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1. Introduction 

 

Parabolic arches are widely used in long-span structures 

such as bridges because of their high-efficient in-plane 

load-carrying capacity, especially under a full-span 

uniformly distributed vertical load which produces nominal 

uniform compression in the arch rib. Steel structures are 

often exposed to the environment having water and oxygen, 

which may cause local damages to the steel and 

subsequently lead to unavoidable strength reduction 

(Rahgozar et al. 2010). Investigations of the in-plane 

buckling and strength of steel arches have mainly focused 

on arches without damages. Pi and Trahair (1999), Bradford 

and Pi (2004), Pi et al. (Pi and Bradford 2004, Pi et al. 

2008) investigated the in-plane strength of pin-ended and 

fixed circular steel I-section arches, and developed 
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interaction equations for their in-plane strength design. It 

was found that the modified slenderness of a steel arch, 

which is related to the in-plane elastic buckling of the arch 

and the yield load of the cross-section, is an important 

parameter in formulation of design equations. Liu et al. 

(2017) investigated the buckling behaviour of fixed circular 

arches subjected to an in-plane central concentrated load 

which produces combined nonuniform axial compressive 

and bending actions. Dou et al. (2018) studied the in-plane 

buckling behaviour and proposed design equations of steel 

tubular truss arches. Yang et al. (2019) studied the nonlinear 

in-plane buckling of fixed shallow functionally graded 

grapheme reinforced composite arches subjected to 

mechanical and thermal loading. In experimental research 

aspect, Sakimoto et al. (1979) carried out tests to 

investigate the strength of circular and parabolic steel 

arches. Dou et al. (2015) conducted experimental 

investigation into flexural-torsional ultimate resistance of 

steel circular arches. Guo et al. (2016) performed 

experimental and numerical investigations of the in-plane 

strength of pin-ended circular steel arches having a welded 

I-section and proposed an interaction equation for the in-

plane strength of arches. The results provided in these 

investigations are all about the in-plane behaviour of steel 
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arches without damages. 

When a steel arch is locally damaged, its strength may 
be reduced by the local damage. However, little research 
about the strengths of the locally damaged steel arches has 
been reported in the literature hitherto. Investigations of 
effects of damages caused by corrosion on the steel 

structures have been focused on straight girders or plates. 
Mateus and Witz (1998) used a FE analysis and a uniform 
thickness reduction approach to formulate a quasi-random 
thickness surface model to study the post-buckling of 
corroded steel plates. Rahgozar (2009) established 
corrosion decay models based on corrosion locations and 

studied effects of corrosion on the remaining capacity of 
steel beams. Sharifi and Paik (2011) developed a 
probabilistic model for the strength of steel-box girders on 
the basis of an analytic formula that considers time-
dependent strength degradation related to corrosion. 
Appuhamy et al. (2011) discussed the feasibility of 

establishing an accurate analytical method to predict the 
residual strength of a corroded steel member with lesser 
number of measuring points, and they (Appuhamy et al. 
2013) also investigated effects of severe corrosion on the 
remaining seismic strength of existing steel bridges using 
finite element (FE) analyses. Kaita et al. (2012) proposed 

an approach to calculate the remaining yield and tensile 
strength by using a concept of representative effective 
thickness. Rahbar-Ranji (2013) found that the aspect ratio 
of the plate, the average thickness diminution, the standard 
deviation of thickness diminution and the amount of 
corrosion loss reduce the buckling strength of the corroded 

plates. Kim et al. (2013) conducted shear loading tests on 
five plate girder specimens with different corrosion heights 
and mean corrosion depths of a corroded web, and the 
critical shear buckling loads and shear buckling strengths 
were analyzed. Ahn et al. (2013) evaluated the residual 
shear strengths and shear failure modes of a web panel with 

local corrosion by using a FE analysis and the results were 
compared with results obtained from a theoretical equation 
and design specifications. Silva et al. (2013) developed two 
approaches to model the corrosion surface and to evaluate 
the strength of steel plate components and a total of 3575 
corroded plate surface geometries by Monte Carlo 

simulation for different degrees of degradation, location and 
ages were investigated. Kainuma et al. (2015) created a 
three-dimensional FE model of a surface corroded 
orthotropic steel deck to examine the stress level 
dependence on the corrosion conditions and the results 
confirmed that surface corrosion may result in a high stress 

concentration and irregular stress distributions. 
Although studies of effects of damages on the steel 

girders and plates caused by corrosion have been extensive, 
investigations of effects of local damages on the strength of 
steel arches are rare, while the local damage is a common 
problem in many steel arch bridges (Huang 2010). To 

ensure the safety of the damaged steel arches, it is necessary 
to assess their remaining strengths. 

This paper, therefore, is focused on experimental and 
numerical investigations of effects of local damages on the 
in-plane strength of fixed parabolic steel tubular arches, 
which are often used in the engineering practice. The in-

plane strengths of ten specimens with different local 

damages are investigated experimentally. A FE model is 
developed and validated using the test results, and it is then 
used to carry out extensive investigation of effects of 
various parameters such as the damage location, length and 

depth and the initial geometric imperfections on the 
remaining in-plane strength of damaged steel tubular arches 
with fixed ends. The experimental and FE results are used 
to develop equations for assessing the remaining strength of 
fixed parabolic steel tubular arches having local damages. 
Equations for assessing remaining strengths of damaged 

parabolic arches under uniform compression and under 
combined bending and axial compression are proposed. 

 

 

2. Experimental program 
 

2.1 Test specimens 
 

Ten steel tubular arch specimens having local damages 
(Fig. 1) were prepared and tested, which were fabricated 
from hot-rolled seamless tubes in two steps. At first, 
damages with different lengths and depths at different 
locations are cut uniformly around the outer surface of 
straight hot-rolled seamless tubes by a high precision 

cutting machine. The straight tubes are then curved to 
parabolic arches by cold-bending methods. The diameter 
and thickness of the undamaged steel tubes are D = 95 mm 
and ts = 8.0 mm, and the span and rise of the arches are L = 
3.6 m and f = 0.9 m, respectively. 

