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Abstract. This study considers the instability behavior of sandwich plates considering magnetorheological (MR) fluid core
and piezoelectric reinforced facesheets. As facesheets at the top and bottom of structure have piezoelectric properties they are
subjected to 3D electric field therefore they can be used as actuator and sensor, respectively and in order to control the vibration
responses and loss factor of the structure a proportional-derivative (PD) controller is applied. Furthermore, Halpin-Tsai model is
used to determine the material properties of facesheets which are reinforced by graphene platelets (GPLs). Moreover, because
the core has magnetic property, it is exposed to magnetic field. In addition, Kelvin-Voigt theory is applied to calculate the
structural damping of the piezoelectric layers. In order to consider environmental forces applied to structure, the visco-Pasternak
model is assumed. In order to consider the mechanical behavior of structure, sinusoidal shear deformation theory (SSDT) is
assumed and Hamilton’s principle according to piezoelasticity theory is employed to calculate motion equations and these
equations are solved based on differential cubature method (DCM) to obtain the vibration and modal loss factor of the structure
subsequently. The effect of different factors such as GPLs distribution, dimensions of structure, electro-magnetic field, damping
of structure, viscoelastic environment and boundary conditions of the structure on the vibration and loss factor of the system are
considered. In order to indicate the accuracy of the obtained results, the results are validated with other published work. It is
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concluded from results that exposing magnetic field to the MR fluid core has positive effect on the behavior of the system.
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1. Introduction

MR fluids are high-tech materials that can shift their
phase from liquid to solid under external magnetic field. In
this kind of fluid, the viscosity changes remarkable to the
point of becoming a viscoelastic solid when the magnetic
field is exposed to the fluid. It is noted that, smart control of
MR fluid between top and bottom facesheets can be useful
in order to control the behavior of system. In this paper, PD
controller for smart control of vibration in MR fluids
integrated by piezoelectric facesheets as sensor and actuator
is applied.

There are many researches have been presented in the
field of sandwich plates with MR core. A model was
developed by Wang et al. (2001) to study dynamical
modelling of the chain structure formation in
electrorheological fluids. Damping and vibration analysis of
polar orthotropic annular plates with ER treatment was

*Corresponding author, Ph.D. Student,
E-mail: arameh.eyvazian@gmail.com

Copyright © 2019 Techno-Press, Ltd.
http://www.techno-press.org/?journal=scs&subpage=6

