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1. Introduction 

 

Recently, composite orthotropic laminated beam 

(COLB) and plate (COLP) structures have been used in 

enormous engineering applications, such as, in military, 

civil, mechanical, and aeronautical industries. Composite 

laminated structure has applicability to tolerate its strength, 

rigidity, stiffness and weight specifications. Thus, many 

researchers and engineers focused their researches and 

adopted different theories to illustrate bending, shearing, 

buckling, free and forced vibration behaviors of composite 

beam structure. 

In 2010, Kim et al. investigated the stability of thin-

walled composite beam subjected to eccentric constant axial 

force, end moments, and linearly varying axial force. 

Sedighi et al. (2012a, b) used analytical method to obtain 

the exact solution of dynamic behavior of the nonlinear 

vibration of buckled beam. Assie et al. (2011) developed 

numerical model to analyze the dynamical response of 

orthotropic viscoelastic COLP in time domain by using the  
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integral form of generalized Wiechert model. Eltaher et al. 

(2012, 2013a, b) investigated mechanical responses of 

functionally graded (FG) nanobeam structure by using 

differential constitutive form of Eringen model. Simsek and 

Reddy (2013) exploited higher order beam theories and 

modified couple stress to illustrate the buckling of FG 

microbeam embedded in Pasternak elastic medium. Eltaher 

et al. (2014a, b) modified previous model by considering 

shear effect to illustrate the mechanical bending, buckling 

and vibrational behaviors of thick nanobeams. Khater et al. 

(2014) investigated the impact of surface energy and 

thermal loading on the static stability of nanowires. Emam 

and Eltaher (2016) investigated buckling and post-buckling 

of composite beams in hydrothermal environments due to 

temperature variation and moisture absorption assuming 

temperature-moisture-dependent. She et al. (2017, 2018a) 

exploited refined beam model to study a thermal buckling 

and post-buckling of FG tubes subjected to a temperature 

and resting on elastic foundations. She et al. (2018b) 

predicted wave propagation of FG porous Reddy 

nanobeams in conjunction with the non-local strain gradient 

theory.  

Mohamed et al. (2018) developed differential 

quadrature procedure to forecast nonlinear forced vibration 

of curved beam in locality of post-buckling modes. 

Dehrouyeh-Semnani (2018) presented an analytical to 

investigate the non-linear response of curved FG beams 

subjected to induced temperature. Emam et al. (2018) 

investigated the post-buckling and free vibration behaviors 
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of imperfect composite nanobeams by using nonlocal 

elasticity differential model of Eringen. Bessaim et al. 

(2018) exploited a refined hyperbolic shear deformation 

theory to study buckling behaviors of nano-size FG beams 

embedded in elastic media. Eltaher et al. (2019a) predicted 

nonlinear post-buckling behaviors of curved carbon 

nanotube embedded in nonlinear elastic foundation by using 

modified energy equivalent model. Eltaher et al. (2019b) 

derived nonlinear integro-partial-differential equation of 

periodic and aperiodic configuration buckled beam to study 

nonlinear vibration behaviors of buckled imperfect beam. 

She et al. (2019a, b) employed nonlocal strain gradient 

theory to investigate snap-buckling of FG curved 

nanobeams under uniform temperature distributions across 

the thickness. Li et al. (2019) investigated thermal post-

buckling of sandwich honeycomb cores beams with FG 

negative Poisson's ratio. Hamed et al. (2019) studied the 

effect of porosity on static and dynamic of FG nanobeams. 

Abdalrahmaan et al. (2019) and Almitani et al. (2019) 

studied free and forced vibration of perforated beams with 

Euler and Timoshneko beam theories. Akbas (2019a, b) 

investigated the post-buckling of laminated composite and 

FG beams under hygrothermal effects by using finite 

element method. Mohamed et al. (2019) studied the effect 

of imperfection on static buckling of carbon nanotube rested 

on nonlinear elastic foundation.    

In real applications, such as, the aircraft wing, the 

stiffened plate in the ship structure, slabs of a multi-story 

building, the applied axial compressive loads are 

nonuniform distributed through the axial direction. Thus, 

the stability and mechanical behaviors of composite beam 

structure under the action of varying axial load are the main 

interest of many researchers. Farajpour et al. (2012) 

presented buckling response of orthotropic single layered 

graphene sheet under linearly varying in-plane load by 

using nonlocal continuum mechanics. Mijuškoviš et al. 

(2014) derived exact stress functions to study static stability 

of isotropic plates under uniaxial and biaxial compression. 

Sedighi and Daneshmand (2014) presented the high order 

frequency-amplitude relationship for nonlinear transversely 

vibrating beams with odd and even nonlinearities, using 

Homotopy perturbation method. Jun et al. (2016, 2017) 

exploited dynamic stiffness method and shear deformation 

theory to analyze the buckling and free vibration of axially 

loaded COLB. Akbas (2018a, b) investigated static and 

postbuckling behaviors of geometrically nonlinear simply 

supported laminated composite beam subjected to a non-

follower transversal point load at the midpoint of the beam. 

Akbas (2018c) investigated nonlinear static response of 

laminated composite beams under nonuniform temperature 

effects with temperature dependent physical properties. 

Karamanli and Aydogdu (2019) studied elastic buckling of 

isotropic, laminated composite and sandwich beams under 

numerous axially varying in-plane forces based on a 

modified shear deformable beam theory. Shimpi et al. 

(2019) presented two variables refined shear beam theory to 

study static bending and free vibrations of isotropic 

rectangular beams. Eltaher et al. (2020) investigated the 

buckling behavior of composite beam under varying in-

plane load by using unified beam theories.   

According to literature review and author’s knowledge 

no researchers have attempted to investigate the static 

stability of sandwich orthotropic laminated unified beam 

rested on elastic foundation under varying in-plane loads. 

This study aims to fulfill this gap. Different distributions of 

in-plane load are included in the study. The Winkler and 

Pasternak elastic foundations are introduced. The 

differential quadrature method (DQM) is exploited as 

numerical method to solve the governing equilibrium 

equations.  

The paper is organized as follows: Section 2 presents the 

problem formulation, that includes axial load distribution 

functions, kinematics displacement assumptions of unified 

beam theories, constitutive equations of sandwich beams, 

and derived equilibrium equations. Section 3 presents the 

solution procedure and discretization method of the beam 

structure using differential quadrature method. Section 4 is 

devoted to validation and parametric studies to preset 

effects of beam theories, type of loading, sandwich 

geometry, slenderness ratio, and elastic foundations on 

critical buckling loads. Main remarks and conclusion points 

are summarized and presented through section 5. 