Three damage parameters: (1) the damage location (at 

the left arch end or arch crown); (2) the damage length (100 
mm, 200 mm and 300 mm); (3) the damage depth (1.0 mm, 
2.0 mm and 3.0 mm) are considered in fabrication of the 
damaged arch specimens. The damage location, length and 
depth of the 10 specimens are shown in Table 1, where the 
specimens are labeled as ST-8-X-Y-Z with ST denoting the 

steel tube, 8 the thickness of the undamaged tube, X, Y, Z 
the damage location, length and depth, respectively. 

 

2.2 Geometric imperfections of specimens 
 

Before testing, the initial in-plane geometric imperfec-
tions of the specimens were measured at nine stations with 
equal intervals along the axis of arch specimens and the 

measured results are shown in Fig. 2. 
It can be seen that the in-plane geometric imperfections 

vary significantly. For example, the arch specimen ST-8-A-
200-1.0 (the red curve in Fig. 2(a)) has approximately 
symmetric initial imperfections, the specimen ST-8-A-200-
2.0 (the blue curve in Fig. 2(a)) has approximately 

antisymmetric initial imperfections, and the specimen ST-8 
almost has no initial imperfections (the black curve in 

 

 

Fig. 1 The schematic of the test model 
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Fig. 2(a)). The initial geometric imperfections may have 

significant effects on the strength of the damaged steel 

arches. 

In addition, the residual stresses may also affect the 

strength of steel arches. The residual stresses in the cold- 

curved steel arches consist of two parts (Hadjoannou et 

al. 2011): the manufacturing and cold curving residual 

stresses. It has been shown that cold curving residual 

stresses have little effects on the strength of steel arches (Pi 

and Trahair 1999, Hadjoannou et al. 2011). Hence, cold 

curving residual stresses are not considered in this 

investigation. Because the manufacturing residual stresses 

of hot-rolled tubular sections are available in the literature, 

the residual stresses reported in Lin and Guo (2009) are 

used in this investigation. 

 

2.3 Material properties 
 

The steel of the tube is Q345. Three steel coupons 

having a length of 273 mm cut from the steel tubes were 

tested to determine the material properties of the steel and 
 
 

 

 

 

 

 

 

the results are listed in Table 2. The average yield strength 

(𝜎𝑦), ultimate strength (𝜎𝑢), elastic modulus (𝐸), Poisson’s 

ratio and elongation rate of the steel are 375.2 MPa, 542.0 

MPa, 191,000 MPa, 0.292 and 26.3%, respectively. 

The stress – strain curves of the three steel coupons are 

shown in Fig. 3. It can be seen that after yield, the modulus 

of the steel becomes zero until the strain reaches 0.022 

when the strain hardening starts. 
 

 

 

 

Fig. 3 Stress-strain curves for steel 
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Table 1 Details of the specimens 

No. Specimen label Damage location Damage length (mm) Damage depth (mm) 

1 ST-8 -- 0 0 

2 ST-8-A-200-1.0 

Left arch end 

200 1.0 

3 ST-8-A-200-2.0 200 2.0 

4 ST-8-A-200-3.0 200 3.0 

5 ST-8-A-100-3.0 100 3.0 

6 ST-8-A-300-3.0 300 3.0 

7 ST-8-D-200-2.0 

Arch crown 

200 2.0 

8 ST-8-D-200-3.0 200 3.0 

9 ST-8-D-100-3.0 100 3.0 

10 ST-8-D-300-3.0 300 3.0 
 

   

(a) Specimens 1-4 (b) Specimens 5-7 (c) Specimens 8-10 

Fig. 2 Measured geometric initial imperfections 

Table 2 Mechanical properties of Q345 steel 

Coupon Young’s modulus (MPa) Yield stress (MPa) Ultimate strength (MPa) Poisson's ratio Elongation rate (%) 

1 2.00×105 375.1 533.8 0.305 25.4 

2 1.91×105 368.3 541.0 0.295 26.1 

3 1.82×105 382.2 551.1 0.276 27.5 

Average 1.91×105 375.2 542.0 0.292 26.3 
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2.4 Test setup 
 

The test rig was designed to apply the in-plane load to 

the arch specimens and to allow the arch specimen to 

deform in the plane of loading freely, while the out-of-plane 

deformations are fully prevented. The scheme of the test rig 

is shown in Fig. 4. 

The test rig consists of a base beam, a reaction beam, 

two columns and lateral braces. A five-point vertical loads 

were applied at L/6, L/3, L/2, 2L/3, 5L/6 points of the arch 

rib to simulate the vertical uniform load (Fig. 4(a)), where L 

is the span of the arch specimen. The loading system 

consists of a reaction beam, five 500kN hydraulic jacks 

controlled by an oil pump, sliding bearings and load cells. 

The load was applied through hydraulic jacks and the 

reaction beam, and load cells were used to control the 

loading. To guarantee that the reaction beam does not 

restrain the longitudinal movement of the specimen during 

loading, oiled sliding bearings with almost no friction are 

placed between the jacks and reaction beam (Liu et al. 

2015) as shown in Fig. 4(a). The hydraulic jacks and load 

cells are calibrated before each test. To prevent the arch 

specimen from the lateral deformations, four lateral 

bracings were placed at each side of the arch specimen (Fig. 

4(b)). The sliding bearings were also installed between the 

lateral braces and the arch, so that the in-plane deformations 

were not restrained by the lateral braces. 

 

2.5 Test procedures 
 

An oil pump was used to apply the equal symmetric 

vertical loads through the five jacks to the arch specimen 

simultaneously. The data for the load, strain and 

displacement were recorded in real-time. When the strength 

of a specimen was reached, the load cell readings started to 

drop indicating the load started to decrease until the 

 

 

 

 

specimen finally failed. 