introduced by Yeh (2009). Yeh (2011) studied free vibration
analysis of rotating polar orthotropic sandwich annular plate
with electrorheological (ER) fluid core layer. Magneto-
rheological visco-elastomer and its application to
suppressing micro-vibration of sandwich plates were
studied by Ying et al. (2011). Yeh (2013) investigated the
vibration behavior of sandwich rectangular plates with MR
elastomer damping. Aguib et al. (2014) carried out the
dynamic behavior analysis of a MR elastomer sandwich
plate. The dynamic stability of a rotating three layered
symmetric sandwich beam with magnetorheological
elastomer (MRE) core and conductive skins subjected to
axial periodic loads was investigated by Nayak et al. (2014)
using finite element method (FEM). MalekzadehFard et al.
(2015) studied free vibration and buckling analyses of
cylindrical sandwich panel with MR fluid layer. In this
research the effects of magnetic field on loss factors and
buckling loads according to the first four mode shapes are
analyzed. Long-term stable MR fluid brake for application
in wind turbines was reported by Gith and Maas (2016).
Eshaghi et al. (2016) presented analytical and experimental
free vibration analysis of multi-layer MR-fluid circular
plates under varying magnetic flux. Vibration analysis of a
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rotating MR tapered sandwich beam was introduced by
Navazi et al. (2017).The dynamic mechanical properties of
magnetorheological plastomers (MRPs) were studied by Xu
et al. (2018) applying a Split Hopkinson Pressure Bar
(SHPB) equipped with an electromagnetic accessory.
Vibration analysis of sandwich structures has been
discovered by several researchers. Through experiments
and numerical simulations, free vibration behaviors of
carbon fiber reinforced composite (CFRC) lattice-core
sandwich cylinder (LSC) were studied by Han et al. (2015)
under different boundary conditions. Nguyen et al. (2015)
discovered a refined higher-order shear deformation theory
for bending, vibration and buckling analysis of functionally
graded sandwich plates. Adiyaman et al. (2015) surveyed
analytical and finite element solution of a receding contact
problem. Yaylact and Birinci (2015) discovered analytical
solution of a contact problem and comparison with the
results from FEM. A high order theory was developed by
Sadeghpour et al. (2016) to study the free vibration
response of a debonded curved sandwich beam. Buckling
analysis of functionally graded carbon nanotube reinforced
composite (FGCNTRC) cut out plate using domain
decomposition method and orthogonal polynomials was
analyzed by Jamali et al. (2016). Nonlinear transient
analysis of smart laminated composite plate integrated with
PVDF sensor and AFC actuator was studied by Mahapatra
(Singh et al. 2016). Adiyaman et al. (2016) investigated
receding contact problem between a functionally graded
layer and two homogeneous quarter planes. The dynamic
response and the active vibration control behavior of
various FGCNTRC rectangular plates was investigated by
Sharma et al. (2016) numerically instrumented with
piezoelectric sensor and actuator layers. Katariya et al.
(2017a) evaluated Enhancement of thermal buckling
strength of laminated sandwich composite panel structure
embedded with shape memory alloy fiber. Chen et al.
(2017) introduced vibration and stability of initially stressed
sandwich plates with FGM face sheets in thermal
environments. Prediction of nonlinear eigenfrequency of
laminated curved sandwich structure using higher-order
equivalent single-layer theory was analyzed by Katariya et
al. (2017a). Bending, buckling and buckling of embedded
nano-sandwich plates were investigated by Kolahchi (2017)
based on refined zigzag theory (RZT), SSDT, first order
shear deformation theory (FSDT) and classical plate theory
(CPT). Stress, deflection, and frequency analysis of CNT
reinforced graded sandwich plate under uniform and linear
thermal environment was considered by Mehar et al.
(2018). A novel and simple higher order shear deformation
theory for stability and vibration of functionally graded
sandwich plate was investigated by Sekkal et al. (2017).
Zarei et al. (2017) studied dynamic buckling of a sandwich
truncated conical shell composed of polymer-carbon
nanotubes (CNT)-fiber multiphase nanocomposite layers.
Kolahchi et al. (2017b) considered wave propagation
analysis in a piezoelectric sandwich plate that consists of
viscoelastic nanocomposite layers under electro-magnetic
field. An exact spectral element method for free vibration
analysis of FG plate integrated with piezoelectric layers was
performed by Abad and Rouzegar (2017). Optimization of

dynamic buckling for sandwich nanocomposite plates with
sensor and actuator layer based on sinusoidal visco-
piezoelasticity theories using Grey Wolf algorithm was
investigated by Kolahchi et al. (2017b). Hajmohammad et
al. (2017) presented the dynamic buckling of
sensor/functionally graded-carbon nanotubes reinforced
laminated plates/actuator based on SSDT. Transient
response of an active nonlinear sandwich piezo laminated
plate was introduced by Oveisi and Nestorovi¢ (2016).
Sharma et al. (2018) analyzed evaluation of vibroacoustic
responses of laminated composite sandwich structure using
higher-order finite-boundary element model. The global
buckling and wrinkling behavior of sandwich plates with
anisotropic facesheets was investigated by Vescovini et al.
(2018) using means of a linearized stability analysis.
Katariya et al. (2018) evaluated bending and vibration
analysis of skew sandwich plate. Smart control and
vibration analysis of laminated sandwich truncated conical
shells with piezoelectric layers as sensor and actuator were
presented by Hajmohammad et al. (2018). Katariya and
Panda (2019a) investigated numerical evaluation of
transient deflection and frequency responses of sandwich
shell structure using higher order theory and different
mechanical loadings. Frequency and deflection responses of
shear deformable skew sandwich curved shell panel was
analyzed by Katariya and Panda(2019b).

