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1. Introduction 

 

Laminated composite materials are widely employed in 

aerospace, civil, marine and other fields. Because of their 

high “specific modulus”, “high specific strength” and 

adaptability to a specific application, laminated composites 

provide definite advantages over classical materials such as 

metal. The individual ply consists of “high modulus” and 

“high strength” fibers in a metallic, ceramic, or polymeric 

matrix material. With the continued development of the 

“high-tech industry”, the demand for advanced materials 

has led to the development of alternative products to 

traditional “engineering materials” such as aluminum, steel, 

wood, concrete, etc. (Panjehpour et al. 2018). Therefore, a 

novel methodology for studying the behaviour of such 

materials is always desirable. Among the recent 

sophisticated mathematical models for studying bending, 

dynamic, buckling, etc., several classical theories have been 

developed to study laminated composite plates. 

The classical laminated plate theory (CLPT), which 

does not consider the effects of transverse shear, guarantees 

reasonable results for thin plates (Fadoun et al. 2017). 

However, it underestimates the deflections and 

overestimates the frequencies as well as the buckling loads 

for moderately thick plates. Many “shear deformation 

theories” that take into account transverse shear influences 

have been proposed to solve this problem. 
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As a result, an improvement of the FSDT and HSDT 

(high shear deformation theory) have been developed. The 

FSDT is based on Reissner (1945) and Mindlin (1951) and 

takes into account the transverse shear effects assuming a 

linear variation the displacements across the thickness. 

Since FSDTs violate the equilibrium conditions on the 

upper and lower faces of the plate, shear correction factors 

are needed to correct the unrealistic variation of the shear 

strain/stress across the thickness. Many studies have been 

carried out using FSDT for the free mechanical analysis of 

structures (Yan et al. 1966, Whitney 1969, Bert and Chen 

1978, Reddy 1979, Noor and Burton 1989, Kant and 

Swaminathan 2001a, b, Naserian-Nik and Tahani 2010, 

Eltaher et al. 2014, Akbaş 2016, 2018, Avcar 2019, Draiche 

et al. 2019). Higher order shear deformation theories 

(HSDTs) are developed to avoid the problems encountered 

in CPT and FSDT and to provide better modelling of the 

static and dynamic behaviour of laminated composite 

plates. Among the different theories of higher order plates, 

Reddy’s theory of third order shear deformation (TSDT) 

(Reddy 1984) is the most widely known and used by many 

researchers in their work. Carrera (1999) investigated the 

influence of transverse shear and normal deformations on 

dynamic of multilayered plates. Ashour (2003) examined 

the buckling and vibration of symmetric laminated 

composite plates with edges elastically restrained. Ghugal 

and Pawar (2011) employed hyperbolic shear deformation 

model of Soldatos (1992) for the dynamic investigation of 

orthotropic plates. Karama et al. (2009) proposed 

exponential shear deformation model for the bending, 

buckling and dynamic response of “laminated composite 
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plates”. Liu and Zhao (2007) examined the influence of soft 

honeycomb core on dynamic of sandwich panel via lower 

order and higher order shear deformation models. 

Matsunaga (2001) analyzed the stability and dynamic of 

angle-ply laminated composite plates. Rao and Desai (2004) 

and Rao et al. (2004) proposed analytical solutions for the 

dynamic study of “laminated composite and sandwich 

plates”. Kant and Swaminathan (2001a, b) performed a 

free-vibration analysis of cross-ply laminated composite 

and sandwich plates using the finite element method and 

“higher order shear and normal deformation theory”. 

Aagaah et al. (2006) proposed a theory of third-order shear 

deformation for dynamic analysis of “laminated composite 

plates” by considering different boundary conditions. 

Chalak et al. (2013) presented free vibration analysis of 

“laminated soft core sandwich plates”. Afsharmanesh et al. 

(2014) studied the buckling and vibration of laminated 

composite circular plate on Winkler-type foundation. 

Draiche et al. (2016) developed a refined theory with 

stretching effect for the flexure analysis of laminated 

composite plates. Chikh et al. (2017) proposed a simple 

HSDT for thermal buckling analysis of cross-ply laminated 

plates. Baltacioglu and Civalek (2018) presented a 

numerical approaches for vibration response of annular and 

circular composite plates. Javed et al. (2018) investigated 

the free vibration of cross-ply laminated plates based on 

higher-order shear deformation theory. Other HSDTs can be 

consulted in literature review such as (Benferhat et al. 2016, 

Kar and Panda 2016, Kolahchi 2017, Selmi and Bisharat 

2018, Belkacem et al. 2018, Sahouane et al. 2019, Karami 

and arami 2019). 

In this work, a simple HSDT is applied for the dynamic 

analysis of antisymmetric “laminated composite” and soft 

core “sandwich plates”. Unlike the existing HSDTs, the 

current theory has only four unknown variables. 