 

2.6 Measurements 
 

To capture the displacements and strains of specimens in 

real time, the vertical and horizontal LVDTs (linear variable 

differential transformer) were installed on the bottom of the 

cross-section at the loading points as shown in Fig. 5(a), 

where V and H indicate the vertical and horizontal LVDTs 

respectively, while rectangular strain-gauges rosettes were 

installed on the top, bottom and both sides of the cross-

sections at seven locations i.e. A-A to G-G as shown in Fig. 

5(b). 

The strain gauges along the arch axis and in the 

transverse direction are denoted as n-1 and n-2 respectively, 

where n is the number of strain measurement point. All 

LVDTs, strain gauges and load cells were connected to a 

TDS-530 data logger to guarantee synchronization of data 

collections. 

 

 

3. Experimental results and discussion 
 

3.1 Failure mode 
 

The test results showed that the failure of specimens is 

either in an asymmetric mode or in a symmetric mode. The 

typical failure modes are shown in Fig. 6 for specimens 3 

and 7. 

It can be seen that specimen 3 fails in an asymmetric 

elastic-plastic buckling mode (Fig. 6(a)) and the specimen 7 

fails in a symmetric elastic-plastic buckling mode (Fig. 

6(b)). 

The deformation curves of all 10 specimens recorded at 

their failure are shown in Fig. 7 and the corresponding 

failure modes and initial geometric imperfections are listed 

  

(a) Loading application scheme (b) Test setup 

Fig. 4 Loading scheme and test setup (1. Arch, 2. Arch end, 3. Hydraulic jack, 4. Data logger, 

5. Adjusting block, 6. Sliding bearing, 7. LVDT, 8. Reaction beam, 9. Lateral bracing) 

  

(a) Displacement measurement points (b) Strain measurement point 

Fig. 5 Layout of displacement and strain measurement point 
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in Table 3. It is noted that in Fig. 7 and other figures of this 

paper, positive displacement indicates the point deformed 

downwards, while the negative displacement indicates the 

point deformed upwards. 

It can be seen from Fig. 7 and Table 3 that the failure 

mode of a damaged steel arch much depends on the shape 

and magnitude of initial geometric imperfections of the 

arch. The arches having asymmetric initial geometric 

imperfections (Fig. 2 and Table 3) failed in an asymmetric 

mode (Fig. 7 and Table 3). The arches having symmetric 

initial geometric imperfections (Fig. 2 and Table 3) failed in 

a symmetric mode (Fig. 7 and Table 3). This indicates that 

initial geometric imperfections are indeed one of the major 

factors for the elastic-plastic buckling failure mode of a 

damaged steel tubular arch. 

 

3.2 Displacement - Load curves 
 

The typical displacement vs. load (v-P) curves of the 

specimen ST-8 with no damage recorded by the five vertical 

 

 

 

 

 

 

 

Fig. 8 Displacement-load curves of the specimen ST-8 

 

 

LVDTs (V1-V5 in Fig. 5) are shown in Fig. 8. 

Because the parabolic arch under a uniform vertical load 

is nominally subjected to axial uniform compression, the 

curves are initially linear until the onset of yielding at the 

top of the arch crown, and after that, a further increase of 

the load produced both axial compressive and bending 

actions in the arch specimen leading to the development of 

plastic deformations and gradual spreading of the plastic 
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(a) Specimen 3 (asymmetric mode) (b) Specimen 7 (symmetric mode) 

Fig. 6 Failure modes 

   
(a) Specimens 1-4 (b) Specimens 5-7 (c) Specimens 8-10 

Fig. 7 Test deformation curves 

Table 3 Test and FE failure modes 

No. Specimen label Initial imperfection shape FE failure mode Test failure mode 

1 ST-8 symmetric symmetric symmetric 

2 ST-8-A-200-1.0 symmetric symmetric symmetric 

3 ST-8-A-200-2.0 asymmetric asymmetric asymmetric 

4 ST-8-A-200-3.0 symmetric symmetric symmetric 

5 ST-8-A-100-3.0 symmetric symmetric symmetric 

6 ST-8-A-300-3.0 symmetric symmetric symmetric 

7 ST-8-D-200-2.0 symmetric symmetric symmetric 

8 ST-8-D-200-3.0 asymmetric asymmetric asymmetric 

9 ST-8-D-100-3.0 symmetric symmetric symmetric 

10 ST-8-D-300-3.0 asymmetric asymmetric asymmetric 
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zone. The plastic deformations reduce the compressive and 

bending stiffness of the arch significantly and the v-P 

curves become nonlinear and so the vertical displacements 

increase rapidly in association with a decrease of the slope 

of the v-P curves until the maximum load carrying capacity 

of the arch is reached. After this, the strength of the arch 

decreases in association with a further increase of the 

displacement and the slopes of the v-P curves become 

negative. The directions of the displacements along the arch 

length indicate that the arch failed in a symmetric mode. 

The v-P curves of the five arch specimens having 

damages at their left end are shown in Fig. 9. It can be 

observed that for the arch specimens having the same 

damage length of 200 mm (Figs. 9(a)-(c)), the strength 

decreases with an increase of the damage depth. For arch 

specimens with the same damage depth of 3 mm (Figs. 
 

 

 

 

 

 

9(c)-(e)), the strength decreases with an increase of the 

damage length. 

The v-P curves of the four arch specimens having 

damages at their crown are shown in Fig. 10. Again, it can 

be observed that for arch specimens having the same 

damage length of 200 mm (Figs. 10(a)-(b)), the strength 

decreases with an increase of the damage depth. For arch 

specimens with the same damage depth of 3 mm (Fig.10(b)-

(e)), the strength decreases with an increase of the damage 

length. The onset of yielding occurs at the top of the arch 

specimen crown. 