 

 

2. Problem formulation 
 

The geometrical presentation of clamped-clamped 

sandwich composite beam rested on elastic foundation and 

subjected to axial distributed in-plane axial load are 

presented in Fig. 1.  

 

2.1 In-plane load function 
 

The variation of in-plane load in longitudinal direction 

has many practical applications such as the stiffened panel 

of aircraft wing. So, the axial force can be assumed to be 

constant, linear, and parabolic in the longitudinal direction. 

The proposed function depicting the variation of in-plane 

load through the longitudinal direction, can be represented 

as [Karamanli and Aydogdu (2019)] 

𝑁𝑎𝑥𝑖𝑎𝑙 (𝑥) = 𝑁𝑎𝑚𝑝 [𝛼0 + 𝛼1 .𝑥 +
𝐿

2
/ + 𝛼2 .𝑥 +

𝐿

2
/
2

] = 𝑁𝑎𝑚𝑝 𝐶(𝑥)  (1) 

where 𝑁𝑎𝑚𝑝 is the load amplitude. It is assumed that the 

positive load is a compressive. The distribution of s external 

loads can be controlled by constant coefficients (𝛼𝑖) of the 

polynomial described in Eq. (1). To conform results of any 

profile of load distribution, the integral of the each axially 

variable in-plane load through the length of the beam is 

equal to integral of the uniformly distributed in-plane load, 

Karamanli and Aydogdu (2019). Table 1 shows the value of 

load profile coefficients described in Eq. (1). 

 

2.2 Displacement field of unified beam  
 

Based on unified shear deformation that was proposed 

in 1993 by Soldatos and Timarci, displacement filed of 

sandwich beam can be described by [Simsek and Reddy 

(2013) and Jun et al. (2016)] 
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𝑢(𝑥, 𝑧) = 𝑢0(𝑥) − 𝑧
𝜕𝑤0(𝑥)

𝜕𝑥
+ 𝑓(𝑧)𝜑(𝑥)   (2a) 

𝑤(𝑥, 𝑧) = 𝑤0(𝑥)  (2b) 

in which the axial in-plane and transverse out of plane 

displacements are where 𝑢 and 𝑤. However, 𝑢0 and 𝑤0 

are axial and transverse displacements along the mid-plane 

of the beam, respectively. 𝜑 is the rotation of the normal to 

the mid-plane.  𝑓(𝑧)  is a function describing the shear 

deformation along the z-axis and satisfying the zero shear at 

the top and bottom surfaces. Based on beam shear theories, 

the shear functions are depicted by 

Parabolic shear deformation beam theory  (PSDBT) 

𝑓(𝑧) = 𝑧 .1 −
4𝑧2

3ℎ2
/  

(3a) 

Exponential shear deformation beam theory  (ESDBT) 

𝑓(𝑧) = 𝑧𝑒−2(𝑧 ℎ⁄ )2
 

(3b) 

Trigonometric shear deformation beam theory  

(TSDBT) 

𝑓(𝑧) = (
𝑕

𝜋
) 𝑠𝑖𝑛(𝜋𝑧 𝑕⁄ ) 

(3c) 

 

 

 

 

Hyperbolic shear deformation beam theory  (HSDBT) 

𝑓(𝑧) = 𝑕 𝑠𝑖𝑛𝑕(𝑧 𝑕⁄ ) − 𝑧 𝑐𝑜𝑠𝑕(1 2⁄ ) 
(3d) 

Strains accompanying with displacement fields, which 

defined by Eqs. (2) and (3) can be represented by 

𝜀𝑥 = 𝜀𝑥
0 + 𝑧𝑘𝑥

0 + 𝑓(𝑧)𝑘𝑥
2   (4a) 

𝛾𝑥𝑧 = 𝑔(𝑧)𝑘𝑥𝑧
𝑠

 (4b) 

in which 𝜀𝑥  and 𝛾𝑥𝑧  are the normal and shear strains 

respectively. The other normal (𝜀𝑦 , 𝜀𝑧)  and shear 

(𝛾𝑥𝑦 , 𝛾𝑦𝑧 ) strain components are zeros. The element 

components of normal and shear strain described in Eq. (4) 

can be written as 

𝜀𝑥
0 =

𝜕𝑢0

𝜕𝑥
 ,  𝑘𝑥

0 = −
𝜕2𝑤0

𝜕𝑥2
,     𝑘𝑥

2 =
𝜕𝜑

𝜕𝑥
 ,   

 𝑘𝑥𝑧
𝑠 = 𝜑   and    𝑔(𝑧) =

𝜕𝑓

𝜕𝑧
   

(5) 

 

2.3 Constitutive of laminated structure 
 

The stress-strain equations orient along lamina 

coordinates can be represented for in plane stress 

components and intra-laminar shear stress components as 

following, Assie et al. (2011)  

 

Fig. 1 Sandwich composite beam rested on elastic foundation and subjected to a distributed in-plane axial load 

Table 1 Coefficients of the axial varying load functions 

Load function Load Symbol 𝛼0 𝛼1 𝛼2 

Constant Load 𝑁𝑐𝑜𝑛  1 0 0 

Linear Load-zero from left side 𝑁𝐿𝐿  0 2 0 

Linear Load-zero from right side 𝑁𝐿𝑅  2 -2 0 

Parabolic Load-zero from left side 𝑁𝑃𝐿  0 0 3 

Parabolic Load-zero from right side 𝑁𝑃𝑅  3 -6 3 

Symmetric Parabolic Load 𝑁𝑃𝑆  0 6 -6 
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{

𝜎𝑥
𝜎𝑦
𝜎𝑥𝑦

} = [

𝑄̅11 𝑄̅12 𝑄̅16
𝑄̅12 𝑄̅22 𝑄̅26
𝑄̅16 𝑄̅26 𝑄̅66

] {

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

}  (6a) 

{
𝜎𝑦𝑧
𝜎𝑥𝑧

} = *
𝑄̅44 𝑄̅45
𝑄̅45 𝑄̅55

+ {
𝛾𝑦𝑧
𝛾𝑥𝑧

}  (6b) 

in which the transformed reduced stiffness material 

constants at any fiber orientation angle (𝜃) can be given 

by, Reddy (2003) 