Due to the lake of research in the field of pizo-sandwich
plates according to MR fluid, this work presents the
vibration and damping of sandwich plates with MR fluid
core contain of piezoelectric layers as sensor and actuator.
Furthermore, Halpin-Tsai model is used to determine the
material properties of facesheets which are reinforced by
GPLs. In addition, the MR fluid core and facesheets are
subjected to magnetic field and 3D electric filed,
respectively. Motion equations are derived according to
SSDT and vibration of the structure is defined by DCM.
The effect of different factors such as GPLs distribution,
dimensions of structure, electro-magnetic field, damping of
structure, viscoelastic environment and boundary conditions
of the structure on the vibration and loss factor of the
system are considered.

2. Formulation

A graphical description of the sandwich plates integrated
MR fluid and GPLs piezoelectric facesheets is depicted in
Fig. 1. The thickness of sandwich plate varies from -h to h
and the origin of the Cartesian coordinate system (X, y, z) is
placed at the mid-plane of the sandwich plate. The
geometrical factors of the system are length L, width b,
actuator thickness, sensor thickness and core thickness. It is
assumed that there is not any slipping between the
facesheets and MR fluid layers. Parameters of viscoelastic
medium are showing by spring and damper. In addition, the
MR fluid core and facesheets are subjected to magnetic
field and 3D electric filed, respectively. Furthermore, a PD
controller is placed in order to receive the sensor signal and
after processing it can be applied as actuator input.
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Fig. 1 A graphical description of the sandwich plates
integrated MR fluid and GPLs piezoelectric
facesheets

2.1 Theory of Visco-pizoelectricity

According to piezoelasticity theory, formulation of a
piezoelectric material is presented as Kolahchi et al. (2016)
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in which &,,0;; and D, represent the strain, stress and
electric displacement, respectively. e;;, C;; and €;;
indicate the piezoelectric, elastic stiffness and dielectric
coefficients; the superscript (P) is used to show the sensor
((P)=(s)) and the actuator ((P)=(a)) layers; E, is the
electric field which is expressed according to electric
potential (¢)

E= _V(p' (2)

The electric potential of the sensor and actuator layers

are as
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@®) shows the electric potential in the mid-plane and
V, expresses the external electric voltage. According to
Kelvin-Voigt theory, the elastic stiffness is as Lei et al.
(2013)

a
=0 (1+95;). (5)

in which g indicates the structural damping coefficient and
Qi(f) can be obtained by Halpin-Tsai model.

2.2 Micromechanics model based on Halpin-Tsai

According to the Halpin-Tsai micromechanics model,
Young’s modulus and Poisson’s ratio of the nanocomposite
layer are denoted as Yang et al. (2017)
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T, L and W express the thickness of the GPLs,
average length and width. E;p; and E,, are the moduli of
the GPL and polymer matrix; moreover, v, and vgp,
show the Poisson’s ratio of matrix and GPL, respectively.
Vepr is the volume fraction of the GPL nanofillers which is
defined as

Wepr,
Wepr + (0p/Pm) — (PpL/Pm)Wept

®)

Vepr =

where pgp; and p,, are the mass densities of GPLs and
matrix; in addition, W;p, is the weight fraction of GPLs.
In this study, three distributions of GPLs are considered as
follow:

(1) Linear GPL distribution (Fig. 2(a)):
In this type, the weight fraction of GPLs changes
from maximum value to zero as linear.

1 =z
= —+2). 9
WepL = WepL (2 + h) 9)
(2) Nonlinear GPL distribution (Fig. 2(b)):
In this type, the maximum weight fraction of GPLs
is placed at a distances s from the mid-plane.

h2s2(4s% — h?)
16 (10)
4h?z% — h* + 752(52 - z9)|.

WepL =

¢, =cz/n and ¢, = wgp, In which n is a positive
integer.
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Fig. 2 distribution of GPLs through the thickness of the
piezoelectric layers: (a) linear; (b) nonlinear;
(c) uniform

(3) Uniform GPL distribution (Fig. 2(c)):
In this type, the weight fraction of GPLs is equal.

