in each direction. Also, results are very good for
Regularized Shannon’s delta (RSD) and 2.3<r=c/A <3.1
parameter. In order to evaluate these parameters, the errors
of the solution can be given as the three norms and are
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Fig. 5 Convergence of laminated annular plates for different modes with clamped edges with different grid numbers
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Fig. 6 Error analysis of angle-play laminated circular plates for 9" mode frequency with simply supported edges with
different grid numbers

illustrated in Fig. 4. Also, in Figs. 5 and 6, convergence is
tested for different modes and methods. It is found that as
the grid numbers increase the percentage error also
decreases. For DSC regularized parameter, r, DSC method
provides acceptable results with a maximum discrepancy of
1.15% for r=2.86 and N=11. Namely, a biggest value r is
required, to obtain the convergence for higher frequency
component of errors function. However, for N=15, this error
is reduced to 0.70% for same regularized parameter. So, the
DSC parameters can be more suitable as N=15 and o/A =
2.86 using Regularized Shannon’s delta (RSD) kernel. It is
also shown from these figures that only 11 grid points can

yield accurate results for frequency in lower modes.
However, in higher modes, the method of DSC requires 13
grids in each direction for accurate results. In order to
compare with other methods and to test the performance of
the DSC method, clamped annular laminated plate vibration
problem (Viswanathan et al. (2013) is selected and solved
by three different methods. It is shown that DSC results
using 13 grid points are more accurate than harmonic
differential quadrature (HDQ) and FE methods for higher
modes. A reasonably converged solution may be achieved
for 15 grids by FEM. In addition to this, a reasonably

converged solution may be obtained for 13 grid points using
HDQ.
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6. Conclusions

Frequency analyses of composite laminated circular
plates are examined by DQ and DSC methods. FSDT shell
theory is used for modeling of laminated circular plates.
Effects of different angle/lamination on frequency values of
laminated plates are investigated. The previous studies
showed that Shannon’s delta kernel gives the best result.
Also, DSC is more suitable for higher modes (first 30
modes are obtained) even not reported in this study.
Governing equations of motion of circular plates are
reduced by the conical shell equations of motion. For
computational calculation, two numerical methods are
applied. It is concluded from the results that two methods
have very good convergence. It is also concluded that the
method of discrete singular convolution (DSC) based on
Shannon’s delta kernel is a promising and potential
approach for computational mechanics of composite plates
for free vibration of higher modes.
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The related differential operators are as follows
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