 

3.3 Stress-load curves 
 

The typical axial stress vs. load (σ- P) curves are shown 

in Fig. 11 for specimen 6 having the largest damage length 
 

 

 

 

 

 

   

(a) ST-8-A-200-1.0 (b) ST-8-A-200-2.0 (c) ST-8-A-200-3.0 
 

  

(d) ST-8-A-100-3.0 (e) ST-8-A-300-3.0 

Fig. 9 Displacement-load curves of arches with damage at the arch end 

    

(a) ST-8-D-200-2.0 (b) ST-8-D-200-3.0 (c) ST-8-D-100-3.0 (d) ST-8-D-300-3.0 

Fig. 10 Displacement-load curves of test specimens 

    

(a) A-A section (b) B-B section (c) C-C section (d) D-D section 

Fig. 11 Stress-load curves of specimen 6 
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and depth at its left end and in Fig. 12 for specimen 10 

having the largest damage length and depth at its crown, 

where the section labels A-A, B-B, C-C, and D-D are 

refereed to Fig. 5(b) and the stresses are derived from the 

measured strain based on the stress-strain curves in Fig. 3. 

It can be seen from Fig. 11 that when the load is smaller 

than 80.4 kN, the stress increases linearly with an increase 

of the load. The blue curve in Fig. 11(a) indicates that the 

bottom of the left end of the arch of specimen 6 begins to 

yield at the load of 80.4 kN, while the black curves in Figs. 

11(a) and (b) show that the top of sections A-A and B-B 

begins to yield at the load of 105 kN. When the applied load 

reaches 120 kN, the top of the sections C-C and D-D begins 

to yield (the black curves in Figs. 11(c) and (d)). 

Subsequently, the arch fails due to large plastic 

deformations. 

It can be seen from Fig. 12 that for specimen 10, 

yielding onsets on the top of the arch crown (the point 1-1 

in section D-D, the black curve in Fig. 12(d)) at the load of 

72.4 kN while yielding starts on the top of the sections A-A 

and B-B at the load of 150 kN (the black curves in Figs. 

12(a) and (b)). When the applied load reaches 162.1 kN, the 

bottom of the section C-C starts to yield (the blue curve in 

Fig. 12(c)). Subsequently, the arch fails due to large plastic 

deformation. 

It can also be seen from Figs. 11 and 12 that even in the 

elastic stage, the longitudinal normal stresses vary over the 

cross-section indicating the arches are subjected to 

combined axial compressive and bending actions due to 

initial geometric imperfections and vertical deformations 

although a linear elastic analysis for a perfect undeformed 

parabolic arch under a vertical uniform load over the 
 

 

 

 

entire span produces axial uniform compression in the arch 

without bending. 

 

3.4 Strength 
 

The maximum value of the load of the v-P curves is 

defined as the strength (Pu) of the arch. When the strength 

of a specimen is reached, the further increase of 

displacements is associated with a decrease of the load until 

failure of the specimen. The test results for the strength of 

specimens are compared with the corresponding finite 

element (FE) results in Table 4. 

It can be seen from Table 4 that the strength of damaged 

arches (specimens 2-10) is much smaller than that of the 

undamaged arch (specimen 1). It can also be seen that the 

strength of arches with local damages at their end 

(specimens 2-6) is generally smaller than that of arches with 

local damages at their crown (specimens 7-10), which 

indicates that damages at the arch end have more significant 

effects on the strength of the arch than damages at the arch 

crown. 

 

 

4. Finite element analysis and comparison 
 
4.1 Finite element model 
 

4.1.1 Material properties 
A finite element (FE) model for damaged steel tubular 

arches is formulated by using ANSYS (ANSYS 2014) and 

it is used to assess the remaining in-plane strength of the 

damaged arches. 

 

    

(a) A-A section (b) B-B section (c) C-C section (d) D-D section 

Fig. 12 Stress-load curves of specimen 10 

Table 4 Measured strength and comparison with the FE results 

No. Specimen label Measured value (kN) Calculated value (kN) Relative error 

1 ST-8 190.3 182.6 -4.15% 

2 ST-8-A-200-1.0 168.9 165.8 -1.84% 

3 ST -8-A-200-2.0 150.9 147.7 -2.12% 

4 ST -8-A-200-3.0 137.1 142.2 3.72% 

5 ST -8-A-100-3.0 141.6 144.6 2.12% 

6 ST -8-A-300-3.0 135.2 137.4 1.63% 

7 ST -8-D-200-2.0 171.1 168.6 -1.46% 

8 ST -8-D-200-3.0 167.9 161.7 -4.29% 

9 ST -8-D-100-3.0 173.6 165.2 -4.84% 

10 ST -8-D-300-3.0 163.5 160.6 -1.77% 
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Fig. 13 Stress-strain curve of steel 
 

 

The stress (σ) vs. strain (ε) model of Han et al. (2007) 

for the tubular steel shown in Fig. 13 is used, where σy and 

σu represent the yield and ultimate stresses of the steel 

respectively, and σy = 375.2 MPa and σu = 542.0 MPa are 

adopted, the strain corresponding to the yield stress is 

𝜀𝑒1 = 1.5𝜀𝑒 with 𝜀𝑒 = 0.8 𝜎𝑦 𝐸𝑠⁄ , the steel hardening onset 

strain 𝜀𝑒2 = 10𝜀𝑒1 , and the strain corresponding to the 

ultimate stress 𝜀𝑒3 = 100𝜀𝑒1. The initial Young’s modulus 

of the steel is assumed as 𝐸𝑠 = 1.91×10
5
 MPa and the 

strain hardening modulus 𝐸ℎ = 0.79×10
3
 MPa. It is noted 

that when the FE model is used to analyze the tested 

specimens, the measured values for σy and σu, the 

corresponding strains, 𝐸𝑠 and 𝐸ℎ are assigned to the FE 

model. 
 