WepL = WepL- (11)
In which wgp, is a unique GPL weight fraction.
2.3 SSDT
It is assumed that the transverse displacements of all

layers are the same; therefore, SSDT is used to define
displacement fields (Kolahchi and Cheraghbak 2017)
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in which v and u denote the in-plane displacements, wq
and w,, indicate the shear and bending displacements of
the mid-plane cross the thickness; i expresses the sensor (s),
actuator (a) and core (c) layers, respectively. Consequently,
the strain-displacement formulations is defined as
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where f(z2) =z —%sin (%) and g(z) = cos (%)

2.4 MR fluid core

The Young’s modulus of MR fluid core is very small in
comparison with facesheets. Furthermore, the normal stress
of this layer can be ignored. Therefore, the shear strain of
the MR fluid is expressed as Yeh (2013)
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in which H = (h® + 2 h(© + h®) /2. According to linear
viscoelastic theory, the shear stress is defined based on
shear strain of MR fluid as

9 =6y, (22)
w0 =6y, (23)

where G* is the complex shear modulus of the MR fluid
that is

G*=G +iG, (24)

where G’ and G” denote the MR fluid storage modulus
and loss modulus, respectively and n = G'/G’ indicates
the loss factor.

3. Equations of motion

In this part, in order to calculate the motion equations of
the system, energy method and principle of Hamilton are
applied.

The potential energy of MR fluid core (Ec), the actuator
(Ea) and sensor (Es) layers are defined as
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The kinetic energy of MR fluid core (K¢), the actuator
(Ka) and sensor (Ks) layers are as
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The total kinetic energy of system (Kot = Ka + K¢ + Ks)
is defined as
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in which the moments of inertia could be given as
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The external force of the orthotropic visco-Pasternak is
(Kolahchi et al. 2016, Yaylaci and Birinci 2013)
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in which angle 8 indicates the local & of the orthotropic
foundation based on the global x-axis of the system.
Alsocg,kyy, kaw, kge and kge indicate damping, normal
spring, nonlinear spring, & -shear and ¢ -shear constants,
respectively. Therefore, the work of the viscoelastic
medium force is expressed as
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In order to derive motion equations of system,
Hamilton’s principle is used as
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in which are the combination of electric forces (N,,) and
mechanical forces (N, ) are defined as

M = 0; NE = 2@y, (55)
M = 0; NE = 2¢{Dn@y,, (56)

The stress resultants can be obtained by substituting
Egs. (15)-(19) into Egs. (29)-(37). These parameters are
evaluated in Appendix A.

In this research, three different boundary conditions are
assumed. (clamped supported, simply supported in two
edges and clamped in two another edges and simply
supported)

4. Solving and control method
4.1 DCM

In order to calculate the vibration of system a numerical
method which is called DCM is applied in this study. DCM
denotes a calculus operator (R) value of the function
(f(x,y)) at a discrete point in the solution domain. For a
two-dimensional problem, the cubature approximation at
the i discrete point is as (Kolahchi et al. 2016, O ner et al.
2014, Birinci et al. 2015)

N
I~ ) Cuf ), 57)

j=1

in which N and C;; are the cubature total number of grid
points and weighting coefficients, respectively. The
computation of the weighting coefficients are defined as

N
R{x"HyH}) = Z Cif (5" 77) 8)

j=1



898 Arameh Eyvazian, Abdel Magid Hamouda, Faris Tarlochan, Saeid Mohsenizadeh and Ali Ahmadi Dastjerdi

0 v,
=012,..,N—1, (58)
1

| | = [Ree sy, (59)

]

By using DCM, equations of motion may be gain as
Mpy, Mbd [Cbb de] [ ]
Mdb Mdd Cdb Cdd

" Kbb Kbd] [Yb] _ [0]

de Kdd

K*

(60)

where [M], [C], [K], [K¢] and {Y} indicate the mass
matrix, damp matrix, stiffness matrix, geometric matrix and
the displacement vector, respectively.

