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1. Introduction 

 

Functionally graded material (FGM) have attracted the 

researchers because of its customized properties. This 

material has been created by taking the continuous variation 

of individual volume fractions of the ceramic and metal 

components in an effective way to fit the necessity of 

engineering structure. The design and analysis of graded 

structure not only important but also challenging. The 

increase in the application of FGM attracts different 

material researcher and the design engineers for their 

complete understanding. Moreover, to achieve the proper 

distribution of material constituent always a challenge and 

the research also focuses on different grading patterns (Chi 

and Chung 2006) i.e., power-law distribution graded 

material (P-FGM), exponential grading (E-FGM) and 

sigmoid type of grading (S-FGM). To achieve the desired 

kind of graded material, the component follows various 

fabrication techniques (Jamaludin et al. 2013). Out of the 

available techniques of preparation, the sintering of 

different volume fractions of individual constituents is 

poured into the desired shape of the die, which, in turn, may 
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induce the porosity within the part component. The porosity 

may reduce the structural strength/stiffness and the 

subsequent performances. In general, porosity within the 

structural component can be modelled by considering their 

distribution type (Wang and Zu 2017) i.e., even and uneven 

type. 

To understand the current developments in the field of 

porous FG structure under the influence of the grading 

patterns, directional dependence of grading and geometrical 

configurations, a few relevant literatures are discussed in 

the following lines. In this regard, the eigenvalue solutions 

i.e., the free vibration and buckling load parameters of S-

FGM shell structure reported by Han et al. (2008) assuming 

the constant Poisson ratio. The structural model and their 

corresponding responses largely depend on the type of 

kinematic models, it majorly represents the structural 

displacement and the continuity condition of the 

stress/strain. Hence, the researchers have made a number of 

efforts in the past to count the exact mid-plane kinematics 

for the layered composite and graded structures. In this line, 

the first-order and higher-order shear deformation theories 

(FSDT and HSDT) have received huge attention for 

structural modelling and analysis. The FSDT kinematics has 

been utilized by various researcher (Tornabene 2009 and 

Thai and Choi 2013) for the evaluation of dynamic 

deformation characteristics, the free vibration frequency 

and the static deflection of the FG thick/thin plate structure 

whereas Vu et al. (2017) used same kinematic model with 

four-variable refined plate theory for the free vibration and 

static bending analyse. Also, the higher-order kinematic 

 
 
 

Effect of grading pattern and porosity on the eigen 
characteristics of porous functionally graded structure 

 
Prashik Malhari Ramteke 1, Subrata K. Panda1 and Nitin Sharma 2 

 
1 Department of Mechanical Engineering, NIT Rourkela, Rourkela-769008, Sundergarh, Odisha, India 

2 School of Mechanical Engineering, KIIT Bhubaneswar, Bhubaneswar-751024, Odisha, India 
 
 

(Received August 9, 2019, Revised November 7, 2019, Accepted November 19, 2019) 

 
Abstract.  The current article proposed to develop a geometrical model for the analysis and modelling of the uniaxial functionally 

graded structure using the higher-order displacement kinematics with and without the presence of porosity including the distribution. 

Additionally, the formulation is capable of modelling three different kinds of grading patterns i.e., Power-law, sigmoid and 

exponential distribution of the individual constituents through the thickness direction. Also, the model includes the distribution of 

porosity (even and uneven kind) through the panel thickness. The structural governing equation of the porous graded structure is 

obtained (Hamilton’s principle) and solved mathematically by means of the isoparametric finite element technique. Initially, the 

linear frequency parameters are obtained for different geometrical configuration via own computer code. The comparison and the 

corresponding convergence studies are performed for the unidirectional FG structure for the validation purpose. Finally, the impact 

of different influencing parameters like aspect ratio (O), thickness ratio (S), curvature ratio (R/h), porosity index (λ), type of porosity 

(even or uneven), power-law exponent (n), boundary condition on the free vibration characteristics are obtained for the FG panel 

and discussed in details. 
 

Keywords:  functionally graded materials; porosity; grading pattern; higher-order shear deformation theory; effective 

material properties 

 

865



 

Prashik Malhari Ramteke, Subrata K. Panda and Nitin Sharma 

model (HSDT) has been adopted to evaluate various 

structural responses i.e., the modal frequency and static 

deflection parameters of the FG structural components by 

Atmane et al. (2010) including two grading patterns (P-

FGM and E-FGM), whereas the responses of the P-FGM 

grading effect discussed in Talha and Singh (2010). 

Moreover, the buckling load and the natural frequency data 

obtained by Meiche et al. (2011) for the FG sandwich thick 

plate structure considering the transverse shear deformation 

effects. Mohammadi and Ghannadpour (2011) presented the 

accurate vibration solutions of the nano Timoshenko beams 

by using Eringen’s nonlocal elasticity theory while 

Ghassabi et al. (2017) presented the impact of scale factor 

on the frequency characteristics of FG nanoplate structure 

by utilizing the nonlocal elasticity theory. Similarly, the 

third-order plate theory adopted to investigate the free 

vibration frequency of the cracked FG thick rectangular 

plates by Huang et al. (2011) whereas the same kinematic 

model utilized to compute the analytical solutions of the 

free vibration, static bending and buckling responses by 

Kim and Reddy (2013). Wattanasakulpong et al. (2012) 

investigated the fabrication of the layered FG beam 

component and the corresponding experimental modal data. 