𝑄̅11 =
𝑄11 𝐶𝑜𝑠

4(𝜃) +
2,𝑄12 + 2𝑄66- 𝑆𝑖𝑛

2(𝜃)𝐶𝑜𝑠2(𝜃) + 𝑄22 𝑆𝑖𝑛
4(𝜃)

  

(7a) 

𝑄̅12 = ,𝑄11 + 𝑄22 − 4𝑄66- 𝑆𝑖𝑛
2(𝜃)𝐶𝑜𝑠2(𝜃)

+ 𝑄12 ,𝑆𝑖𝑛
4(𝜃) + 𝐶𝑜𝑠4(𝜃)- (7b) 

𝑄̅22 =
𝑄11 𝑆𝑖𝑛

4(𝜃) + 2,𝑄12 + 2𝑄66- 𝑆𝑖𝑛
2(𝜃)𝐶𝑜𝑠2(𝜃) +

𝑄22 𝐶𝑜𝑠
4(𝜃)  

(7c) 

𝑄̅16 = ,𝑄11 − 𝑄12 − 2𝑄66- 𝑆𝑖𝑛(𝜃)𝐶𝑜𝑠
3(𝜃)

+ ,𝑄12 −𝑄22
+ 2𝑄66- 𝑆𝑖𝑛

3(𝜃)𝐶𝑜𝑠(𝜃) 
(7d) 

𝑄̅26 = ,𝑄11 − 𝑄12 − 2𝑄66-  𝑆𝑖𝑛
3(𝜃)𝐶𝑜𝑠(𝜃)

+ ,𝑄12 − 𝑄22
+ 2𝑄66- 𝑆𝑖𝑛(𝜃)𝐶𝑜𝑠

3(𝜃) 
(7e) 

𝑄̅66 = ,𝑄11 + 𝑄22 − 2𝑄12
− 2𝑄66-  𝑆𝑖𝑛

2(𝜃)𝐶𝑜𝑠2(𝜃)
+ 𝑄66 ,𝐶𝑜𝑠

4(𝜃) + 𝑆𝑖𝑛4(𝜃)- 
(7f) 

and the transformed reduced shear stiffness material 

constants are represented by 

𝑄̅44 = 𝑄44 𝐶𝑜𝑠
2(𝜃) + 𝑄55 𝑆𝑖𝑛

2(𝜃)  (8a) 

𝑄̅55 = 𝑄44𝑆𝑖𝑛
2(𝜃) + 𝑄55  𝐶𝑜𝑠

2(𝜃)  (8b) 

𝑄̅45 = ,𝑄55 − 𝑄44- 𝑆𝑖𝑛(𝜃) 𝐶𝑜𝑠(𝜃)    (8c) 

The material stiffness constant can be obtained in terms 

of engineering constants as 

𝑄11 =
𝐸1

1−𝜗12𝜗21
 ,   𝑄12 =

𝜗12𝐸2

1−𝜗12𝜗21
 , 𝑄22 =

𝐸2

1−𝜗12𝜗21
 ,  𝑄44 = 𝐺23 , 𝑄55 = 𝐺13 , 𝑄66 = 𝐺12   

(9) 

Based on the unified shear deformation beam theory, the 

force, the moment and unified bending moment resultants 

along the in-plane are defined by 

{
𝑁
𝑀
𝑃
} = [

𝐴 𝐵 𝐸
𝐵 𝐷 𝐹
𝐸 𝐹 𝐻

] {
𝜀0

𝑘0

 𝑘2
}  (10) 

However, the nonzero shear force can be described as 

function of shear strain and transformed shear rigidities by 

𝑅𝑥𝑧 = (𝐹55 − 𝐹45
2 𝐹44⁄ )𝑘𝑥𝑧

𝑠 = (𝐹̅55)𝑘𝑥𝑧
𝑠    (11) 

All transformation matrices are presented in Appendix A. 

 

2.4 Governing equations 
 
Based on the constitutive equations and Hamilton’s 

principle, equilibrium equations of unified composite 

sandwich beam rested on elastic foundation and subjected 

to the in-plane distributed load can be represented by 

𝐴̅11 𝑢0
′′ − 𝐵̅11𝑤0

′′′ + 𝐸̅11𝜑
′′ = 0 (12a) 

𝐵̅11 𝑢0
′′′ − 𝐷̅11𝑤0

′′′′ + 𝐹̅11𝜑
′′′

+𝑁𝑎𝑚𝑝, 𝐶(𝑥)𝑤0
′ − 𝑅(𝑥)𝑤0

′′-

+ 𝐾𝑤𝑤0 − 𝐾𝑝𝑤0
′′ = 0 

(12b) 

𝐹̅55 𝜑 − 𝐸̅11𝑢0
′′ + 𝐹̅11𝑤0

′′′ − 𝐻̅11𝜑
′′ = 0 (12c) 

in which, the axial load and its variation can be computed 

by 

 𝑅(𝑥) = ∫ 𝑁𝑎𝑥𝑖𝑎𝑙 (𝑥̅) 𝑑𝑥̅
𝑥̅=𝐿/2

𝑥̅=𝑥
= 𝑁𝑎𝑚𝑝 (

𝛼2

3
𝐿3 +

𝛼1

2
𝐿2 +

𝛼0

2
𝐿 − (

𝛼2

3
.𝑥 +

𝐿

2
/
3
+

𝛼1

2
.𝑥 +

𝐿

2
/
2
+ 𝛼0𝑥))  

(13a) 

𝑑𝑅(𝑥)

𝑑𝑥
= −𝑁𝑎𝑚𝑝 (𝛼2 .𝑥 +

𝐿

2
/
2

+ 𝛼1 .𝑥 +
𝐿

2
/ + 𝛼0) =

−𝑁𝑎𝑚𝑝  𝐶(𝑥)   
(13b) 

The boundary conditions for sandwich composite beam 

can be evaluated by 

,𝐴̅11 𝑢0
′ − 𝐵̅11𝑤0

′′ + 𝐸̅11𝜑
′-𝛿𝑢0 = 0 (14a) 

[−𝐵̅11 𝑢0
′′ + 𝐷̅11𝑤0

′′′ − 𝐹̅11𝜑
′′

+𝑁𝑎𝑚𝑝 𝑅(𝑥)𝑤0
′ ]𝛿𝑤0 = 0 

(14b) 

,−𝐸̅11𝑢0
′ + 𝐹̅11𝑤0

′′ − 𝐻̅11𝜑
′-𝛿𝜑 = 0 (14c) 

,𝐵̅11 𝑢0
′ − 𝐷̅11𝑤0

′′ + 𝐹̅11𝜑
′-𝛿𝑤0

′ = 0 (14d) 

where 𝐾𝑤 and 𝐾𝑝 are the spring constants of the Winkler 

and Pasternak elastic medium, respectively. 