Consequently, the current theory is a simple computational 

model in the class of equivalent monolayer theories. The 

displacement field of the current theory is much richer than 

other HSDTs because of the use of trigonometric functions 

in terms of z-coordinate thickness for calculating out-of-

plane shear deformations. The eigenfrequencies of various 

cross-ply and angle-ply laminated composite and sandwich 

plates are computed and compared to the existing literature 

taking into account the influences of the geometric ratio 

(𝑎/ℎ), the “modulus ratio” (𝐸1/𝐸2) and the “angle of the 

fiber” (𝜃). 

 

 

2. Mathematical formulation of present theory 
 

A rectangular plate with length, width and uniform 

thickness equal to a, b and h respectively is shown in Fig. 1. 

The plate is composed of “N” number of orthotropic layers 

perfectly bonded together. Each layer of plate is made up of 

linearly elastic orthotropic materials. Rectangular Cartesian 

coordinates (𝑥, 𝑦, 𝑧)  are used to describe infinitesimal 

deformations of a plate occupying the region [0, 𝑎] ×[0, 𝑏] 
× [−ℎ/2, ℎ/2]  in the unstressed reference configuration. 

The z-direction is taken positive in downward direction. 

In this work, further simplifying supposition are made to 

the conventional HSDT so that the number of unknowns is 

reduced. The displacement field of the conventional HSDT 

is given by 

 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤0
𝜕𝑥

+ 𝑓(𝑧)𝜙𝑥(𝑥, 𝑦, 𝑡) 

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤0
𝜕𝑦

+ 𝑓(𝑧)𝜙𝑦(𝑥, 𝑦, 𝑡) 

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑦, 𝑡) 

(1) 

 

Where 𝑢0, 𝑣0,  𝑤0,  𝜙𝑥 and 𝜙𝑦  are five unknown 

displacements of the mid-plane of the plate, 𝑓(𝑧) denotes 

shape function representing the variation of the transverse 

shear strains and stresses within the thickness. By 

considering that 
 

𝜙𝑥 = ∫𝜃 (𝑥, 𝑦, 𝑡)𝑑𝑥   and   𝜙𝑦 = ∫𝜃 (𝑥, 𝑦, 𝑡)𝑑𝑦, 

 

The displacement field of the present model can be 

expressed in a simpler form as follows 

 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤0
𝜕𝑥

+ 𝑘1𝑓(𝑧)∫𝜃 (𝑥, 𝑦, 𝑡)𝑑𝑥 

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤0
𝜕𝑦

+ 𝑘2𝑓(𝑧)∫𝜃 (𝑥, 𝑦, 𝑡)𝑑𝑦 

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑦, 𝑡) 

(2) 

 

The integrals defined in the above equations must be 

solved by the Navier method and the displacement field can 

be rewritten as follows 

 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤0
𝜕𝑥

+ 𝑘1𝐴
′𝑓(𝑧)

𝜕𝜃

𝜕𝑥
 

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤0
𝜕𝑦

+ 𝑘2𝐵
′𝑓(𝑧)

𝜕𝜃

𝜕𝑦
 

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑦, 𝑡) 

(3) 

 

where the coefficients 𝐴′, 𝐵′, 𝑘1 and 𝑘2 are expressed as 

follows 
 

𝐴′ = −
1

𝛼2
,     𝐵′ = −

1

𝛽2
,     𝑘1 = 𝛼

2, 

𝑘2 = 𝛽
2,         𝛼 =

𝑚𝜋

𝑎
,         𝛽 =

𝑛𝜋

𝑏
 

(4) 

 

Clearly, the displacement field in Eq. (3) considers only 

four unknowns 𝑢0, 𝑣0,  𝑤0  and 𝜃 . Where the shape 

function 𝑓(𝑧) is given as 

 

𝑓(𝑧) =
ℎ

𝜋
𝑠𝑖𝑛 (

𝜋𝑧

ℎ
) (5) 

 

The shear function is presented in this theory to satisfy 

zero stresses on the top and bottom surfaces of the plate. 

The shear function is obtained as follows 

 

𝑔(𝑧) =
𝑑𝑓(𝑧)

𝑑𝑧
    where     𝑔(𝑧)(𝑧 = ±ℎ/2) = 0 (6) 

 

The nonzero strains associated with the displacement 

field in Eq. (3) are 
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{

휀𝑥
휀𝑦
𝛾𝑥𝑦
} = {

휀𝑥
0

휀𝑦
0

휀𝑥𝑦
0

} + 𝑧 {

𝑘𝑥
𝑏

𝑘𝑦
𝑏

𝑘𝑥𝑦
𝑏

} + 𝑓(𝑧) {

𝑘𝑥
𝑠

𝑘𝑦
𝑠

𝑘𝑥𝑦
𝑠
} , 

{
𝛾𝑦𝑧
𝛾𝑥𝑧
} = 𝑔(𝑧) {

𝛾𝑦𝑧
𝑠

𝛾𝑥𝑧
𝑠 }, 

(7a) 

 