The vibration, bending and buckling analysis of the 

nonlocal Euler beams (Ghannadpour et al. 2013) and FG 

plate (Vu et al. 2019) performed by employing the Ritz 

method and sin shear deformation plate theory in 

association with the effective meshfree method, 

respectively. Hebali et al. (2014) used a newly developed 

quasi-three-dimensional (3D) hyperbolic shear deformation 

theory to obtain the free vibration and bending behaviour of 

the FG plates. Asadi et al. (2014) evaluated vibration 

responses of the internal line supported FG plates subjected 

to in-plane static forces. The free vibration analysis of FG 

beams presented by Mashat et al. (2014) using Carrera 

Unified Formulation (CUF) and by solving governing 

equations with the help of the principle of Virtual 

Displacement. Also, Kirchhoff’s plate theory utilized by 

Chakraverty and Pradhan (2014) for the computation of the 

modal responses of the rectangular FG plates under the 

influence of different end boundary conditions. Similarly, 

the infinitesimal elasticity theory and the analytical 

formulation adopted by Ghannad and Gharooni (2012) in 

the HSDT kinematics for the analysis of the thick-walled 

axisymmetric FG cylinders under the internal and/or 

external pressure. The numerical frequencies and the 

corresponding mode shapes of the FGM plate under the 

different end constraints investigated by Ramu and 

Mohanty (2014) via the finite element method (FEM). 

Belkorissat et al. (2015) employed a new nonlocal 

hyperbolic refined plate model to compute the Eigen 

characteristics of the FG plate. An efficient technique based 

on unidirectional beam finite element analysis (FEA) was 

developed by Sheikh et al. (2015) for the vibration analysis 

of thin-walled laminated composite beams. Arani and 

Kolahchi (2016) obtained the nonlinear transverse 

vibrations of an embedded piezoelectric plate rested on 

Pasternak foundation with carbon nanotubes reinforcement 

by employing differential quadrature method (DQM). The 

large-amplitude flexural vibration of the uniform or FG 

carbon nanotube reinforced composites plates (CNTRC) 

presented by Mirzaei and Kiani (2017) using a von-Karman 

kind of geometrical nonlinearity. Liu et al. (2017) used 

isogeometric analysis and a new non-classical FSDT to 

present frequency, deformation and buckling analysis of FG 

thick microplates. Likewise, the commercial FE package 

(ANSYS) has also been adopted (Bohra et al. 2017) to 

compute the natural frequency data of the FG plate structure 

under the influence of variable end conditions (all sides 

simply supported, SSSS; two sides simply-supported and 

remaining two sides are clamped, SSCC). The influence of 

skew angle on the modal responses of the cylindrical FG-

CNTRC investigated (Kiani et al. 2018) including the 

distribution of CNT (uniform and non-uniform) along the 

thickness direction. Further, Barati and Zenkour (2018) 

employed FSDT and Galerkin’s method to obtain the free 

vibration characteristics of the porous nanocomposites 

shells reinforced by graphene platelets. Also, the effect of 

reinforcement of nanoparticles including carbon nanotubes 

on the structural responses (frequency, dynamic, buckling 

and postbuckling) have been examined by Hajmohammad 

et al. (2018), Amnieh et al. (2018), Kolahchi et al. (2019) 

and Jassas et al. (2019) under the influence of ambient and 

elevated hostile environment (magneto-hygrothermal, 

hygrothermal). 

It is important to discuss regarding the porosity type of 

defect in the FG structure majorly observed during their 

manufacturing process, which, in turn, affects the structural 

integrity and the corresponding final performances. The 

Vibration characteristics of the FGM doubly-curved shell 

panel (Jouneghani et al. 2017) and FG nanoplates 

(Shahverdi and Barati, 2017) with the effect of porosity are 

discussed using FSDT kinematics. Wang and Zu (2017) 

investigated the vibration behaviour of the FGM plates 

containing even and uneven porosities and moving in a 

thermal environment. The frequency parameters computed 

for the porous S-FGM plate (Wang and Zu 2018) and S-

FGM beam (Avcar 2019) including von-Karman type 

geometrical nonlinear plate theory. The structural model in 

the latter case utilized two kinematic models i.e., the lower-

order displacement functions (FSDT) and the classical 

beam theory (CBT), whereas the former study adopted the 

FSDT type of model. Further, the thermo-elastic vibration 

characteristics of the FG panels with porosity is investigated 

by Amir and Talha (2019) based on HSDT kinematics. 

The review clearly indicates that the major study 

relevant to graded structure reported on P-FG kind of 

distribution instead of other available types. Similarly, a 

major study does not include the effect of porosity 

distribution either even or uneven type. Hence, the objective 

of the current study is to derive a generic type of 

mathematical formulation, which can include the effect of 

various grading patterns (power-law, exponential and 

sigmoid) and subsequent effect on their natural frequency 

parameter with and without porosity. Also, the model 

includes the distribution pattern of porosity i.e., even and 

uneven type. For this purpose, the structural responses 

obtained numerically using the own computer code 

prepared in MATLAB through the currently proposed 

mathematical model. The current model validity is 
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established via comparing the currently computed 

frequencies with the published data. The finite element 

solutions of the linear free vibration frequencies of different 

types of FGM including the porosity are obtained for 

different geometrical parameter including the porosity 

aspect. 
 