4.1.2 Element description 
In order to investigate the nonlinear behaviour of the 

steel tube, the 3-D beam element 188 of ANSYS is used for 

modeling. The beam 188 element is a 3D finite strain 

straight beam with 2 nodes and 7 degrees of freedom 

including three translation degrees of freedom and three 

rotation degrees of freedom and one degree of freedom for 

warping. Because there is no warping deformation for 

circular tubes, the degree of freedom for warping is 

suppressed. After a careful mesh convergence study, an 

appropriate mesh density is identified and 82 beam 

elements with 83 nodes are used to establish the FE model 

for the steel tubular arches. 
 

4.1.3 Geometrical imperfections and residual 
stress 

For the FE models used in parametric analysis and 

assessment equation establishment, the initial antisymmetric 

and symmetrical geometric imperfections are considered 

and they are given by 
 

            𝑣0𝑎 = 𝑣0𝑚 𝑠𝑖𝑛
2𝑧𝜋

𝐿
 

and 𝑣0𝑠 = 𝑣0𝑚 𝑐𝑜𝑠
𝑧𝜋

𝐿
−
𝐿

2
≤ 𝑧 ≤

𝐿

2
 

(1) 

 

respectively, where L is the span of the arch, z is the 

longitudinal coordinate of the cross-section, and the 

maximum value of the initial imperfection is v0m = S/500. 

It is noted that when using the FE model to analyze the 

test specimens, the measured initial geometric 

imperfections are assigned to the FE model. 

In addition, the residual stresses of Lin and Guo (2009) 

shown in Fig. 14 are also assigned to the FE model. 

 

Fig. 14 Residual stress of steel tube 
 

 

 

 

Fig. 15 Semi-structural FE model of steel tubular arch 

specimen 

 

 

4.1.4 Damage simulation 
The damages at the arch ends or arch crown are 

modeled by proper reduction of the outer radius of the steel 

tube. In the damaged region, the outer radius and thickness 

of the section of beam 188 element is properly reduced as 

shown in Fig. 15. In the figure, the red elements represent 

the damaged region. The damage parameters including the 

damage location, the damage length and the damage depth 

are considered in the FE model. 

 

4.1.5 Implementation of FE model 
To implement the material nonlinearity with the FE 

model, the Von Mises yield criterion, the Kinematic 

hardening rule, and the Bauschinger effect are adopted in 

association with the stress-strain curve shown in Fig. 13. To 

implement the nonlinear elastic-plastic analysis with the FE 

model, an arc-length method is employed for the increment-

iterative nonlinear analysis in a displacement controlled 

fashion. Both ends of the arch model are fully fixed, and in 

order to prevent the out-of-plane displacement, the lateral 

and torsional degrees of freedom of all nodes are fully 

restrained. 

 

4.2 Analytical results and comparison analysis 
 

4.2.1 Displacement analysis 
In order to validate the FE model, the FE model was 

used to analyze the tested arches. For this, the geometric 

and material properties of the tested arches and measured 

initial geometric imperfections were assigned to the FE 

model and the load locations of the FE model are the same 

as those of the tested arches. 

The FE results for the strength of the arch specimens are 
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compared with the test counterparts in Table 4. It can be 

seen that they agree with each other with relative 

differences less than 5%, which indicates the FE model is 

sufficiently accurate to predict the strength of damaged steel 

tubular arches. 

The FE results of the v-P curves are compared with the 

corresponding test ones in Fig. 16 for the specimen 6 with a 

damage length of 300 mm and a damage depth of 3 mm at 

the left arch end. Fig. 16 shows that the FE and test results 

closely agree with each other until the strength of the arch is 

reached and the FE prediction for the strength also agree 

well with the test one. 

The FE results for the v-P curves are compared with 

their test counterparts in Fig. 17 for the specimen 10 with a 

damage length of 300 mm and a damage depth of 3 mm at 

the arch crown. 

Again, it can be seen from Fig. 17 that the FE results 

closely agree with the test ones until the strength of the arch 

is reached and the FE prediction for the strength also agree 

well with the test one. This further validate that the FE 

model can be used to predict the strength of damaged steel 

tubular arches. 

 

4.2.2 Failure mode analysis 
To further justify the accuracy of the FE model, the 

failure of specimens 3 and 7 shown in Fig. 6 was analyzed 

 

 

 

 

 

 

using the FE model. The FE results for failure modes of 

specimens 3 and 7 are shown in Fig. 18. It can be seen that 

specimen 3 fails in an asymmetric elastic-plastic buckling, 

while specimen 7 fails in an in-plane symmetric elastic-

plastic buckling, which have excellent agreements with the 

test results in Fig. 6. It is found that the failure mode is 

dependent on the shape of in-plane initial geometric 

imperfections of the arch. The asymmetric initial geometric 

imperfections of specimen 3 leads to its asymmetric failure 

mode, while the symmetric in-plane initial geometric 

imperfections of specimen 7 leads to its symmetric failure 

mode. These are consistent with the test results. For further 

justification of the FE model in predicting the failure mode 

of damaged steel tubular arches, the failure modes obtained 

by the FE model are compared with tested ones of all 10 

specimens in Table 3, which shows that they agree with 

each other very well. 

 

 

5. Parametric studies 
 

The verified FE model can be used to perform 

parametric studies to investigate the influence of various 

damage factors on the strength of steel arches and to 

generate sufficient number of FE results for the strength of 

damaged steel tubular arches. The FE results together with 

  

(a) L/6 and 5L/6 Position (b) L/3 and 2L/3 Position 

Fig. 16 Comparisons between test v-P curves and FE results of specimen 6 

  

(a) L/6 and 5L/6 Position (b) L/3 and 2L/3 Position 

Fig. 17 Comparisons between test v-P curves and FE results of specimen 10 

  
(a) Specimen 3 (asymmetric mode) (b) Specimen 8 (symmetric mode) 

Fig. 18 FE failure mode 
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the test results are used to propose equations for assessing 

the remaining strength of damaged steel tubular arches. For 

this, the influences of the following parameters on the 

strength of damaged steel tubular arches are investigated: 

(1) damage location, (2) damage length, (3) damage depth. 