Where 
 

{

휀𝑥
0

휀𝑦
0

휀𝑥𝑦
0

} =

{
  
 

  
 

𝜕𝑢0
𝜕𝑥
𝜕𝑣0
𝜕𝑥

𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥 }
  
 

  
 

, 

{

𝑘𝑥
𝑏

𝑘𝑦
𝑏

𝑘𝑥𝑦
𝑏

} =

{
  
 

  
 −

𝜕2𝑤0
𝜕𝑥2

−
𝜕2𝑤0
𝜕𝑦2

−2
𝜕2𝑤0
𝜕𝑥𝜕𝑦}

  
 

  
 

, 

{

𝑘𝑥
𝑠

𝑘𝑦
𝑠

𝑘𝑥𝑦
𝑠
} =

{
 

 
𝑘1𝜃
𝑘2𝜃

𝑘1
𝜕

𝜕𝑦
∫𝜃𝑑𝑥 +𝑘2

𝜕

𝜕𝑥
∫𝜃𝑑𝑦

}
 

 
, 

{
𝛾𝑦𝑧
0

𝛾𝑥𝑧
0
} = {

𝑘2∫𝜃𝑑𝑦

𝑘1∫𝜃𝑑𝑥
} 

(7b) 

 

For orthotropic laminated plate, the constitutive 

relations for each layer can be expressed as 

 

{

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

}

𝑘

= [

�̄�11 �̄�12 �̄�16
�̄�12 �̄�22 �̄�26
�̄�16 �̄�26 �̄�66

]

𝑘

{

휀𝑥
휀𝑦
𝛾𝑥𝑦
}

𝑘

, 

{
𝜏𝑥𝑧
𝜏𝑦𝑧
}
𝑘

= [
�̄�55 �̄�45
�̄�45 �̄�44

]

𝑘

{
𝛾𝑥𝑧
𝛾𝑦𝑧
}
𝑘

 

(8) 

 

where (𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦, 𝜏𝑦𝑧, 𝜏𝑥𝑧) and (휀𝑥, 휀𝑦, 𝛾𝑥𝑦, 𝛾𝑦𝑧, 𝛾𝑥𝑧) 

are the stress and strain components, respectively. Where 

�̄�𝑖𝑗 are the transformed material constants and are given as 

 

𝑄11
𝑘
= 𝑄11𝑐

4 + 2(𝑄12 + 2𝑄66)𝑠
2𝑐2 + 𝑄22𝑠

4 

𝑄12
𝑘
= (𝑄11 + 𝑄22 − 4𝑄66)𝑠

2𝑐2 + 𝑄12(𝑠
4 + 𝑐4) 

𝑄16
𝑘
= (𝑄11 − 𝑄12 − 2𝑄66)𝑠𝑐

3 + (𝑄12 − 𝑄22 + 2𝑄66)𝑠
3𝑐 

𝑄22
𝑘
= 𝑄11𝑠

4 + 2(𝑄12 + 2𝑄66)𝑠
2𝑐2 + 𝑄22𝑐

4 

𝑄26
𝑘
= (𝑄11 − 𝑄12 − 2𝑄66)𝑠

3𝑐 + (𝑄12 − 𝑄22 + 2𝑄66)𝑠𝑐
3 

𝑄66
𝑘
= (𝑄11 + 𝑄22 − 2𝑄12 − 2𝑄66)𝑠

2𝑐2 + 𝑄66(𝑠
4 + 𝑐4) 

𝑄44
𝑘
= 𝑄44𝑐

2 + 𝑄55𝑠
2, 

 𝑄45
𝑘
= (𝑄55 − 𝑄44)𝑠𝑐, 

 𝑄55
𝑘
= 𝑄44𝑠

2 + 𝑄55𝑐
2 

(9) 

 

where 𝑐 = 𝑐𝑜𝑠 𝜃𝑘 , 𝑠 = 𝑠𝑖𝑛 𝜃𝑘  and 𝑄𝑖𝑗  are the stiffness 

coefficients as given below 

𝑄11 =
𝐸1

1 − 𝜈12𝜈21
,     𝑄22 =

𝐸2
1 − 𝜈12𝜈21

, 

𝑄12 =
𝜈12𝐸2

1 − 𝜈12𝜈21
,     𝑄66 = 𝐺12, 

𝑄44 = 𝐺23,                   𝑄55 = 𝐺13 

(10) 

 

where 𝐸𝑖 , 𝐺𝑖𝑗  and 𝜈𝑖𝑗  are the Young’s moduli, shear 

moduli and Poisson’s ratio, respectively 
 

 

3. Equations of motion 
 

In order to derive the equations of motion, the principle 

of virtual work is applied 
 

∫ (𝛿 𝑈 + 𝛿 𝑉 − 𝛿 𝐾)𝑑𝑡
𝑡

0

= 0 (11) 