 

2. Mathematical formulation 
 

2.1 Effective material properties 
 

In this section, the variation of material properties of FG 

panel structure along the thickness direction (X3-axis) is 

discussed including the classification. In general, the top 

and bottom surface (X3 = h/2 and X3 = -h/2) of the FG panel 

is assumed to be ceramic and metal-rich, respectively. 

Further, the elastic property variation has been obtained 

numerically using the available methodologies i.e., Voigt’s 

model (simple rule of mixture) in association with the 

material volume fraction along the thickness direction. In 

this analysis, three kinds of variation of individual 

constituent along the thickness direction are utilized i.e., 

power-law type distribution, exponential and sigmoid type 

with and without porosities (even and uneven). 

 

2.1.1 P-FGM 
According to the P-FGM method, variation of the 

material property in the thickness direction is given by (Chi 

and Chung 2006) 
 

𝑃 = (𝑃𝑐 − 𝑃𝑚)𝑉𝑓𝑐 + 𝑃𝑚 (1) 

 

 

X1X2

X3

ab

h

RX2 = R
RX1 = R

 

Fig. 1 FG Curved panel 

 

 

The material properties of the P-FGM after introducing 

even and uneven porosity in Eq. (1) can be rewritten in Eqs. 

(2)-(3), respectively (Wang and Zu 2017). In uneven 

porosity distribution, the middle zone of the cross-section is 

rich with porosity whereas, towards the bottom and top of 

the cross-section, the porosity amount is decreases linearly. 

 

𝑃 = (𝑃𝑐 − 𝑃𝑚)𝑉𝑓𝑐 + 𝑃𝑚 − 0.5𝜆 × (𝑃𝑐 + 𝑃𝑚) (2) 

 

𝑃 = (𝑃𝑐 − 𝑃𝑚)𝑉𝑓𝑐 + 𝑃𝑚 − 0.5𝜆 × (𝑃𝑐 + 𝑃𝑚) (1 −
2|𝑋3|

ℎ
) (3) 

 

where, P is the effective material property of FGM in the 

X3-direction, similarly, Pc and Pm are the material properties 

of the ceramic and metal, respectively, X3 is any random 

point in thickness direction. Additionally, the total plate 

thickness, porosity index and power exponent are defined as 

‘h’, λ and n, respectively. The volume fraction of ceramic 

and metal are 𝑉𝑓𝑐 = (0.5 + 𝑋3/ℎ)
𝑛  and 𝑉𝑓𝑚 = 1 − 𝑉𝑓𝑐 , 

respectively. The geometry of the FG curved panel is shown 

in Fig. 1 whereas the even and uneven porosity distribution 

pattern with material grading of the FGM is shown in Fig. 2 

(Amir and Talha 2019). In addition, the variation of volume 

fraction of ceramic and metal according to P-FGM grading 

with respect to thickness ratio is shown in Fig. 3. The 

volume fraction of ceramic increases quickly adjacent to the 

bottom surface for n < 1 and changes rapidly adjacent to 

 

 

 

Fig. 3 Variation of volume fraction in P-FGM panel 
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the top surface for n > 1. 

 

2.1.2 S-FGM 
For the smooth variation of material properties, two 

power-law functions are utilized to define the volume 

fraction via the rule of mixture and presented in Eqs. (4)-(5) 
(Chi and Chung 2006). Similarly, the material properties of 

S-FGM including the porosity (even and uneven 

distribution) are expressed through another set of 

mathematical formulae similar to the source (Avcar 2019) 

through Eqs. (6)-(7) and Eqs. (8)-(9), respectively. 
 

𝑃 = (𝑃𝑐 − 𝑃𝑚) [1 − 0.5 (1 −
2𝑋3
ℎ
)
𝑛

] + 𝑃𝑚𝑓𝑜𝑟0 ≤ 𝑋3 ≤ ℎ/2 (4) 

 

𝑃 = (𝑃𝑐 − 𝑃𝑚) [0.5 (1 +
2𝑋3
ℎ
)
𝑛

] + 𝑃𝑚𝑓𝑜𝑟 − ℎ/2 ≤ 𝑋3 ≤ 0 (5) 

 

𝑃 = (𝑃𝑐 − 𝑃𝑚) [1 − 0.5 (1 −
2𝑋3
ℎ
)
𝑛

] + 𝑃𝑚 

         −0.5𝜆 × (𝑃𝑐 + 𝑃𝑚)     for     0 ≤ 𝑋3 ≤ ℎ/2 

(6) 

 

𝑃 = (𝑃𝑐 − 𝑃𝑚) [0.5 (1 +
2𝑋3
ℎ
)
𝑛

] + 𝑃𝑚 

        −0.5𝜆 × (𝑃𝑐 + 𝑃𝑚)     for     − ℎ/2 ≤ 𝑋3 ≤ 0 

(7) 

 

𝑃 = (𝑃𝑐 − 𝑃𝑚) [1 − 0.5 (1 −
2𝑋3
ℎ
)
𝑛

] + 𝑃𝑚 

        −0.5𝜆 × (𝑃𝑐 + 𝑃𝑚) (1 −
2|𝑋3|

ℎ
) 

for     0 ≤ 𝑋3 ≤ ℎ/2 

(8) 

 

𝑃 = (𝑃𝑐 − 𝑃𝑚) [0.5 (1 +
2𝑋3
ℎ
)
𝑛

] + 𝑃𝑚 

        −0.5𝜆 × (𝑃𝑐 + 𝑃𝑚) (1 −
2|𝑋3|

ℎ
) 

for     − ℎ/2 ≤ 𝑋3 ≤ 0 

(9) 

 

The relation between thickness and volume fraction 

constituents for the S-FGM is shown in Fig. 4. It is clear 

from the figure that the volume fraction of ceramic and 

metal is same i.e., 0.5 at thickness ratio equal to zero. 
 