 

 

3. Solution procedure  

 
Due to the simplicity and efficiency of the differential 

quadrature method (DQM) is used in solving the differential 

equations used in many engineering applications [buckling, 
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post-buckling and free vibration of imperfect beam 

Mohamed et al. (2018), buckling and postbuckling of CNTs 

Eltaher (2019b), stability of periodic and non-periodic 

imperfect beams Eltaher et al. (2019c)], therefore, DQM is 

proposed as solution technique to solve the current model. 

The governing equations of motion of unified composite 

beam under the axial distributed load Eq. (12) and 

corresponding boundary conditions Eq. (14) are solved by 

the differential quadrature method DQM. Let the beam 

length be discretized using N  nodes. The Chebyshev–

Gauss–Lobatto distribution of the discrete nodes on the 

beam is employed such that 

𝑥𝑖 = −
𝐿

2
+

𝐿

2
.1 − 𝑐𝑜𝑠 .𝜋

𝑖−1

𝑁−1
// ,    𝑖 = 1,2,⋯ ,𝑁    (15) 

Using the DQM, different order derivatives of a function 

at a given node can be approximated using a weighted sum 

of the function values at all discrete nodes in its domain. 

The first order derivative of function f(x) at node xi can 

be approximated using the DQM as follows 

𝑑𝑓

𝑑𝑥
|
𝑥=𝑥𝑖

= ∑ 𝒹𝑖𝑗   𝑓𝑗
𝑁

𝑗=1
   ,    𝑖 = 1,2,⋯ ,𝑁    (16) 

where 𝑓𝑗 = 𝑓(𝑥𝑗)  and 𝒹ij  denote the corresponding 

weighting coefficients. The weighting coefficients can be 

expressed as follows, Shu (2000) 

𝒹𝑖𝑗 =
1

𝑥𝑗 − 𝑥𝑖
(
𝑃𝑖
𝑃𝑗
) ,   𝑖 ≠ 𝑗         𝑎𝑛𝑑        

 𝒹𝑖𝑖 = −∑ 𝒹𝑖𝑗
𝑁
𝑗=1,𝑗≠𝑖       

(17) 

in which 

𝑃𝑖 = ∏ (𝑥𝑖 − 𝑥𝑗)
𝑁
𝑗=1,𝑗≠𝑖 , 𝑖, 𝑗 = 1,2,⋯ ,𝑁     (18) 

In matrix form, let the discrete values of 𝑓𝑖 = 𝑓(𝑥𝑖) at 

different nodes be given as a vector                 

 𝑓 = ,𝑓1, 𝑓2, ⋯ , 𝑓𝑁-
𝑇. Also, let its first derivative vector be F, 

then 

𝐹 = 𝒟(1) 𝑓     (19) 

where 𝒟(1) = [𝒹ij] is the weighting 𝑁 × 𝑁 matrix of the 

first order derivative. The weighting coefficients matrices 

for higher-order derivatives can be determined via matrix 

multiplication. Let the matrices 𝒟(1), 𝒟(2), 𝒟(3) and 𝒟(4) 

be respectively the coefficients matrices corresponding to 

the first, second, third and fourth derivatives. The unknown 

variables in Eq. (12) are discretized to three unknown 

vectors  U = ,u1, u2, … , ui, … , uN-
T , 

W = ,w1, w2, … , wi, … , wN-
T,  and 

 φ = ,φ1, φ2, … , φi, … , φN-
T  where  ui = u0(xi) , 

wi = w0(xi) and φi = φ0(xi), i = 1,2,⋯ , N.  Also, the 

given axial load functions C(x) and R(x) appearing in Eq. 

13 are discretized respectively as known vectors C =
,c1, c2, … , ci, … , cN-

T and R = ,r1, r2, … , ri, … , rN-
T.  

Accordingly, terms as u0
′  , w0

′′′, φ′′  are discretized 

respectively by the vectors 𝒟(1)U,𝒟(3)W  and  𝒟(2)φ . 

However, to discretize the function ( R(x)w0
′′ − C(x)w0

′ ) 
in Eq. (30b), special matrices multiplications operators are 

essential. The first is the element by element operator  ′ ∘ ′  

defined for matrices 𝒜,ℬ , 𝒞 having the same dimensions 

such that 𝒞 = 𝒜 ∘  ℬ  implies that  𝒞ij = 𝒜ij ℬij . The 

second is the vector matrix multiplication operator  ′⨂′  

defined for a vector 𝒱 and matrix 𝒜  having the same 

number of rows such that 𝒞 = 𝒱⨂𝒜  implies that 𝒞ij =

𝒱i ℬij . The discrete vector of ( R(x)w0
′′ − C(x)w0

′ )  is 

given by  V = R ∘ (𝒟(2)W) − C ∘ (𝒟(1)W) . Using the 

operator ⨂ , this vector can be better written as V =

(R⨂𝒟(2))W − (C⨂𝒟(1))W or as  V = SW where matrix 

S is defined by 

S = (R⨂𝒟(2)) − (C⨂𝒟(1))  (20) 

The discrete algebraic system corresponding to Eqs. 

(12) can now be written as 

[

𝐴̅11𝒟
(2) −𝐵̅11𝒟

(3) 𝐸̅11𝒟
(2)

𝐵̅11𝒟
(3) −𝐷̅11𝒟

(4) + 𝐾𝑤 𝐼 − 𝐾𝑝𝒟
(2) 𝐹̅11𝒟

(3)

−𝐸̅11𝒟
(2) 𝐹̅11𝒟

(3) 𝐹̅55𝐼 − 𝐻̅11𝒟
(2)

] [
𝑈
𝑊
𝜑
] =

𝑁𝑎𝑚𝑝 [
𝑂 𝑂 𝑂
𝑂 𝑆 𝑂
𝑂 𝑂 𝑂

] [
𝑈
𝑊
𝜑
]   

(21) 

where I is the identity matrix of order 𝑁 and O is the 

zero matrix of order 𝑁 × 𝑁. The boundary conditions Eq. 

(14) are discretized and properly substituted into Eq. (21). 

The resulting system is a generalized eigenvalue problem 

that can easily be solved for the eigenvalues (buckling 

loads) and eigenvectors (mode-shapes). The amplitude of 

fundamental buckling load 𝑁𝑎𝑚𝑝  is the smallest 

eigenvalue of the system. 