 

where 𝛿 𝑈 is the virtual strain energy; 𝛿 𝑉 is the virtual 

work done by external loads; and 𝛿 𝐾 is the virtual kinetic 

energy. The virtual strain energy of the plate is computed by 

 

𝛿𝑈 =∑∫ ∫(𝜎𝑥𝛿휀𝑥 + 𝜎𝑦𝛿휀𝑦 + 𝜏𝑥𝑦𝛿𝛾𝑥𝑦
𝐴

ℎ𝑘+1

ℎ𝑘

𝑁

𝑘=1

+ 𝜏𝑦𝑧𝛿𝛾𝑦𝑧 + 𝜏𝑥𝑧𝛿𝛾𝑥𝑧) 𝑑𝐴𝑑𝑧 

(12) 

 

by substituting Eqs. (7) and (8) in Eq. (12) and by 

integration through the thickness of the plate, the virtual 

strain energy can be put in the form 

 

𝛿𝑈 = ∫ {𝑁𝑥
𝜕𝛿𝑢0
𝜕𝑥

+ 𝑁𝑦
𝜕𝛿𝑣0
𝜕𝑦

+ 𝑁𝑥𝑦 (
𝜕𝛿𝑢0
𝜕𝑦

+
𝜕𝛿𝑣0
𝜕𝑥

)
𝐴

 

          −𝑀𝑥
𝑏
𝜕2𝛿𝑤0
𝜕𝑥2

−𝑀𝑦
𝑏
𝜕2𝛿𝑤0
𝜕𝑦2

− 2𝑀𝑥𝑦
𝑏
𝜕2𝛿𝑤0
𝜕𝑥𝜕𝑦

 

          +𝑘1𝐴
′𝑀𝑥

𝑠
𝜕2𝛿𝜃

𝜕𝑥2
+ 𝑘2𝐵

′𝑀𝑦
𝑠
𝜕2𝛿𝜃

𝜕𝑦2
 

          +(𝑘1𝐴
′ + 𝑘2𝐵

′)𝑀𝑥𝑦
𝑠
𝜕2𝛿𝜃

𝜕𝑥𝜕𝑦
+ 𝑘1𝐴

′𝑆𝑥𝑧
𝑠
𝜕𝛿𝜃

𝜕𝑥
 

          +𝑘2𝐵
′𝑆𝑦𝑧
𝑠
𝜕𝛿𝜃

𝜕𝑦
} 𝑑𝐴 

(13) 

 

where 𝐴 is the top surface and the stress resultants 𝑁, 𝑀, 

and 𝑆 are defined by 

 

{

𝑁𝑥, 𝑁𝑦, 𝑁𝑥𝑦

𝑀𝑥
𝑏 , 𝑀𝑦

𝑏 , 𝑀𝑥𝑦
𝑏

𝑀𝑥
𝑠, 𝑀𝑦

𝑠 , 𝑀𝑥𝑦
𝑠

} = ∑∫ (𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦)
ℎ𝑘+1

ℎ𝑘

𝑁

𝑘=1

 {
1
𝑧

𝑓(𝑧)
}  𝑑𝑧, 

(𝑆𝑥𝑧
𝑠 , 𝑆𝑦𝑧

𝑠 ) = ∑∫ (𝜏𝑥𝑧, 𝜏𝑦𝑧)
ℎ𝑘+1

ℎ𝑘

𝑁

𝑘=1

𝑔(𝑧) 𝑑𝑧 

(14) 

 

using Eq. (8) in Eq. (14), the resultants of the forces of the 

plate can be expressed in terms of deformation 
 

{
𝑁
𝑀𝑏

𝑀𝑠
} = [

𝐴 𝐵 𝐵𝑠

𝐵 𝐷 𝐷𝑠

𝐵𝑠 𝐷𝑠 𝐻𝑠
] {
휀
𝑘𝑏

𝑘𝑠
} ,      S = 𝐴𝑠𝛾 (15a) 

 

Where 
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𝑁 = {𝑁𝑥, 𝑁𝑦, 𝑁𝑥𝑦}𝑇𝑟 , 

𝑀𝑏 = {𝑀𝑥
𝑏, 𝑀𝑦

𝑏, 𝑀𝑥𝑦
𝑏 }

𝑇𝑟
, 

𝑀𝑠 = {𝑀𝑥
𝑠, 𝑀𝑦

𝑠, 𝑀𝑥𝑦
𝑠 }𝑇𝑟, 

휀 = {휀𝑥
0, 휀𝑦

0, 휀𝑥𝑦
0 }

𝑇𝑟
, 

𝑘𝑏 = {𝑘𝑥
𝑏, 𝑘𝑦

𝑏, 𝑘𝑥𝑦
𝑏 }

𝑇𝑟
, 

𝑘𝑠 = {𝑘𝑥
𝑠 , 𝑘𝑦

𝑠 , 𝑘𝑥𝑦
𝑠 }𝑇𝑟, 

𝑆 = {𝑆𝑦𝑧
𝑠 , 𝑆𝑥𝑧

𝑠 }𝑇𝑟, 
𝑆 = {𝛾𝑦𝑧, 𝛾𝑥𝑧}𝑇𝑟 

(15b) 