 

5.1 Damage location 
 

The effects of the damage location on the strength of 

damaged steel arches are investigated in this section using 

the FE model. The FE results for the strengths of damaged 

steel tubular arches with different damage locations are 

shown in Fig. 19 as the variations of the reduction factor 

with the damage location where Kℓ and Kd are damage 

length and depth ratios respectively. The ratio Kℓ is defined 

as the ratio of the damage length to the full length of the 

arch while Kd is defined as the ratio of the damage depth to 

the thickness of the steel tube. 

It can be seen that when the damage length ratio Kℓ is 

the same and the damage depth ratio Kd < 20%, the 

strengths of arches having different damage locations are 

almost the same. This indicates that in this case, the damage 

location has little effect on the strength of the damaged 

arches. However, when Kd ≥ 20%, the reduction effect of 

 

 

 

 

 

 

the damage location on the strength increases with an 

increase of Kd. It can also be seen from Fig. 19 that the 

reduction of the strength of the damaged arches gradually 

decreases as the damage location moves from the arch 

crown to the arch end. The damage at the arch end has more 

significant reduction effects on the strength than the damage 

at the arch crown. For example, when Kd = 50% and Kℓ = 

20%, the reduction factor for the strength of the arch with 

damages at its crown is 0.67, while the reduction factor for 

the arch with damages at its end is 0.52. 

 

5.2 Damage depth 
 

The effects of the damage depth on the strength of 

damaged steel arches are herein investigated using the FE 

model. The FE results for the strength of the steel arches 

with different damage depths are shown in Fig. 20 as the 

variations of the reduction factor with the ratio of damage 

depth. It can be seen that the damage depth has significant 

reduction effects on the strength of the arch. For the same 

damage location, the strength is reduced linearly with the 

increase of the damage depth. Comparisons of the strengths 

of damaged arches at different locations shown in Figs. 

20(a)-(d) demonstrate that the reduction effect of the 

    

(a) Kℓ = 8% (b) Kℓ = 12% (c) Kℓ = 16% (d) Kℓ = 20% 

Fig 19 Strength of arches with different damage locations 

    

(a) Damaged at arch end (b) Damaged at L/6 (c) Damaged at L/3 (d) Damaged at L/2 

Fig. 20 Strength of arches with different damage depths 

    

(a) Damaged at arch end (b) Damaged at L/6 (c) Damaged at L/3 (d) Damaged at L/2 

Fig. 21 Strength of arches with different damage lengths 
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damage length on the strength become more significant as 

the damage location moves from the arch crown (L/2) to the 

arch end. 
 

5.3 Damage length 
 

Effects of the damage length on the strength of arches 

are shown in Fig. 21 as the FE results for the variations of 

reduction factor with the damage length. It can be seen that 

when the damage length ratio increases from zero to 2%, 

the strength of arch decreases rapidly. After that, the 

reduction rate of the strength is getting slow with a further 

increase of the damage length. When the damage depth is 

small (Kd = 10% - 30%), the further increase of the damage 

length beyond 5% of the arch length does not decrease the 

strength of the arch very much. 
 

 

6. Proposed assessment equation for remaining 
strength 
 

6.1 Remaining strength of demaged arches in 
uniform compression 

 

It can be seen from the experimental and FE study in 

this paper that strengths of damaged steel tubular arches are 

lower than those of undamaged arches. To ensure the safety 

of damaged arches, it is demanded to assess the remaining 

strength of the damaged arches. It is known that a general 

vertical load would produce axial compressive and bending 

actions of a damaged parabolic arch. To develop equations 

for assessing the remaining strength of a parabolic arch, it is 

essential to establish the equation for assessing the 

remaining strength of the arch under uniform axial 

compression. The uniform compression can nominally be 

produced by a vertical load uniformly distributed over the 

full arch span. Hence, a uniform vertical load over the full 

arch span is applied to the verified FE model to investigate 

remaining strengths of damaged parabolic steel tubular 

arches in uniform compression. The FE results for the 

remaining strengths of 114 damaged steel arches under the 

axial compression are obtained. For comparison, the 

strengths of 18 undamaged arches are also obtained using 

the FE model. These FE results for the remaining strength 

together with the test results for the 10 arch specimens are 

used to develop the equation for the remaining strength of 

damaged arches under uniform axial compression. 

However, no design equations for the strength of steel 

arches are available in the current design codes. Hence, the 

design equations for the strength of steel members in 

uniform compression provided in GB50017 (2017) and 

Eurocode 3 (2004) are herein used to assess the remaining 

strength of damaged parabolic steel tubular arches in 

uniform compression after properly considering the effects 

of local damages. For this, the effective cross-section 

considering local damages is proposed to be used in 

determining the axial stiffness, bending stiffness and the 

squash load of the cross-section. 