 

 

4. Numerical results 

 
Numerical studies are devoted to different sections. In 

the first section, the model will be validated and compared 

with published papers. Effects of sandwich ratio, load type 

and slenderness ratio on buckling loads of sandwich beams 

will be presented and discussed in section two. The effect of 

elastic foundation parameters on the sandwich beam under 

varying in-plane load will be illustrated in last section. The 

beam consider through numerical studies, will have the 

following material properties 𝐸3 = 𝐸2; 𝐺12 = 𝐺13 = 0.5𝐸2; 

𝐺23 = 0.2𝐸2; 𝜐12 = 𝜐13 = 𝜐23 = 0.25, and have clamped-

clamped boundary conditions.  

 

4.1 Validation 
 
To verify the proposed model, authors adopted previous 

model of Karamanli and Aydogdu (2019), which was solved 

by Ritz procedure, to be solved by DQM in the current 

analysis. The dimensionless critical buckling loads of 

symmetric [0°/θ/0°] composite beam is shown in Table 2. 

Buckling loads are evaluated at the following conditions: 

slenderness ratio 
𝐿

ℎ
= 20,       modulus elasticity 

ratio 
𝐸1

𝐸2
= 25,  

different axial load function,   and    different angle of 

orientation. 

79



 

Mostafa A. Hamed, Salwa A Mohamed and Mohamed A. Eltaher 

 

 

 

 

 
As shown form Table 2, by increasing the orientation 

angle, the critical buckling loads will be decreased.. The 

maximum buckling load is observed in parabolic variation 

of load from the right 𝑁𝑃𝑅 , however, the minimum critical 

load is predicted in case of parabolic variation from left 

𝑁𝑃𝐿 . From this table, the current results are identical with 

previous work of Karamanli and Aydogdu (2019) within 

max difference of 0.5%. 

 

 

 

 

 

 

 

4.2 Sandwich beam without elastic foundation  
 
4.2.1 Effect of shear functions  
Effect of proposed shear functions used in beam theories 

on the critical buckling loads of sandwich orthotropic 

composite beam ,0° 90° 0°- with varying load, varying 

slenderness ratio, and varying the thickness of the core layer 

are presented in Table 3. As noticed, the higher buckling 

load is observed in case of exponential shear distribution 

(ESDBT) and the lowest buckling load is detected for  

 

Table 2 Critical Buckling loads of [0°/θ/0°] laminated beam with different axial in plane loads 

 Angle 𝑵𝒄𝒐𝒏  𝑵𝑳𝑳  𝑵𝑳𝑹  𝑵𝑷𝑳  𝑵𝑷𝑹  𝑵𝑷𝑺  

Present  
0° 

47.6967 36.7846 64.0139 33.1590 76.8934 45.5210 

Karamanli 47.6910 36.7832 63.9673 33.1581 76.5962 45.5185 

Present  
30° 

45.7375 35.3262 61.1048 31.8632 73.0642 43.6035 

Karamanli 45.7322 35.3248 61.0559 31.8623 72.7507 43.6015 

Present  
45° 

43.7170 33.8308 58.0637 30.5377 69.0205 41.6204 

Karamanli 43.7122 33.8296 58.0117 30.5369 68.6904 41.6192 

Present  
60° 

41.5712 32.2509 54.8007 29.1402 64.6492 39.5109 

Karamanli 41.5672 32.2499 54.7439 29.1395 64.3122 39.5108 

Present  
90° 

39.2181 30.5249 51.2045 27.6157 59.8270 37.1984 

Karamanli 39.2151 30.5241 51.1407 27.6152 59.5063 37.1994 

Table 3 Critical buckling loads of , °   °  °- sandwich beam at different beam theories and axial in-plane lo

ads,(  /  =   )  

   Load type 

   𝑁𝑐𝑜𝑛 𝑁𝐿𝐿 𝑁𝐿𝑅 𝑁𝑃𝐿 𝑁𝑃𝑅 𝑁𝑃𝑆 

𝑳/ =   𝑕2/𝑕1 = 1 PSDBT 5.3464 4.3233 6.6687 3.9902 7.7802 5.0010 

ESDBT 5.6118 4.4746 7.1651 4.1047 8.4827 5.2861 

TSDBT 5.4825 4.4076 6.9093 4.0378 8.1168 5.1298 

HSDBT 5.3434 4.3211 6.6490 3.9965 7.9008 4.9366 

𝑕2/𝑕1 = 3 PSDBT 3.8618 3.1692 4.7126 2.9452 5.4289 3.6021 

ESDBT 4.0204 3.2600 4.9918 3.0145 5.8045 3.7562 

TSDBT 3.9335 3.2076 4.8566 2.9711 5.6020 3.6687 

HSDBT 3.8594 3.1664 4.7090 2.9434 5.2979 3.6188 

𝑕2/𝑕1 = 10 PSDBT 3.1662 2.6795 3.6825 2.5206 4.0952 2.9447 

ESDBT 3.3809 2.8317 3.9821 2.6527 4.4771 3.1466 

TSDBT 3.2663 2.7490 3.8249 2.5808 4.2744 3.0414 

HSDBT 3.1508 2.6796 3.6730 2.5263 4.0811 2.9454 

𝑳/ =    𝑕2/𝑕1 = 1 PSDBT 38.7111 30.2847 49.9802 27.4462 57.8950 36.7508 

ESDBT 38.0068 29.7531 49.0885 26.9646 57.0480 36.0659 

TSDBT 38.3397 30.0030 49.4973 27.1884 57.3962 36.3864 

HSDBT 38.7402 30.3057 50.0327 27.4636 57.6423 36.7793 

𝑕2/𝑕1 = 3 PSDBT 30.7611 24.1366 39.3204 21.8964 44.9843 29.1493 

ESDBT 30.5331 23.9709 39.0760 21.7445 44.8717 28.9467 

TSDBT 30.6087 24.0279 39.1323 21.7939 44.8556 29.0139 

HSDBT 30.7762 24.1517 39.3390 21.9043 45.0134 29.1685 

𝑕2/𝑕1 = 10 PSDBT 21.8415 16.8626 29.2734 15.2039 35.0237 20.8783 

ESDBT 22.1580 17.0906 29.7944 15.4024 35.7787 21.1987 

TSDBT 21.9859 16.9657 29.5091 15.2935 35.3653 21.0225 

HSDBT 21.8293 16.8559 29.2559 15.1957 34.9948 20.8660 
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hyperbolic shear distribution (HSDBT). It is also noted that, 

the buckling loads for parabolic shear distribution (PSDBT) 

and hyperbolic shear are much closer to each other. The 

buckling load for trigonometry shears function (TSDBT) 

lies between PSDBT and ESDBT.  