 

and the stiffness components are given as follows 

 

(𝐴𝑖𝑗 , 𝐵𝑖𝑗 , 𝐷𝑖𝑗 , 𝐵𝑖𝑗
𝑠 , 𝐷𝑖𝑗

𝑠 , 𝐻𝑖𝑗
𝑠 )

=∑∫ �̄�𝑖𝑗
(𝑘)(1, 𝑧, 𝑧2, 𝑓(𝑧), 𝑧 𝑓(𝑧), 𝑓2(𝑧))𝑑

ℎ𝑘+1

ℎ𝑘

𝑁

𝑘=1

𝑧, 

                                                                      𝑖, 𝑗 = 1,2,6 

(16a) 

 

𝐴𝑖𝑗
𝑠 =∑∫ 𝑄𝑖𝑗

(𝑘)
𝑔2(𝑧)𝑑𝑧,       𝑖, 𝑗 = 4,5

ℎ𝑘+1

ℎ𝑘

𝑁

𝑘=1

 (16b) 

 

The virtual work due to transverse loads can be written 

as  

𝛿 𝑉 = −∫𝑞𝛿 𝑤
𝐴

 𝑑𝐴 (17) 

 

And the virtual kinetic energy of the plate can be 

expressed as 

 

𝛿𝐾 =∑∫ ∫𝜌(𝑧)(�̇�𝛿 �̇� + �̇�𝛿 �̇� + �̇�𝛿 �̇�)𝑑𝐴𝑑𝑧
𝐴

ℎ𝑘+1

ℎ𝑘

𝑁

𝑘=1

 

      = ∑∫{𝐼0(�̇�0𝛿�̇�0 + �̇�0𝛿�̇�0 + �̇�0𝛿�̇�0)
𝐴

𝑁

𝑘=1

 

       −𝐼1 (�̇�0
𝜕𝛿�̇�0
𝜕𝑥

+ �̇�0
𝜕𝛿�̇�0
𝜕𝑦

+
𝜕�̇�0
𝜕𝑥

𝛿�̇�0 +
𝜕�̇�0
𝜕𝑦

𝛿�̇�0) 

       +𝐼2 (
𝜕�̇�0
𝜕𝑥

𝜕𝛿�̇�0
𝜕𝑥

+
𝜕�̇�0
𝜕𝑦

𝜕𝛿�̇�0
𝜕𝑦

) 

       +𝐽1 [+𝑘2𝐵′(�̇�0
𝜕𝛿�̇�

𝜕𝑦
+
𝜕�̇�

𝜕𝑦
𝛿�̇�0)] 

       −𝐽2 [𝑘1𝐴′(
𝜕�̇�0
𝜕𝑥

𝜕𝛿�̇�

𝜕𝑥
+
𝜕�̇�

𝜕𝑥

𝜕𝛿�̇�0
𝜕𝑥

) 

       +𝑘2𝐵′(
𝜕�̇�0
𝜕𝑦

𝜕𝛿�̇�

𝜕𝑦
+
𝜕�̇�

𝜕𝑦

𝜕𝛿�̇�0
𝜕𝑦

)] 

       +𝐾2 ((𝑘1𝐴′)
2
𝜕�̇�

𝜕𝑥

𝜕𝛿�̇�

𝜕𝑥
+ (𝑘2𝐵′)

2
𝜕�̇�

𝜕𝑦

𝜕𝛿�̇�

𝜕𝑦
)}𝑑𝐴 

(18) 

 

Where dot-superscript convention indicates the 

differentiation with respect to the time variable(𝑡); 𝜌(𝑧) is 

the mass density and (𝐼𝑖 , 𝐽𝑖 , 𝐾𝑖) are mass inertias expressed 

by 

 
(𝐼0, 𝐼1, 𝐼2, 𝐽1, 𝐽2, 𝐾2)

= ∑∫ 𝜌(𝑘)(1, 𝑧, 𝑧2, 𝑓(𝑧), 𝑧 𝑓(𝑧), 𝑓2(𝑧))𝑑
𝑧𝑘+1

𝑧𝑘

𝑁

𝑘=1

𝑧 
(19) 