Based the 10 test and 132 FE results, the assessment 

equation for the remaining in-plane strength Nac of damaged 

steel tabular arches under uniform axial compression is 

proposed as 
 

𝜑 =
𝑁𝑎𝑐
𝑁𝑌

=
𝑁𝑎𝑐
𝜎𝑦𝐴

≤ 1 (2) 

 

where  is the reduction factor and it is expressed as the 

function of the normalized slenderness 𝜆𝑛
′  of damaged 

arches as 

 

𝜑 = {

1 − 𝛼1𝜆
′
𝑛
2
                 

1

2𝜆′
𝑛
2 [(𝛼2 + 𝛼3𝜆𝑛

′ + 𝜆′
𝑛
2
) − √(𝛼2 + 𝛼3𝜆𝑛

′ + 𝜆′
𝑛
2
)
2
− 4𝜆′

𝑛
2
]
 
𝜆𝑛

′ < 0.215

𝜆𝑛
′ ≥ 0.215

 (3) 

 

in the Chinese code for steel structures GB50017 (2017), 

and as 
 

𝜑 =
1

0.5[1 + 𝛼(𝜆𝑛
′ − 0.2) + 𝜆′

𝑛
2
] + √0. 52[1 + 𝛼(𝜆𝑛

′ − 0.2) + 𝜆′
𝑛
2
]
2
− 𝜆′

𝑛
2

 
(4) 

 

in Eurocode 3 (2004), where the normalized slenderness λ'n 

for damaged arches is given by 
 

𝜆𝑛
′ = √

𝑁𝑌
′

𝑁𝑎𝑐𝑟
= √

𝜎𝑦𝐴𝑒𝑓𝑓

𝑁𝑎𝑐𝑟
 (5) 

 

in which the affective area 𝐴𝑒𝑓𝑓 is the area of the damaged 

cross-section, σy is the yield strength of the steel, Nacr is the 

in-plane buckling axial compression of the damaged 

parabolic arches under uniform compression. For non-

shallow parabolic arches, Nacr can be calculated as (Dou et 

al. 2014). 

𝑁𝑎𝑐𝑟 =
𝑞𝑎𝑐𝑟𝐿

2 𝑠𝑖𝑛 𝛼𝐿 2⁄
 (6) 

 

where L is the span of the arch, 𝛼𝐿/2 is the angle between 

the tangent direction of the arch axis at the arch end and the 

horizontal direction, and 𝑞𝑎𝑐𝑟  is the critical buckling load 

of the damaged parabolic arch given in Timoshenko and 

Gere (1961). 

𝑞𝑎𝑐𝑟 = 𝐾𝛾
𝐸𝐼𝑒𝑓𝑓

𝐿3
 (7) 

 

where 𝐾𝛾 is a factor related to the rise-to-span ratio γ = f/L 

where f is the rise of the arch (Timoshenko and Gere 1961), 

which are given in Table 5. 

For shallow parabolic arches (γ < 0.1) which can be 

treated as circular arches, the buckling axial compression is 

calculated using the equation proposed by Pi and Bradford 

(2008) as 
 

𝑁𝑎𝑐𝑟 =

{
 
 

 
 (0.36 + 0.0011𝜆2)

𝜋2𝐸𝐼

(0.35𝑆)2
      

(0.6 + 0.4√1 − 3.109
𝜋4

𝜆2
)

𝜋2𝐸𝐼

(0.35𝑆)2  

9.87 ≤ 𝜆 ≤ 18.6
𝜆 > 18.6

 (8) 

 

where λ is a modified slenderness defined by 
 

𝜆 =
2𝑓

𝑟𝑥
 (9) 
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When Eqs. (2) and (3) are used to assess the remaining 

strength of damaged arches based on GB50017 (2017), the 

curve b of GB50017 (2017) with coefficients α1 = 0.65, α2 = 

0.965, and α3 = 0.3 is recommended. 

When Eqs. (2) and (4) are used, the curve b of Eurocode 

3 (2004) with the imperfection coefficient α =0.34 is 

recommended. 

The predictions of remaining strengths of damaged 

arches by Eqs. (2)-(3) or (2)-(4) are compared with the test 

and FE results in Fig. 23(a) where the reduction factor and 

modified slenderness of the FE results are calculated based 

the gross undamaged cross-sections. It can be seen that 

when the gross undamaged cross-section is used to calculate 

the reduction factor and modified slenderness, the equations 

(2)-(3) or (2)-(4) can conservatively estimate the strengths 

of undamaged arches, but significantly overestimate the 

strength of damaged arches as shown in Fig. 23(a). When 

the reduction factor and modified slenderness of the test and 

FE results are calculated based the effective cross-sections, 

i.e. the damaged cross-section for damaged arches and the 

gross-section for undamaged arches, the comparisons are 

shown in Fig. 23(b). It can be seen that the proposed 

equations can provide conservative assessments for 

remaining strengths of both undamaged and damaged 

arches. 
 

6.2 Design strength in combined bending and 
compression 

 

In the engineering practice, arches subjected to pure 

uniform compression are rare and in the most cases, arches 

are subjected to combined axial compressive and bending 

actions produced by external loading. Hence, equations for 

assessing the remaining strength of damaged arches under 

axial compressive and bending actions are much needed. 

The strengths of arches subjected to combined bending and 

axial compressive actions are related to a number of factors, 

such as the damaged location, damaged depth, rise-to-span 

ratio, the slenderness, residual stresses, initial in-plane 

geometric imperfections, loading conditions and so on. 

Therefore, it is difficult to develop simple and accurate 

equations for assessing remaining strengths of damaged 

 

 

 

 

arches under general loading. In this paper, instead, a lower 

bound interaction equation is proposed for assessment of 

remaining strengths of damaged parabolic steel tubular 

arches under combined bending and compression based on 

the FE results. 

The equation for assessing remaining in-plane strengths 

for a damaged parabolic steel arch subjected to combined 

bending and axial compressive actions is then proposed as 

 
𝑁∗

𝛽𝛼𝑎𝑛𝑁𝑎𝑐
′
+

𝑀∗

𝛽𝛼𝑎𝑚𝑀𝑝
′
≤ 1 (10) 

 

where 𝑁∗  and 𝑀∗  are the maximum axial compression 

and moment obtained by a first-order in-plane elastic 

analysis for damaged arches; 𝑁𝑎𝑐
′  is the remain in-plane 

strength of a damaged steel tubular arch in uniform 

compression given by Eq. (2); 𝑀𝑝
′  is the full plastic 

moment of the effective cross-section given by 

 
𝑀𝑝

′ = 𝜎𝑦𝑍𝑝
′  (11) 

 
with 𝜎𝑦 being the yield strength of the steel and 𝑍𝑝

′ being 

the plastic modulus of the effective cross-section; and 𝛼𝑎𝑛 

and 𝛼𝑎𝑚 are the modification factors for the in-plane 

strength, and 𝛽  is the modification factor of damage 

degrees. 