From Table 3, it is noticed that, the highest buckling 

load is observed in case of 𝑁𝑃𝑅 and the minimum critical 

load is found at 𝑁𝑃𝐿, at the same other conditions. So that, 

the parabolic in-plane load function is the most significant 

function on the buckling loads rather than the linear and 

constant functions. 

 

4.2.2 Effect of sandwich core thickness 
It is observed from Table 3, in case of L/h=5, PSDBT 

and 𝑁𝑐𝑜𝑛 by increasing 𝑕2/𝑕1 from 1 to 10, the buckling 

load will be decreased 5.3464 to 3.1662, which means a 

reduction of buckling loads by 40%. So that, as the 

thickness of core increased the buckling load will be 

decreased. This reduction due to the increasing of the  

thickness of the 90° layer, which has a less stiffness rather 

than surface layers those have 0°. 
 

4.2.3 Higher buckling loads 
Influences of sandwich thickness, slenderness ratio, load 

functions on the 1
st
 three buckling critical buckling loads of  

,0° 90° 0°- sandwich beam structure are presented in Table 

4. As predicted from the table, the critical buckling loads 

are more pronounced by the slenderness ratio rather than 

sandwich thickness and load function. It is noticed, by  

 

 

 

increasing the slenderness ratio from 5 to 20; the 1
st
  

buckling load will be increased from 4.02 to 30.53, the 2
nd

 

buckling load increased from 5.029 to 38.136, and the 3
rd

 

buckling load increased from 6.255 to 47.815, at 𝑵𝒄𝒐𝒏 and 

h2/h1 = 3. It is noted at 𝐿/𝑕 = 5 and load function of 

𝑁𝑐𝑜𝑛, as the sandwich thickness increases from 3 to 8, the 

1
st
 buckling load will be decreased from 4.02 to 3.42, the 

2
nd

 buckling load will be reduced from 5.029 to 4.0 and the 

3
rd

 buckling load will be decreased from 6.255 to 4.998.  

Thus, it can be concluded that, the critical buckling loads 

increased by increasing the slenderness ratio and decreasing 

the sandwich ratio of sandwich beam structures. 

The variation of the 1
st
 buckling mode with respect to 

the in-plane axial load function is presented in Fig. 2. As 

presented, the mode-shapes are non-symmetric due to the 

type in-plane load function. The parabolic function 

changing from the right 𝑵𝑷𝑹 is the most significant mode 

distorted mode from symmetric position, and the parabolic 

function from the left 𝑵𝑷𝑳 is the closet mode to symmetry 

position. 

The effect of the in-plane load function on the first three 

mode shapes of sandwich clamped beam is illustrated in Fig. 

3. As shown, normalized deflection of the 1
st
, 2

nd
 and third 

mode shapes for each load function are plotted in the same 

figure. It is noted that, all modes for the six in-plane load 

function are nonsymmetric from the normal modes, and all 

of them are shifted to the left. The 𝑁𝑃𝑅 load function is the 

most effective load function on the three mode shapes. 

 

Table 4 The First three buckling loads of sandwich beam (𝐸1/𝐸2 = 25, 𝜃 = ,0° 90° 0°-) with different slenderness 

and sandwich ratios  

Slenderness 

Ratio 

Sandwich 

Ratio 
mode 

Axial load type 

𝑵𝒄𝒐𝒏 𝑵𝑳𝑳 𝑵𝑳𝑹 𝑵𝑷𝑳 𝑵𝑷𝑹 𝑵𝑷𝑺 

𝑳/ =   

  /  = 𝟑 

1 4.0204 3.2600 4.9918 3.0145 5.8045 3.7562 

2 5.029 3.839 6.820 3.479 8.571 4.642 

3 6.255 5.148 9.704 4.450 13.108 6.593 

  /  = 𝟖 

1 3.420 2.859 4.051 2.666 4.553 3.182 

2 4.001 3.178 5.091 2.929 6.113 3.661 

3 4.998 3.886 6.701 3.410 8.080 4.644 

𝑳/ =    

  /  = 𝟑 

1 30.5331 23.9709 39.0760 21.7445 44.8717 28.9467 

2 38.136 30.591 46.874 28.054 54.068 35.436 

3 47.815 39.567 58.519 36.801 68.124 44.798 

  /  = 𝟖 

1 24.009 18.582 31.931 16.769 37.899 22.913 

2 27.702 21.432 37.236 19.358 44.953 26.385 

3 32.801 25.831 40.883 23.492 46.858 30.631 

𝑳/ =    

  /  = 𝟑 

1 51.823 39.341 73.246 35.218 92.720 50.209 

2 92.861 69.069 134.202 61.521 172.540 88.611 

3 155.913 119.743 212.074 107.403 252.285 151.533 

  /  = 𝟖 

1 34.887 26.411 49.701 23.627 63.394 33.853 

2 65.850 48.559 97.848 43.108 129.899 63.212 

3 117.764 89.068 168.555 79.425 210.737 115.863 

81



 

Mostafa A. Hamed, Salwa A Mohamed and Mohamed A. Eltaher 

 

 

 

4.3 Sandwich beam with elastic foundation 
 
This section is devoted to illustrating the influence of 

elastic foundation constants on the critical buckling loads of 

clamped sandwich beam under different in-plane load 

function, sandwich ratio. These influences are presented in 

Tables 5 and 6 at slenderness ratios  𝑳/  of 5 and 20, 

respectively. The qualitative presentations of these tables 

are presented in Figs. 4-7.       

As shown in Fig. 4, the critical buckling load is 

decreased by increasing the sandwich ratio, due to 

increasing the thickness of the core material that has lower 

stiffness relative to the face layers that have the higher 

stiffnesses. The highest buckling load is observed in case of 

𝑁𝑃𝑅  loading function. It is observed by increasing the 

Pasternak foundation constant 𝐾𝑝  , the critical buckling 

load is decreased, at the same other parameters (load type, 

sandwich ratio, slenderness ratio and Winkler parameter). 