substituting Eqs. (13), (17), and (18) into Eq. (11), 

integrating by parts with respect to x, y, and t, and setting 

the coefficients of 𝛿𝑢0,  𝛿𝑣0,  𝛿𝑤0  and 𝛿𝜃 to zero, 

individually. The following equations of motion are 

obtained 
 

𝛿 𝑢0:    
𝜕𝑁𝑥
𝜕𝑥

+
𝜕𝑁𝑥𝑦
𝜕𝑦

= 𝐼0�̈�0 − 𝐼1
𝜕�̈�0
𝜕𝑥

+ 𝑘1𝐴
′𝐽1

𝜕�̈�

𝜕𝑥 

𝛿 𝑣0:    
𝜕𝑁𝑥𝑦
𝜕𝑥

+
𝜕𝑁𝑦
𝜕𝑦

= 𝐼0�̈�0 − 𝐼1
𝜕�̈�0
𝜕𝑦

+ 𝑘2𝐵
′𝐽1

𝜕�̈�

𝜕𝑦 

𝛿 𝑤0:    
𝜕2𝑀𝑥

𝑏

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦
𝑏

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦

𝑏

𝜕𝑦2
+ 𝑞 

          = 𝐼0�̈�0 + 𝐼1 (
𝜕�̈�0
𝜕𝑥

+
𝜕�̈�0
𝜕𝑦
) − 𝐼2 (

𝜕2�̈�0
𝜕𝑥2

+
𝜕2�̈�0
𝜕𝑦2

) 

             + 𝐽2 (𝑘1𝐴′
𝜕2�̈�

𝜕𝑥2
+ 𝑘2𝐵′

𝜕2�̈�

𝜕𝑦2
) 

𝛿 𝜃:     − 𝑘1𝑀𝑥
𝑠 − 𝑘2𝑀𝑦

𝑠 − (𝑘1𝐴′+ 𝑘2𝐵′)
𝜕2𝑀𝑥𝑦

𝑠

𝜕𝑥𝜕𝑦
 

             +𝑘1𝐴
′
𝜕𝑆𝑥𝑧
𝑠

𝜕𝑥 + 𝑘2𝐵
′
𝜕𝑆𝑦𝑧
𝑠

𝜕𝑦  

        = −𝐽1 (𝑘1𝐴′
𝜕�̈�0
𝜕𝑥

+ 𝑘2𝐵′
𝜕�̈�0
𝜕𝑦
) 

           + 𝐽2 (𝑘1𝐴′
𝜕2�̈�0
𝜕𝑥2

+ 𝑘2𝐵′
𝜕2�̈�0
𝜕𝑦2

) 

           − 𝐾2 ((𝑘1𝐴′)
2
𝜕2�̈�

𝜕𝑥2
+ (𝑘2𝐵′)

2
𝜕2�̈�

𝜕𝑦2
) 

(20) 

 

Substituting Eq. (15) into Eq. (20), the equations of 

motion can be expressed in terms of displacements 

𝛿𝑢0,  𝛿𝑣0,  𝛿𝑤0 and 𝛿𝜃 
 

𝛿𝑢0:  𝐴11
𝜕2𝑢0
𝜕𝑥2

+ 2𝐴16
𝜕2𝑢0
𝜕𝑥𝜕𝑦

+ 𝐴66
𝜕2𝑢0
𝜕𝑦2

 

         +𝐴16
𝜕2𝑣0
𝜕𝑥2

+ 𝐴26
𝜕2𝑣0
𝜕𝑦2

+ (𝐴12 + 𝐴66)
𝜕2𝑣0
𝜕𝑥𝜕𝑦

 

         −𝐵11
𝜕3𝑤0
𝜕𝑥3

− 𝐵26
𝜕3𝑤0
𝜕𝑦3

− 3𝐵16
𝜕2𝑤0
𝜕𝑥2𝜕𝑦

 

         −(𝐵12 + 2𝐵66)
𝜕2𝑤0
𝜕𝑥𝜕𝑦2

+ (𝑘1𝐵11
𝑠 + 𝑘2𝐵12

𝑠 )
𝜕𝜃

𝜕𝑥
 

         +(𝑘1𝐵16
𝑠 + 𝑘2𝐵26

𝑠 )
𝜕𝜃

𝜕𝑦
 

         +(𝑘1𝐴′+ 𝑘2𝐵′)𝐵16
𝑠

𝜕3𝜃

𝜕𝑥2𝜕𝑦
 

         +(𝑘1𝐴′+ 𝑘2𝐵′)𝐵66
𝑠

𝜕3𝜃

𝜕𝑥𝜕𝑦2
 

         = 𝐼0�̈�0 − 𝐼1
𝜕�̈�0
𝜕𝑥

+ 𝑘1𝐴
′𝐽1
𝜕�̈�0
𝜕𝑥

 

(21a) 

 

𝛿𝑣0:  𝐴16
𝜕2𝑢0
𝜕𝑥2

+ 𝐴26
𝜕2𝑢0
𝜕𝑦2

+ (𝐴12 + 𝐴66)
𝜕2𝑢0
𝜕𝑥𝜕𝑦

 

         +𝐴22
𝜕2𝑣0
𝜕𝑦2

+ 𝐴66
𝜕2𝑣0
𝜕𝑥2

+ 2𝐴26
𝜕2𝑣0
𝜕𝑥𝜕𝑦

− 𝐵16
𝜕3𝑤0
𝜕𝑥3

 

         −𝐵22
𝜕3𝑤0
𝜕𝑦3

− (𝐵12 + 2𝐵66)
𝜕3𝑤0
𝜕𝑥2𝜕𝑦

 