2.1.3 E-FGM 
The material property variation according to the 

exponential grading is described by Eq. (10) as follows (Chi 

and Chung 2006) 
 

𝑃 = 𝑃𝑐 × 𝑒
−
1

2
𝑙𝑛(

𝑃𝑐
𝑃𝑚

)(1−
2𝑋3
ℎ
)
 (10) 

 

Now, the material properties of E-FGM with two type of 

porosity distribution (even and uneven) obtained by Eqs. 

(11)-(12), respectively. 
 

𝑃 = 𝑃𝑐 × 𝑒
(−

1

2
𝑙𝑛(

𝑃𝑐
𝑃𝑚

)(1−
2𝑋3
ℎ
)−0.5𝜆×𝑙𝑛(

𝑃𝑐
𝑃𝑚

))
 (11) 

 

𝑃 = 𝑃𝑐 × 𝑒
(−

1

2
𝑙𝑛(

𝑃𝑐
𝑃𝑚

)(1−
2𝑋3
ℎ
)−0.5𝜆×𝑙𝑛(

𝑃𝑐
𝑃𝑚

)(1−
2|𝑋3|

ℎ
))

 
(12) 

 

 

Fig. 4 Volume fraction variation in S-FGM panel 
 

 

 

Fig. 5 Volume fraction variation in E-FGM panel 
 

 

The volume fraction distribution of E-FGM for ceramic 

and metal constituents in the thickness direction is shown in 

Fig. 5. 
 

2.2 Displacement field based on HSDT 
 

The FGM curved panel of various geometrical 

dimension i.e., the total thickness ‘h’ along the X3-axis, 

whereas length ‘a’ and ‘b’ along the X1 and X2-axis, 

respectively (refer Fig. 1). Further, the radii of curvatures of 

the panel at the mid-plane along their principal material 

direction specified as RX1 and RX2, respectively. The material 

displacement field expressed using the HSDT as in the 

source (Kar and Panda 2016) 
 
𝑋11(𝑋1, 𝑋2, 𝑋3) = 𝑋110(𝑋1, 𝑋2) + 𝑋3𝜓𝑥(𝑋1, 𝑋2)

                                        +𝑋3
2𝑋110

∗ (𝑋1, 𝑋2) + 𝑋3
3𝜓𝑥

∗(𝑋1, 𝑋2)

𝑋22(𝑋1, 𝑋2, 𝑋3) = 𝑋220(𝑋1, 𝑋2) + 𝑋3𝜓𝑦(𝑋1, 𝑋2)

                                        +𝑋3
2𝑋220

∗ (𝑋1, 𝑋2) + 𝑋3
3𝜓𝑦

∗(𝑋1, 𝑋2)

𝑋33(𝑋1, 𝑋2, 𝑋3) = 𝑋330(𝑋1, 𝑋2) }
 
 

 
 

 (12) 

 

where, 𝑋11,  𝑋22,  𝑋33 and 𝑋110,  𝑋220,  𝑋330 are the global 

and mid-plane displacement field along X1, X2, and X3-

direction, respectively. 𝜓𝑥,  𝜓𝑦 are rotations of transverse 

normal about X2, and X1-axis, respectively. 𝑋110
∗ ,  𝑋220

∗ , 
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𝜓𝑥
∗,  𝜓𝑦

∗  are the higher-order terms of Taylor’s series 

expansion, 𝑋3
2 and 𝑋3

3 are the square and cubic thickness 

coordinates, respectively. 

 

2.2.1 Strain-displacement relations 
The strain-displacement expression for the FGM 

structure is represented in Green-Lagrange sense as (Reddy 

2004) 

{𝜀} = 𝜀𝑙 =

{
 
 

 
 
𝜀𝑋1𝑋1
𝜀𝑋2𝑋2
𝛾𝑋1𝑋2
𝛾𝑋1𝑋3
𝛾𝑋2𝑋3}

 
 

 
 

=

{
 
 
 

 
 
 𝑋11,𝑋1

𝑋22,𝑋2

𝑋11,𝑋2
+ 𝑋22,𝑋1

𝑋11,𝑋3
+ 𝑋33,𝑋1

𝑋22,𝑋3
+ 𝑋33,𝑋2}

 
 
 

 
 
 

 (14) 

 

where, 𝜀𝑙 is linear strain tensors 

 

𝑋11,𝑋1
=
𝜕𝑋11
𝜕𝑋1

+
𝑋33
𝑅𝑋1

; 

𝑋11,𝑋2
=
𝜕𝑋11
𝜕𝑋2

;           𝑋11,𝑋3
=
𝜕𝑋11
𝜕𝑋3

 

𝑋22,𝑋1
=
𝜕𝑋22
𝜕𝑋1

;           𝑋22,𝑋2
=
𝜕𝑋22
𝜕𝑋2

+
𝑋33
𝑅𝑋2

; 

𝑋22,𝑋3
=
𝜕𝑋22
𝜕𝑋3

;           𝑋33,𝑋1
=
𝜕𝑋33
𝜕𝑋1

−
𝑋11
𝑅𝑋1

; 