From Fig. 5, which represent the effect of Winkler 

parameter on the critical buckling loads, it can be concluded 

that, the Winkler parameter tends to decrease the critical 

buckling load at the same other parameters. The same effect 

observed in case of Pasternak parameter on the buckling 

load is notticed in case of Winkler parameter. So, the 

Pasternak and Winkeler paramters have the same effect on 

the critical buckling loads of sandwich beam. 

 

 

 

 

 

 

5. Conclusions 
 

The buckling stability and associated mode-shapes of 

the sandwich laminated beam rested on the Winkler and 

Pasternak elastic foundation and subjected to in-plane axial 

load with different distribution function is the main 

investigation of this article. Unified shear deformation 

theories are exploited to describe the displacement field of 

the beam and satisfied the zero shear effect at the top and 

bottom surface of the sandwich beam.  

Numerical differential quadrature method (DQM) with 

the Chebyshev–Gauss–Lobatto distribution is used to solve 

equilibrium equations, then derive the critical buckling 

loads and their mode-shapes. The interesting points of this 

study can be summarized as follows:- 

 Shear Function Distribution:- the higher 

buckling load is observed in case of 

exponential shear distribution and the lowest 

buckling load is detected for hyperbolic shear 

distribution. It is also noted that, the buckling 

loads for parabolic shear distribution (PSDBT) 

and hyperbolic shear are very closed to each 

other.  

 

 

 

Fig. 2 Variation of 1
st
 mode shape of clamped-clamped ,0° 90° 0°- sandwich beam vs different load functions at 

𝐸1/𝐸2 = 25; 𝑕2/𝑕1 = 3; 𝐿/𝑕 = 20 
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 In-plane Load Function Distribution:- the 

highest buckling load is observed in case of NPR 

and the minimum critical load is found at NPL, 

at the same other conditions. So that, the  

parabolic in-plane load function is the most 

significant function on the buckling loads 

rather than the linear and constant functions.  

 Beam Geometry:- the critical buckling loads are 

more pronounced by the slenderness ratio 

rather than sandwich thickness and load 

function.  

 Mode-Shape:- the parabolic function changing 

from the right 𝑵𝑷𝑹  is the most significant 

mode distorted mode from symmetric position, 

and the parabolic function from the left 𝑵𝑷𝑳 is 

the closet mode to symmetry position.  

 

 

 

 

 

 Elastic Foundation:- the Pasternak and 

Winkeler paramters have the same effect on the 

critical buckling loads of sandwich beam, those 

tend to decrease the crtical buckling loads by 

increasing their parameters. 
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Fig. 3 The 1
st
 three mode shapes of ,0° 90° 0°- sandwich beam for different load functions at 𝐸1/𝐸2 = 25; 𝑕2/𝑕1 =

3; 𝐿/𝑕 = 50 
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Fig. 4 Effect of Pasternak foundation constant 𝐾𝑝 and sandwich ration on critical buckling load of clamped-calmped 

sandwich beam 𝜃 = ,0°/90°/0°-, for different types of axial loads. (  /  =   , 𝐿/𝑕 = 20) 

 

Fig. 5 Effect of Pasternak foundation constant 𝐾𝑤 and sandwich ration on critical buckling load of clamped-calmped 

sandwich beam 𝜃 = ,0°/90°/0°-, for different types of axial loads. (  /  =   , 𝐿/𝑕 = 20) 
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Table 5 Effect of foundation parameters on the dimensionless critical buckling loads of symmetric [0°/90°/0°] sandwich beam 

subjected to different axial in plane loads and different sandwich ratios, [(  /   =    ) , 𝑳/ =5 ]     

   Load type 

  /    𝒑    𝑵𝒄𝒐𝒏  𝑵𝑳𝑳  𝑵𝑳𝑹  𝑵𝑷𝑳  𝑵𝑷𝑹  𝑵𝑷𝑺  

1 0 0 5.6126 4.4742 7.1649 4.1042 8.4829 5.2866 

 

 

20 5.2370 4.1586 6.7520 3.8018 8.0186 4.9462 

 

 

50 4.5917 3.6207 6.0098 3.2954 7.2018 4.3732 

 5 0 4.1280 3.2447 5.4064 2.9555 6.4209 3.9020 

 

 

20 3.7038 2.9189 4.9188 2.6288 5.9496 3.5306 

 

 

50 2.9661 2.3028 4.0281 2.0819 4.9627 2.8617 

 8 0 3.1971 2.4856 4.2768 2.2512 5.1684 3.0392 

 

 

20 2.7334 2.1336 3.7350 1.9068 4.5920 2.6296 

 

 

50 1.9350 1.4820 2.7051 1.3319 3.3260 1.8844 

3 0 0 4.0202 3.2604 4.9920 3.0148 5.8050 3.7561 

 

 

20 3.6834 2.9695 4.6294 2.7327 5.4069 3.4673 

 

 

50 3.0466 2.4259 3.9207 2.2154 4.6369 2.9044 

 5 0 2.6035 2.0654 3.3434 1.8905 3.9729 2.4525 

 

 

20 2.1859 1.7219 2.8778 1.5665 3.4525 2.0847 

 

 

50 1.4017 1.0872 1.9149 0.9810 2.3606 1.3620 

 8 0 1.6916 1.3179 2.2544 1.1957 2.7496 1.6071 

 

 

20 1.2034 0.9286 1.6614 0.8382 2.0689 1.1665 

 

 

50 0.2969 0.2264 0.4310 0.2009 0.5815 0.2953 

10 0 0 3.3809 2.8316 3.9821 2.6528 4.4771 3.1467 

 

 

20 3.1122 2.5785 3.7212 2.3974 4.1972 2.9194 

 

 

50 2.5137 2.0406 3.1194 1.8756 3.5768 2.3980 

 5 0 2.0699 1.6871 2.5346 1.5596 2.9095 1.9359 

 

 

20 1.7014 1.3639 2.1436 1.2483 2.5082 1.6161 

 

 

50 0.8874 0.6954 1.1960 0.6288 1.4501 0.8677 

 8 0 1.2191 0.9648 1.5673 0.8800 1.8564 1.1525 

 

 

20 0.7399 0.5738 1.0062 0.5174 1.2315 0.7177 

 

 

50 0.2615 0.1991 0.3862 0.1772 0.5091 0.2639 
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Table 6 Effect of foundation parameters on the dimensionless critical buckling loads of symmetric [0°/90°/0°]s

andwich beam subjected to different axial in plane loads and different sandwich ratios,  [(  /   =    ) , 

𝑳/ =20 ]     