4.2 PD controller
A proportional-derivative (PD) controller is used (Yang
et al. 2017) in order to control the dynamic and vibration

responses of the structure. Hence, the electric potential of
the actuator layer can be defined as follows

0@ =G0 + 6,0 (61)

where G; and G,denote the proportional and derivative
control coefficients, respectively.

4.3 Vibration and damping analysis
Based on eigenvalue problem, Eg. (60) can be solved for

obtaining the frequency and damping of the sandwich
structure from the following relations

= VRe(d), (62)

Im(1)

where A is the eigenvalue.

5. Results and discussion

In this study, some of geometric parameters are used as

a/b =2,
h@/h) =1,

L/h =5,
h©/h@® = 0.5 (64)

The density of MR fluid p(© = 3500Kg/m® and the
storage and loss modulus as Yeh (2013)

G' = —3.3691B2 + 4997.5B + 873000, (65)

G" = —0.9B? + 812.4B + 185500. (66)

Properties of facesheets are as

Ey = 129GPa, vy = 0.34,
p® = 5610kg/m?, elP) = ) = —0.51C/m?, (67)
eP=eP)= 77.7mF/m?, €)= 89.1nF/m?

Moreover, the characteristics of GPLs are as follow
(Yang et al. 2017)

L=25um, W =15um, t=1.5nm,
vepr = 0.006, Egpp = 1.01TPq, (68)
Pepr = 1060kg/m?, — wgp, = 1%

To validate this work, the results of this study are
compared with Lall et al. (1987) and Yeh (2013). Table 1
indicates the frequency and loss factor for first four
vibrational modes. It can be understood that, the results of
this study are close to the results of Lall et al. (1987) and
Yeh (2013).

Moreover, the other comparison has been done with Yeh
(2013) and Lall et al. (1987).

For different boundary conditions, the frequency of the
system is depicted in terms of the DCM grid point numbers.
It is obvious that for N = 113 the results become converge.
Thus, for analyzing the behavior of structure number of grid
points is chosen 113.

Table 1 Frequency and loss factor

Mod Lall et al. (1987) Yeh (2013) Present work
ode
w (Hz) & w (Hz) '3 w (Hz) '3
1 59.05 0.206 58.69 0.201 58.88  0.202
2 113.67 0.213 113.75 0.211 113.65 0.212
3 128.89 0.207 129.16 0.208 129.18 0.208
4 175.76 0.188 17546 0.189 17555 0.177
5 193.67 0.179 193.79 0.183 193.85 0.184
130
—0— h/h®)=0 2, Ref. [25]
1288 oo jOr®)=0 2 present
3 —>— hO/h®)=0 3, Ref. [25]
120‘ R h“’/h(b):o.s, Present
—0— h(O/h(®)=0 4, Ref. [25]
115r S hm/h(b):OA, Present

=

j=]

3
T

Natural frequency, o (Hz)
8 5

©
3]
T

90
0.2 03 04 05 06 07 08 1

MR fluid thickness to bottom thickness , h(c)/h(b)
Fig. 3 Comparisons of this work with Yeh (Lall et al. 1987)
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5.1 Vibration and damping analysis

Natural frequency and modal loss factor versus
magnetic field intensity are analyzed in this section. It is
mention that the results are represented in the existence of
the PD controller. The effect of different boundary
condition on the vibration and modal loss factor of the
sandwich structure are shown in Figs. 5 and 6. Three
different boundary conditions are analyzed, including four
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Fig. 5 Boundary condition effect on the vibration of the
system
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edges simply-supported (SSSS), four edges clamped
(CCCC) and two edges simply-supported and two edges
clamped (SCSC). It is understood that the vibration of the
structure with CCCC boundary condition is higher than two
other boundary conditions. Indeed, this means that the
bending rigidity of sandwich plate with CCCC boundary is
higher than others. Moreover, the variation of the modal
loss factor is vice versa of the vibration; therefore, the
modal loss factor of the structure with CCCC boundary
condition is lower than two other boundary conditions.