𝑋33,𝑋2
=
𝜕𝑋33
𝜕𝑋2

−
𝑋22
𝑅𝑋2

 

 

Now, the linear strain tensor is 

 

{𝜀𝑙} =

{
  
 

  
 
𝜀𝑋1
0

𝜀𝑋2
0

𝜀𝑋1𝑋2
0

𝜀𝑋1𝑋3
0

𝜀𝑋2𝑋3
0

}
  
 

  
 

+ 𝑋3

{
  
 

  
 
𝑘𝑋1
1

𝑘𝑋2
1

𝑘𝑋1𝑋2
1

𝑘𝑋1𝑋3
1

𝑘𝑋2𝑋3
1

}
  
 

  
 

+ 𝑋3
2

{
  
 

  
 
𝑘𝑋1
2

𝑘𝑋2
2

𝑘𝑋1𝑋2
2

𝑘𝑋1𝑋3
2

𝑘𝑋2𝑋3
2

}
  
 

  
 

+ 𝑋3
3

{
  
 

  
 
𝑘𝑋1
3

𝑘𝑋2
3

𝑘𝑋1𝑋2
3

𝑘𝑋1𝑋3
3

𝑘𝑋2𝑋3
3

}
  
 

  
 

 (15) 

 

or 
 

{𝜀𝑙} = [𝑇𝑙]{𝜀𝑙} = {𝜀
0} + 𝑋3{𝑘

1} + 𝑋3
2{𝑘2} + 𝑋3

3{𝑘3} (16) 

 

where, {𝜀𝑙}20×1  and [𝑇𝑙]5×20  are the mid-plane strain 

terms matrix and linear thickness coordinate, respectively. 

 

2.2.2 Finite element formulation 
For the modelling purpose, a nine noded isoparametric 

quadrilateral Lagrangian element with nine degrees of 

freedom (DOF) per node is used for the discretization of the 

present model. The finite element presentation of the mid-

plane displacement vector using the shape function [N] is 

given below in Eq. (17) (Cook et al. 2009). 

 

{𝛿0} =∑[𝑁]

9

𝑖=1

{𝛿0𝑖} (17) 

 

where, [N] is nodal shape function, {𝛿0𝑖} is the mid-plane 

displacement vector for the ith node and is given by 

{𝛿0𝑖} = {𝑋110𝑖
𝑋220𝑖

𝑋330𝑖
𝜓𝑥𝑖𝜓𝑦𝑖𝑋110𝑖

∗ 𝑋220𝑖
∗ 𝜓𝑥𝑖

∗ 𝜓𝑦𝑖
∗ }

𝑇

 

 

Now, the mid-plane strain term is written as 
 

{𝜀𝑙} = [𝐵]{𝛿0𝑖} (18) 
 

where, [B]20×9 is the product of shape functions and the 

differential operators. 

 

2.2.3 Stress-strain relation 
The generic form of the constitutive relations for the 

FGM structural component expressed as (Kar and Panda 

2016) 
 

{𝜎} =

{
 
 

 
 
𝜎𝑋1𝑋1
𝜎𝑋2𝑋2
𝜏𝑋1𝑋2
𝜏𝑋1𝑋3
𝜏𝑋2𝑋3}

 
 

 
 

 

=

[
 
 
 
 
 
 
 
 
 
 

𝐸

1 − 𝜇2
𝐸 × 𝜇

1 − 𝜇2
0 0 0

𝐸 × 𝜇

1 − 𝜇2
𝐸

1 − 𝜇2
0 0 0

0 0
𝐸

2(1 + 𝜇)
0 0

0 0 0
𝐸

2(1 + 𝜇)
0

0 0 0 0
𝐸

2(1 + 𝜇)]
 
 
 
 
 
 
 
 
 
 

{
 
 

 
 
𝜀𝑋1𝑋1
𝜀𝑋2𝑋2
𝛾𝑋1𝑋2
𝛾𝑋1𝑋3
𝛾𝑋2𝑋3}

 
 

 
 

= [𝑄]{𝜀} 

(19) 

 

where, {σ} and {ε} are the stress and the strain vectors, 

respectively and [Q] is the reduced stiffness matrix. 

Now, the strain energy of the FG structure is written as 
 

𝑈 = 0.5 × ∫{𝜀}𝑇

𝑣

{𝜎}𝑑𝑉 (20) 

 

Further, the energy functional can be rewritten by 

utilizing the corresponding stress and strain terms in the Eq. 

(20) and conceded to the following form. 
 

𝑈 = 0.5 × ∫({𝜀𝑙}
𝑇[𝐷]{𝜀𝑙})

𝐴

𝑑𝐴 (21) 

 

where 
 

[𝐷] = ∫ [𝑇𝑙]
𝑇[𝑄]

ℎ/2

−ℎ/2

[𝑇𝑙]𝑑𝑋3 

 

Now, the kinetic energy of the FG structure can be 

expressed as 
 

𝑇 = 0.5∫𝜌{�̇�}
𝑇

𝑣

{�̇�}𝑑𝑉 (22) 

 

𝑇 = 0.5 × ∫ (∫ {�̇�0}
𝑇

0.5ℎ

−0.5ℎ

[𝑓]𝑇𝜌[𝑓]{�̇�0}𝑑𝑋3)
𝐴

𝑑𝐴 

    = 0.5 × ∫{�̇�0}
𝑇

𝐴

[𝑚]{�̇�0}𝑑𝐴 

(23) 

 

where, ρ, {�̇�} and [m] are the mass density, velocity vector 

and elemental inertia matrix, respectively and 
 

[𝑚] = ∫ [𝑓]𝑇
ℎ/2

−ℎ/2

𝜌[𝑓]𝑑𝑋3 
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2.2.4 Governing equations 
In this subsection, the governing equation for the 

vibration study can be presented in Eq. (24) as 
 

𝛿 ∫ 𝐿𝑑𝑡 = ∫ (𝑇 − 𝑈)𝑑𝑡 = 0
𝑡2

𝑡1

𝑡2

𝑡1

 (24) 

 

Finally, the eigenvalue type equation is derived using 

the Eqs. (20) and (24). 
 