   Load type 

  /    𝒑    𝑵𝒄𝒐𝒏  𝑵𝑳𝑳  𝑵𝑳𝑹  𝑵𝑷𝑳  𝑵𝑷𝑹  𝑵𝑷𝑺  

1 0 0 38.0053 29.7512 49.0810 26.9639 57.0413 36.0695 

  100 37.4698 29.3111 48.5141 26.5561 56.4916 35.5988 

  200 36.9231 28.8648 47.9310 26.1421 55.9211 35.1167 

 10 0 37.2314 29.1113 48.2159 26.3719 56.1540 35.3559 

  100 36.6914 28.6691 47.6398 25.9626 55.5928 34.8796 

  200 36.1404 28.2202 47.0494 25.5469 55.0109 34.3937 

 20 0 36.4538 28.4700 47.3461 25.7792 55.2572 34.6382 

  100 35.9088 28.0256 46.7607 25.3677 54.6845 34.1569 

  200 35.3540 27.5739 46.1587 24.9504 54.0903 33.6666 

3 0 0 30.5378 23.9676 39.0736 21.7422 44.8773 28.9468 

  100 30.0093 23.5318 38.5342 21.3366 44.3803 28.4850 

  200 29.4675 23.0865 37.9677 20.9233 43.8563 28.0093 

 10 0 29.7706 23.3306 38.2344 21.1516 44.0368 28.2396 

  100 29.2359 22.8917 37.6824 20.7442 43.5235 27.7716 

  200 28.6889 22.4437 37.1050 20.3288 42.9849 27.2900 

 20 0 28.9989 22.6917 37.3867 20.5598 43.1848 27.5282 

  100 28.4586 22.2496 36.8179 20.1499 42.6567 27.0541 

  200 27.9057 21.7980 36.2323 19.7324 42.1004 26.5662 

10 0 0 22.1602 17.0911 29.7951 15.4019 35.7775 21.1971 

  100 21.5681 16.6219 29.0962 14.9723 35.0426 20.6640 

  200 20.9634 16.1431 28.3739 14.5355 34.2699 20.1177 

 10 0 21.3404 16.4316 28.8175 14.7998 34.7447 20.4364 

  100 20.7435 15.9600 28.1061 14.3689 33.9843 19.8969 

  200 20.1298 15.4774 27.3676 13.9287 33.1917 19.3414 

 20 0 20.5145 15.7714 27.8280 14.1931 33.6765 19.6659 

  100 19.9121 15.2951 27.1004 13.7589 32.8945 19.1186 

  200 19.2935 14.8103 26.3489 13.3176 32.0754 18.5569 
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Appendix A 

 

The laminated in-plane rigidities (𝐴, 𝐵, 𝐷, 𝐸, 𝐹, 𝐻) and 

shear rigidity 𝐹𝑠  matrices appearing in Eqs. (12)  and 

(13) are evaluated by the following 

(𝐴𝑖𝑗  , 𝐵𝑖𝑗  , 𝐷𝑖𝑗) = ∫ 𝑄̅𝑖𝑗,1 , 𝑧, 𝑧
2- 𝑑𝑧

ℎ

2

−ℎ 2⁄
   

 (𝑖, 𝑗 = 1,2,6)  

(A1) 

(𝐸𝑖𝑗  , 𝐹𝑖𝑗 , 𝐻𝑖𝑗) = ∫ 𝑄̅𝑖𝑗  𝑓(𝑧) ,1 , 𝑧, 𝑓(𝑧)- 𝑑𝑧
ℎ/2

−ℎ 2⁄

   (𝑖, 𝑗 = 1,2,6)  
(A2) 

(𝐹44
𝑠  , 𝐹45

𝑠  , 𝐹55
𝑠 ) = ∫  𝑔(𝑧)

ℎ/2

−ℎ 2⁄

∗ 𝑔(𝑧) ,𝑄̅44 , 𝑄̅45, 𝑄̅55- 𝑑𝑧 

(A3) 

Since the only nonzero force and moment resultant are 

𝑁𝑥, 𝑀𝑥 , 𝑃𝑥 and 𝑅𝑥𝑧. So, condensed in-plane force, the 

bending moment, and refined bending moment can be 

described as functions of strain components and in-plane 

transformed rigidities as follows 

{

𝑁𝑥
𝑀𝑥

𝑃𝑥

} = [

𝐴̅11 𝐵̅11 𝐸̅11
𝐵̅11 𝐷̅11 𝐹̅11
𝐸̅11 𝐹̅11 𝐻̅11

]{

𝜀𝑥
0

𝑘𝑥
0

 𝑘𝑥
2

}  (A4) 

in which 

[

𝐴̅11 𝐵̅11 𝐸̅11
𝐵̅11 𝐷̅11 𝐹̅11
𝐸̅11 𝐹̅11 𝐻11

] = [
𝐴11 𝐵11 𝐸11
𝐵11 𝐷11 𝐹11
𝐸11 𝐹11 𝐻11

] −

[
𝐴 𝐵 𝐸
𝐵 𝐷 𝐹
𝐸 𝐹 𝐻

]  

(A5) 

and 

and the shear force resultant 

*𝑅+ = ,𝐹𝑠-*𝑘𝑠+  (A7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[
𝐴 𝐵 𝐸
𝐵 𝐷 𝐹
𝐸 𝐹 𝐻

] = [

𝐴12 𝐴16 𝐵12 𝐵16 𝐸12 𝐸16
𝐵12 𝐵16 𝐷12 𝐷16 𝐹12 𝐹16
𝐸12 𝐸16 𝐹12 𝐹16 𝐻12 𝐻16

 ]

[
 
 
 
 
 
𝐴22 𝐴26 𝐵22 𝐵26 𝐸22 𝐸26
𝐴26 𝐴66 𝐵26 𝐵66 𝐸26 𝐸66
𝐵22 𝐵26 𝐷22 𝐷26 𝐹22 𝐹26
𝐵26 𝐵66 𝐷26 𝐷66 𝐹26 𝐹66
𝐸22 𝐸26 𝐹22 𝐹26 𝐻22 𝐻26
𝐸26 𝐸66 𝐹26 𝐹66 𝐻26 𝐻66

 

]
 
 
 
 
 
−1

[
 
 
 
 
 
𝐴12 𝐵12 𝐸12
𝐴16 𝐵16 𝐸16
𝐵12 𝐷12 𝐹12
𝐵16 𝐷16 𝐹16
𝐸12 𝐹12 𝐻12
𝐸16 𝐹16 𝐻16]

 
 
 
 
 

  (A6) 

89