         −3𝐵26
𝜕2𝑤0
𝜕𝑥𝜕𝑦2

+ (𝑘1𝐵16
𝑠 + 𝑘2𝐵26

𝑠 )
𝜕𝜃

𝜕𝑥
 

(21b) 
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         +(𝑘1𝐵12
𝑠 + 𝑘2𝐵22

𝑠 )
𝜕𝜃

𝜕𝑦
 

         +(𝑘1𝐴′+ 𝑘2𝐵′)𝐵66
𝑠

𝜕3𝜃

𝜕𝑥2𝜕𝑦
 

         +(𝑘1𝐴′+ 𝑘2𝐵′)𝐵26
𝑠

𝜕3𝜃

𝜕𝑥𝜕𝑦2
 

         = 𝐼0�̈�0 − 𝐼1
𝜕�̈�0
𝜕𝑦

+ 𝑘2𝐵′𝐽1
𝜕�̈�0
𝜕𝑦

 

(21b) 

 

𝛿𝑤0:   𝐵11
𝜕3𝑢0
𝜕𝑥3

+ (𝐵12 + 2𝐵66)
𝜕2𝑢0
𝜕𝑥𝜕𝑦2

+ 𝐵26
𝜕3𝑢0
𝜕𝑦3

 

         +3𝐵16
𝜕3𝑢0
𝜕𝑥2𝜕𝑦

+ 𝐵16
𝜕3𝑣0
𝜕𝑥3

+ 𝐵22
𝜕3𝑣0
𝜕𝑦3

 

         +3𝐵26
𝜕3𝑣0
𝜕𝑥𝜕𝑦2

+ (𝐵12 + 2𝐵66)
𝜕3𝑣0
𝜕𝑥2𝜕𝑦

 

         −𝐷11
𝜕4𝑤0
𝜕𝑥4

− 𝐷22
𝜕4𝑤0
𝜕𝑦4

 

         −2(𝐷12 + 2𝐷66)
𝜕4𝑤0
𝜕𝑥2𝜕𝑦2

 − 4𝐷26
𝜕4𝑤0
𝜕𝑥𝜕𝑦3

 

         −4𝐷16
𝜕4𝑤0
𝜕𝑥3𝜕𝑦

+ 2(𝑘1𝐷12
𝑠 + 𝑘2𝐷26

𝑠 )
𝜕2𝜃

𝜕𝑥𝜕𝑦
 

         +(𝑘1𝐴′+ 𝑘2𝐵′)𝐷16
𝑠

𝜕4𝜃

𝜕𝑥3𝜕𝑦
 

         +(𝑘1𝐷11
𝑠 + 𝑘2𝐷12

𝑠 )
𝜕2𝜃

𝜕𝑥2
 

         +(𝑘1𝐷12
𝑠 + 𝑘2𝐷22

𝑠 )
𝜕2𝜃

𝜕𝑦2
  

         +(𝑘1𝐴′+ 𝑘2𝐵′)𝐷26
𝑠

𝜕4𝜃

𝜕𝑥𝜕𝑦3
 

         +2(𝑘1𝐴′+ 𝑘2𝐵′)𝐷66
𝑠

𝜕4𝜃

𝜕𝑥2𝜕𝑦2
+ 𝑞 

         = 𝐼0�̈�0 + 𝐼1 (
𝜕�̈�0
𝜕𝑥

+
𝜕�̈�0
𝜕𝑦
) − 𝐼2 (

𝜕2�̈�0
𝜕𝑥2

+
𝜕2�̈�0
𝜕𝑦2

) 

         +𝐽2 (𝑘1𝐴′
𝜕2�̈�

𝜕𝑥2
+ 𝑘2𝐵′

𝜕2�̈�

𝜕𝑦2
) 

(21c) 

 

𝛿𝜃:   − (𝑘1𝐵11
𝑠 + 𝑘2𝐵12

𝑠 )
𝜕𝑢0
𝜕𝑥

− (𝑘1𝐵16
𝑠 + 𝑘2𝐵26

𝑠 )
𝜕𝑢0
𝜕𝑦

 

          −(𝑘1𝐴′+ 𝑘2𝐵′)𝐵16
𝑠
𝜕3𝑢0
𝜕𝑥2𝜕𝑦

 

          −(𝑘1𝐴′+ 𝑘2𝐵′)𝐵66
𝑠
𝜕3𝑢0
𝜕𝑥𝜕𝑦2

 

         − (𝑘1𝐵16
𝑠 + 𝑘2𝐵26

𝑠 )
𝜕𝑣0
𝜕𝑥

− (𝑘1𝐵12
𝑠 + 𝑘2𝐵22

𝑠 )
𝜕𝑣0
𝜕𝑦

 

          −(𝑘1𝐴′+ 𝑘2𝐵′)𝐵66
𝑠
𝜕3𝑣0
𝜕𝑥2𝜕𝑦

 