[𝑀]{�̈�} + [𝐾]{𝛿} = 0 (25) 

 
([𝐾] − 𝜔2[𝑀]){𝛿} = 0 (26) 

 

where, ω, [K] and [M] are the natural frequency, system 

stiffness matrix and global mass matrix of the FG panel and 
 

[𝑀] = ∫[𝑁]
𝐴

𝑇

[𝑚][𝑁]𝑑𝐴 

 

Finally, the required responses can be obtained by 

solving Eq. (26). 
 

 

3. Results and discussions 
 

After the successful development of the proposed 

higher-order finite element formulation, a customized 

compute code has been prepared considering the linear 

stiffness matrix only in the MATLAB environment. 

Subsequently, the free vibration frequency of the graded 

structure evaluated computationally for the different design 

parameters i.e., thickness ratio (S), aspect ratio (O), 

curvature ratio (R/h), power-law exponent (n), porosity 

index (λ). For the computational calculation, the necessary 

FG elastic properties (Table 1) of the material constituents 

adopted as per the requirements. 

 

3.1 Validation and convergence study 
 

Now, to establish the currently proposed higher-order 

FE model, few examples as same as the reference are 

 

 

Table 1 Material properties 

Material 

Properties 

Modulus of 

elasticity (E) 

(GPa) 

Poisson’s 

ratio 

(μ) 

Density 

(ρ) 

(kg/m3) 

Ceramic 

Alumina 

(Al2O3) 
349.55 0.24 3800 

Silicon nitrate 

(Si3N4) 
322.27 0.28 2370 

Zirconia 

(ZrO2) 
151 0.3 3000 

Metal 

Stainless steel 

(SUS304) 
201.04 0.3262 8166 

Aluminium 

(Al) 
70 0.3 2707 

 

studied in this subsection. In general, the accuracy of any 

numerical solution depends on its convergence and validity. 

In this regard, the non-dimensional natural frequencies of 

the FG structures consists of various grading pattern (P-

FGM, S-FGM and E-FGM) and geometrical configurations 

(spherical and plate) are evaluated considering the linear 

stiffness only. The present and the reference data (Amir and 

Talha 2019) are computed for the different element sizes 

along with the corresponding directions including the 

comparison presented in Fig. 6. The data points indicate the 

converging pattern when the mesh sizes increase from the 

coarse to fine. The responses of a SSSS P-FGM 

(Al2O3/SUS304) spherical panel (O = 1, S = 100 and n = 0, 

0.6, 1, 2, 5, ∞) has been solved for the comparison purpose. 

It is observed from Fig. 6 that the differences between the 

results are too small i.e., within 0.80 to 1.05 % for all the 

values of a power-law exponent. 

Further, to show the capability of the current model, two 

more examples are solved for two different grading patterns 

(S-FGM and E-FGM) and support conditions (SSSS and 

clamped i.e., CCCC). The responses are obtained using the 

same geometrical and material parameters as in the 

references (Han et al. 2008 and Chakraverty and Pradhan 

2014). The frequencies are obtained for the first three and 

five modes and presented in Tables 2-3, respectively and it 

is observed that the variation between the result is not very 

large i.e., within 0.24 to 3.21 % for S-FGM and 5.92 to 8.51 

% for E-FGM. The difference between the results of E-

FGM is more as compare to P-FGM and S-FGM. This is 

because the frequency values are calculated for E-FGM are 
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Fig. 6 Convergence and validation study of P-FGM 
 

 

Table 2 Frequency (non-dimensional) of SSSS square S-

FGM plate (S = 100, O = 1) 

Power-law 

exponent (n) 

Han et al. (2008) Present 

1 2 3 1 2 3 

0 9.041 22.705 22.705 9.0646 23.4603 23.4604 

1 7.555 18.992 18.993 7.5789 19.6165 19.6166 

2 7.457 18.745 18.747 7.4784 19.3572 19.3572 

5 7.373 18.533 18.535 7.3919 19.1338 19.1339 

10 7.348 18.47 18.472 7.3661 19.0672 19.0672 

∞ 6.148 15.459 15.459 6.1718 15.9733 15.9733 
 

 

870



 

Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure 

 

 

 

 

based on Classical plate theory (three degrees of freedom) 

whereas the present data is obtained using HSDT 

kinematics (nine degrees of freedom). 
 