In Figs. 7 and 8, the vibration and loss factor of the
sandwich system without existence of controller are
happened at lower and higher magnitude, respectively.
Thus, the DIR of the structure with PD controller will be
improved and the vibration moves to higher frequencies and
loss factor shifts to lower value.

The effects of weight percent (wgp,) and distribution
types of GPLs on the vibration and loss factor of the
structure are depicted in Figs. 9, 10, 11 and 12. It is
apparent that by increasing the weight percent of GPLs, the
vibration and loss factor are moved to upward and
downward, respectively. This is reasonable, because
increasing the weight percent of GPLs causes more bending
rigidity of the structure.

Figs. 11 and 12 indicate that for the nonlinear and linear
distributions of the GPLs, the vibration of the system occurs
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Fig. 11 The distribution effect of GPLs on the vibration

at highest and the lowest values, respectively and the
variation of the loss factor is vice versa. However, it can be
expressed that the highest stiffness occurred when the
distribution of GPLs is near to the inner and outer surfaces
of the layer and when the distribution of GPLs is close to
the neutral axis the worst case happens.

The influence of different types of viscoelastic mediums
on the vibration and loss factor are plotted in Figs. 13 and
14. Six cases such as without medium, visco-Winkler,
Winkler, visco-Pasternak, ortho-visco-Pasternak and
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Fig. 12 distribution of GPLs loss factor of the plate
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Fig. 14 Viscoelastic medium effect on the modal loss factor

Pasternak mediums are analyzed. It is apparent that the
vibration of the structure surrounded by Pasternak medium
is occurred at higher frequencies in comparison with
Winkler foundation but the loss factor is inverse.
Furthermore, the vibration shifts to downward based on
visco medium in comparison with non-visco medium. In
addition, the vibration of the orthotropic medium occurs at
lower frequencies with respect to the non-orthotropic
medium.
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The influence of the thickness ratio (h(©)/h(®) on the
vibration and loss factor is shown in Figs. 15 and 16. As it
is obvious, lower frequency and upper loss factor occur by
increasing the thickness ratio of MR fluid to actuator. In
fact, the DIR moves to downward with increasing ratio
thickness of MR fluid and actuator. It is because that by
increasing MR fluid thickness, the damping effect of
structure grows up and causes more stiffness for system.

Figs. 17 and 18 demonstrate the effect of the external
voltage (V) to the actuator layer on the vibration and loss
facto. It is understood that negative voltages grow the
vibration of the structure and positive voltages effect vice
versa. The reason is that positive voltage enforces
compressive forces to the structure but negative voltage
performs tensile forces.

6. Conclusions

MR fluids are high-tech materials that can shift their
phase from liquid to solid under external magnetic field and
have remarkable potential in applications for intelligent
systems, therefore, analyze the behavior of the is essential.
This work investigates the control of vibration and damping
of a sandwich structure with MR fluid core contain of
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Fig. 17 Voltage effect on the vibration of the system
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Fig. 18 Woltage effect on the loss factor of the system

piezoelectric layers as sensor and actuator. Halpin-Tsai
model is used to determine the material properties of
facesheets which are reinforced by GPLs. In addition, the
MR fluid core and facesheets are subjected to magnetic
field and 3D electric filed, respectively. Motion equations
are derived according to SSDT and vibration of the
structure is defined by DCM and Bolotin's method. The
effect of different factors such as GPLs distribution,
dimensions of structure, electro-magnetic field, damping of
structure, viscoelastic environment and boundary conditions
of the structure on the vibration and loss factor of the
system were considered. Based on the above mentioned
results, existence of PD controller and magnetic field
enhance the vibration of the structure. Vibration occurs at
higher and lower frequencies by performing negative and
positive voltages. Furthermore, lower frequency and upper
loss factor occur by increasing the thickness ratio of MR
fluid to actuator. Moreover, for the nonlinear and linear
GPLs distributions, the vibration of the system occurs at
highest and the lowest values, respectively.
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Appendix A

The stress resultant are written as follows
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