The modification factor αam accounts for the non-

uniform distribution of bending moments over the arch 

length, while the modification factor αan accounts for the 

non-uniform distribution of axial compressive forces over 

the arch length. The values of αan, αam and β are given in 

Table 6 for damaged parabolic steel tubular arches having 

fixed ends. 

In Table 6, Kd is the ratio of damage depth, and 𝜆𝑠 =
𝑆

𝑟𝑥
 

is the slenderness ratio of the arch with S being the axial 

length of the arch and rx being the radius of gyration of the 

cross-section. 

The predictions of the proposed interaction given by Eq. 

(10) are compared in Figs. 24 and 25 with the results of the 

verified FE model for the arches under the four load cases 

 

 
 

Table 5 Values of Kγ for parabolic arches of constant cross section under a vertical uniform load 

γ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Kγ 60.7 101 115 111 97.4 83.8 59.1 43.7 
 

  

(a) Calculated with gross cross-section (b) Calculated with effective cross-section 

Fig. 23 Remaining strength of damaged arches 
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Fig. 24 In-plane strength of fixed arches without damages 

using gross area 

 

 

 

Fig. 25 In-plane strength of fixed arches with damages 

using gross area 

 

 

listed in Table 6. The FE results consists of 1620 damaged 

arches (405 arches for each load cases), and 144 undamaged 

arches (36 arches for each load cases). 

In Figs. 24 and 25, the gross undamaged cross-sections 

are used to calculate the axial compression capacity Nac of 

the arch and the in-plane full plastic moment Mp of the 

cross-section. 

It can be seen that the interaction Eq. (10) based on the 

gross cross-section can predict the strength of undamaged 

steel arches very well (Fig. 24), but significantly 

overestimates the strength of damaged steel arches (Fig. 

25). 

When the effective damaged cross-section is used to 

determine the axial compression capacity Nac of the arch 

and the in-plane full plastic moment Mp of the cross-section, 

the comparisons of the predictions of the proposed Eq. (10) 

with the FE results are shown in Fig. 26. It can be seen that 

the interaction Eq. (10) provides good lower bound 

predictions for the remaining strengths of damaged steel 

tubular arches. It can be concluded that the effective cross- 

 

 

 

Fig. 26 In-plane strength of fixed arches with damages 

using effective area 
 

 

section of the damaged arches should be used in the 

assessment of their remaining strengths. 
 

 

7. Conclusions 
 

Experimental studies of effects of local damages on the 

in-plane elastic-plastic buckling response and remaining 

strength of fixed parabolic steel tubular arches under a 

vertical five-point loading were presented in this paper. A 

FE model for damaged parabolic steel tube arches was 

formulated and validated by the test results and it was then 

used for further investigations of effects of the various 

parameters on the in-plane elastic-plastic buckling 

behaviour of damaged arches. It was found that the local 

damage significantly reduces the remaining in-plane elastic-

plastic buckling strengths of steel tubular arches. It was also 

found that the remaining strengths with local damages at the 

arch end are lower than those with local damages at the arch 

crown. In addition, test results showed that the reduction 

effect of the depth of the local damage is more significant 

than that of the length of the local damage. It was further 

found that the failure mode shape of a damaged steel arch is 

very much dependent on the shapes of the initial geometric 

imperfections of the arch. 

The test and FE results were used to investigate 

remaining strengths of damaged fixed steel tubular arches in 

nominal uniform axial compression. The equations for 

assessing the remaining strengths of damaged steel tubular 

arches were developed based on the FE and test results. It 

has been shown that curve b of the codes GB50017 (2017) 

and Eurocode 3 (2004) for steel members in uniform axial 

compression can be used for predicting the remaining in-

0.0
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Table 6 Factors for in-plane strength of fixed parabolic arches 

Load cases 

    

𝛼𝑎𝑛 1.0 1.0 1.1 1.1 

𝛼𝑎𝑚 

𝛾 ≤ 0.1 3.0 1.8 1.2 +
30

𝜆𝑠
 1.2 +

15

𝜆𝑠
 

𝛾 > 0.1 3.84 −
𝜆𝑠
125

 2.04 −
𝜆𝑠
125

 1.2 +
30

𝜆𝑠
 1.2 +

15

𝜆𝑠
 

β 1+(Kd)
2 1+(Kd)

2 1+(Kd)
2 1+(Kd)

2 
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plane strength of damaged parabolic steel tubular arches as 

long as the effective cross-section considering damages and 

the elastic in-plane buckling load of damaged parabolic 

arches in uniform compression are used in calculating the 

normalized slenderness of the arches. 

Based on a large number of FE results, an interaction 

equation was proposed for assessing remaining in-plane 

strengths of damaged steel tubular arches that are subjected 

to the combined bending and axial compression. The 

interaction equation considers the effect of damages on the 

remaining strengths of arches by using the effective cross-

section to calculate the remaining in-plane axial 

compression strength of the damaged arch and the full 

plastic moment of the damaged cross-section. In addition to 

the modification factors for the in-plane axial compression 

strength of the arch and the full plastic moment of the cross-

section, a modification factor for damage degrees was 

introduced. Comparisons of the interaction equation with 

the large number of FE results showed that the proposed 

interaction equation provides good lower bound predictions 

for the remaining in-plane strength of damaged steel arches 

that are subjected to the combined bending and axial 

compressions. 
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