3.2 Vibration analysis of FGM 
 

After successful completion of the validation study, the 

vibration behaviour of all three types of FG structure is 

discussed in this section for different influencing 

parameters like aspect ratio, thickness ratio, power-law 

exponent, type of porosity, porosity index, boundary 

conditions and geometries. In this analysis, Alumina and 

Stainless steel are taken as ceramic and metal constituents, 

respectively. The material properties for the calculation 

purpose are taken as in Table 1. The linear frequencies are 

made a non-dimensional form using the given formula in 

 

 

Table 5 Natural frequency of P-FGM spherical panel for 

various boundary condition. (S = 100, O = 2, n = 5) 

Boundary 

condition 

Porosity index (λ) and distribution 

Even Uneven 

0 0.1 0.2 0 0.1 0.2 

SSSS 56.8153 55.546 53.985 56.8153 56.2305 55.5877 

CCCC 71.7804 69.7211 67.3398 71.7804 70.9475 70.0727 

CFFF 1.1268 1.1061 1.08 1.1268 1.1263 1.1254 
 

 

 

 

 

the following line. The non-dimensional form of 

presentation majorly helps in understanding the effect of a 

particular structural parameter on the frequency behaviour. 

𝜛 =
𝜔𝑎2

ℎ
√
𝜌𝑐

𝐸𝑐
, where, ω is the natural frequency of the 

FG structure, Ec and ρc are the modulus of elasticity and 

density of the ceramic constituent. 
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Fig. 7 Natural frequency of SSSS P-FGM structure for 

different geometry and curvature ratio 
 

Table 3 Frequency parameters of CCCC E-FGM plate (S = 100) 

Aspect 

ratio (O) 

Chakraverty and Pradhan (2014) Present 

1 2 3 4 5 1 2 3 4 5 

0.2 15.024 15.559 16.514 17.949 20.456 16.066 16.648 17.699 19.326 21.667 

0.5 16.316 21.129 29.752 42.217 42.475 17.447 22.678 32.262 45.810 46.483 

1 23.89 48.724 48.724 71.868 87.556 25.527 52.421 52.421 77.279 95.101 

2 65.265 84.515 119.01 168.87 169.9 69.414 90.167 127.98 181.05 183.67 

2.5 98.099 115.38 147.06 194.24 261.74 104.06 122.61 157.23 209.82 277.28 
 

Table 4 Effect of aspect ratio, power-law exponent, porosity index and porosity distribution on the 

frequency data of SSSS P-FGM spherical panel (S = 100) 

Power-law 

exponent 

(n) 

Aspect ratio 

(O) 

Porosity index (λ) and distribution 

Even Uneven 

0 0.1 0.2 0 0.1 0.2 

1 

0.2 26.4674 26.7412 27.0266 26.4674 26.6015 26.7343 

0.5 64.3875 64.4818 64.5748 64.3875 64.4495 64.5176 

1 67.2850 67.3851 67.4825 67.2850 67.3409 67.3989 

3 72.4671 72.4320 72.3943 72.4671 72.5446 72.6322 

5 87.4184 87.0889 86.7554 87.4184 87.7674 88.1581 

5 

0.2 21.2774 21.0018 20.6149 21.2774 21.1464 20.9874 

0.5 52.2579 51.1517 49.7732 52.2579 51.7408 51.1680 

1 54.5997 53.4360 51.9883 54.5997 54.0471 53.4355 

3 59.1441 57.7803 56.1192 59.1441 58.5808 57.9636 

5 72.4165 70.5985 68.4514 72.4165 72.0336 71.6199 
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3.2.1 P-FGM 
In this subsection, the influence of aspect ratio with 

even and uneven porosity distribution on the frequency 

data(non-dimensional) of FG panel is obtained with 

different exponent values (n = 1 and n = 5) and shown in 

Table 4. From the table, it is seen that the increase in aspect 

ratio causes an increment in the natural frequencies. Also, 

the even and uneven porosity results are the same when the 

porosity index equals to zero (λ = 0). In addition, the 

frequency parameters of the P-FGM structure for various 

boundary conditions are given in Table 5. From the table, it 
 

 

Table 7 Effect of boundary condition on the frequency 

parameter of SSSS S-FGM spherical panel 

(S = 100, O = 2, n = 5) 

Boundary 

condition 

Porosity index (λ) and distribution 

Even Uneven 

0 0.1 0.2 0 0.1 0.2 

SSSS 69.7523 69.7787 69.8009 69.7523 69.7916 69.8350 

CCCC 86.9367 86.3492 85.7600 86.9367 86.8167 86.7241 

CFFF 1.3441 1.3435 1.3414 1.3441 1.3540 1.3647 
 

 

 

Table 8 Effect of porosity index, porosity distribution and 

power-law exponent on the frequency parameter of 

SSSS S-FGM spherical panel (S = 100, O = 1) 

Power-law 

exponent 

(n) 

Porosity index (λ) and distribution 

Even Uneven 

0 0.1 0.2 0 0.1 0.2 

0 67.4268 67.5334 67.6392 67.4268 67.4857 67.5472 

0.6 67.3106 67.4120 67.5111 67.3106 67.3673 67.4261 

1 67.2850 67.3851 67.4825 67.2850 67.3409 67.3989 

2 67.2619 67.3608 67.4566 67.2619 67.3172 67.3746 

5 67.2543 67.3527 67.4478 67.2543 67.3098 67.3672 

∞ 67.2681 67.3669 67.4627 67.2681 67.3249 67.3840 
 

 

 

is observed that the CCCC boundary condition give higher 

frequency values than the cantilever (CFFF) and SSSS 

conditions. Further, the influence of the curvature ratio and 

various geometries on the frequency parameters of the FG 

structure is shown in Fig. 7. It is observed from Fig. 7 that 

the curvature ratio affects spherical and elliptical panel most 

whereas the effect on the hyperbolic and plate structure is 

least. 

 

3.2.2 S-FGM 
Now, the frequency parameters of S-FGM spherical 

panel with even and uneven type of porosity distribution for 

various values of power-law exponent and aspect ratio are 

computed and presented in Table 6. Also, the frequency 

parameters (non-dimensional) of the S-FGM structure for 

different boundary conditions are presented in Table 7. 

Similarly, the influence of the porosity index and power-law 

exponent on the non-dimensional frequency parameters of 

S-FGM panel are obtained and shown in Table 8. Further, 

the consequence of curvature ratio and different geometries 
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Fig. 8 Effect of curvature ratio and geometry on the natural 

frequency of SSSS S-FGM structure 
 

Table 6 Effect of porosity index, porosity distribution, aspect ratio and power-law exponent on the 

frequency parameter of SSSS spherical S-FGM panel (S = 100) 

Power-law 

exponent 

(n) 

Aspect ratio 

(O) 

Porosity index (λ) and distribution 

Even Uneven 

0 0.1 0.2 0 0.1 0.2 

1 

0.2 26.4674 26.7412 27.0266 26.4674 26.6015 26.7343 

0.5 64.3845 64.4818 64.5748 64.3845 64.4495 64.5176 

1 67.2850 67.3851 67.4825 67.2850 67.3409 67.3989 

3 72.4671 72.4320 72.3943 72.4671 72.5446 72.6322 

5 87.4184 87.0889 86.7554 87.4184 87.7674 88.1581 

5 

0.2 26.5322 26.8142 27.1100 26.5322 26.6702 26.8074 

0.5 64.3528 64.4434 64.5274 64.3528 64.4160 64.4821 

1 67.2543 67.3527 67.4478 67.2543 67.3098 67.3672 

3 72.1952 72.1482 72.0928 72.1952 72.2678 72.3489 

5 86.5839 86.1713 85.7193 86.5839 86.9001 87.2504 
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Fig. 9 Non-dimensional frequency of SSSS E-FGM 

structure for different geometry and curvature ratio 

 

 

on the non-dimensional frequency parameter of the S-FGM 

structure with SSSS end condition is shown in Fig. 8. 

 

3.2.3 E-FGM 
The influence of porosity index, porosity distribution, 

thickness and aspect ratio on the linear eigenvalues of 

simply supported spherical E-FGM panel are obtained by 

utilizing the present higher-order model and presented in 

Table 9. The tabulated data indicate that the eigenvalues are 

following an ascending order while both the thickness ratio 

and aspect ratio of the panel component increases. Also, the 

effect of curvature ratio and various geometries on the 

frequency parameters of the E-FGM panel is shown in Fig. 

9. 

 

 

4. Conclusions 
 

The current study is proposed to develop the higher-

order FE model for the FG structures, including different 

type of porosity distribution (even and uneven) and grading 

patterns. The model applicability has been established by 

computing the vibration responses numerically via 

homemade computer code (MATLAB environment) with 

the help of mathematical formulation. The necessary 

validity of the model is presented by matching the present 

results with that of published data. The convergence and 

subsequent validation study indicate the suitability of the 

proposed higher-order FE model for the FG structures with 

and without porosity effect. The important outcomes of the 

present work are listed below: 

 

• The porosity index causes a variation in frequency 

parameters by 0.4% to 7% whereas the deviation can 

be noted in between 0.5% to 3.6% depending upon 

other influential parameters. 

• Sigmoid distribution method gives more stable 

frequency data in comparison to the power-law and 

exponentially distributed FG structure. 

• The frequencies are same for P and S type of FG 

structures while the exponent values approaches 

unity i.e., n = 1. 

• Also, the linear frequency results are vary 

consistently with the variation of the structural 

design associated parameters i.e., thickness ratios, 

aspect ratios, power-law exponents, porosity indices, 

grading patterns and geometrical configurations. 

 

 

Table 9 Natural frequencies (non-dimensional) of the SSSS E-FGM panel for different thickness 

and aspect ratio 

Thickness ratio 

(S) 

Aspect ratio 

(O) 

Porosity index (λ) and distribution 

Even Uneven 

0 0.1 0.2 0 0.1 0.2 

5 

0.2 1.3429 1.304 1.2662 1.3429 1.3199 1.2972 

0.5 3.4456 3.3465 3.2499 3.4456 3.3864 3.328 

1 4.4537 4.3097 4.1705 4.4537 4.3863 4.3197 

3 6.842 6.6454 6.4539 6.842 6.723 6.6059 

5 6.8654 6.6971 6.5039 6.8654 6.7759 6.6582 

10 

0.2 2.7033 2.6251 2.5488 2.7033 2.6574 2.6121 

0.5 6.749 6.5369 6.3313 6.749 6.6397 6.5319 

1 7.4454 7.2077 6.9777 7.4454 7.328 7.2123 

3 13.9593 13.5595 13.1696 13.9593 13.72 13.4843 

5 13.9731 13.5728 13.1826 13.9731 13.7334 13.4975 

100 

0.2 26.784 26.0067 25.2495 26.784 26.331 25.8849 

0.5 65.111 63.0389 61.7751 65.111 64.0506 63.0056 

1 68.0403 65.8739 63.7751 68.0403 66.9301 65.8363 

3 73.2954 70.9306 68.6423 73.2954 72.1196 70.9606 

5 88.5245 85.6058 82.7891 88.5245 87.1916 85.8762 
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