          −(𝑘1𝐴′+ 𝑘2𝐵′)𝐵26
𝑠
𝜕3𝑣0
𝜕𝑥𝜕𝑦2

 

          +(𝑘1𝐷11
𝑠 + 𝑘2𝐷12

𝑠 )
𝜕2𝑤0
𝜕𝑥2

 

          +(𝑘1𝐷12
𝑠 + 𝑘2𝐷22

𝑠 )
𝜕2𝑤0
𝜕𝑦2

 

          −2(𝑘1𝐷16
𝑠 + 𝑘2𝐷26

𝑠 )
𝜕2𝑤0
𝜕𝑥𝜕𝑦

 

(21d) 

        + (𝑘1𝐴′+ 𝑘2𝐵′)𝐷26
𝑠
𝜕4𝑤0
𝜕𝑥𝜕𝑦3

 

        +(𝑘1𝐴′+ 𝑘2𝐵′)𝐷16
𝑠
𝜕4𝑤0
𝜕𝑥3𝜕𝑦

 

        + 2(𝑘1𝐴′+ 𝑘2𝐵′)𝐷66
𝑠

𝜕4𝑤0
𝜕𝑥2𝜕𝑦2

 

        − (𝑘1
2𝐻11

𝑠 − 𝑘2
2𝐻22

𝑠 − 2𝑘1𝑘2𝐻12
𝑠 )𝜃 

        − (𝑘1
2𝐴′𝐻16

𝑠 + 𝑘2
2𝐵′𝐻26

𝑠 )
𝜕2𝜃

𝜕𝑥𝜕𝑦
 

        − 𝑘1𝑘2(𝐵′𝐻16
𝑠 + 𝐴′𝐻26

𝑠 )
𝜕2𝜃

𝜕𝑥𝜕𝑦
 

        − (𝑘1
2𝐴′+ 𝑘1𝑘2𝐵′)𝐻16

𝑠
𝜕2𝜃

𝜕𝑥𝜕𝑦
 

        − (𝑘2
2𝐵′+ 𝑘1𝑘2𝐴′)𝐻26

𝑠
𝜕2𝜃

𝜕𝑥𝜕𝑦
 

        − (𝑘1
2𝐴′2 + 𝑘2

2𝐵′2 + 2𝑘1𝑘2𝐴′𝐵′)𝐻66
𝑠

𝜕4𝜃

𝜕𝑥2𝜕𝑦2
 

        + 𝑘1
2𝐴′2𝐴55

𝑠
𝜕2𝜃

𝜕𝑥2
+ 𝑘2

2𝐵′2𝐴44
𝑠
𝜕2𝜃

𝜕𝑦2
 

        + 2𝑘1𝑘2𝐴
′𝐵

′𝐴45
𝑠 𝜕2𝜃

𝜕𝑥𝜕𝑦 

        = −𝐽1 (𝑘1𝐴′
𝜕�̈�0
𝜕𝑥

+ 𝑘2𝐵′
𝜕�̈�0
𝜕𝑦
) 

        + 𝐽2 (𝑘1𝐴′
𝜕2�̈�0
𝜕𝑥2

+ 𝑘2𝐵′
𝜕2�̈�0
𝜕𝑦2

) 

        − 𝐾2 ((𝑘1𝐴′)
2
𝜕2�̈�

𝜕𝑥2
+ (𝑘2𝐵′)

2
𝜕2�̈�

𝜕𝑦2
) 

(21d) 

 

 

4. Analytical solutions for anti-symmetric 
laminated composite plates 
 
The Navier method is employed to obtain the closed-

form solutions of the partial differential equations in Eq. 

(21) for simply supported anti-symmetric laminated 

composite plates. Two different types are considered in this 

study, cross-ply [0°/90°]n and angle-ply [θ°/-θ°]n. For the 

first type, the following stiffness components are identically 

zero 
 

     𝐴16 = 𝐴26 = 𝐵12 = 𝐵16 = 𝐵26 = 𝐵66 
= 𝐵12

𝑠 = 𝐵16
𝑠 = 𝐵26

𝑠 = 𝐵66
𝑠 = 𝐷16 = 𝐷26 

= 𝐷16
𝑠 = 𝐷26

𝑠 = 𝐻16
𝑠 = 𝐻26

𝑠 = 𝐴45
𝑠 = 0 

(22) 

 

Based on Navier method, the following expansions of 

generalized displacements are taken to automatically satisfy 

the simply supported boundary conditions of the laminated 

composite plates (for the vibration problems, the transverse 

load is set to be zero). 

 

{

𝑢0
𝑣0
𝑤0
𝜃

} = ∑∑

{
 
 

 
 𝑈𝑚𝑛𝑒

𝑖𝜔 𝑡 𝑐𝑜𝑠( 𝛼 𝑥) 𝑠𝑖𝑛( 𝛽 𝑦)

𝑉𝑚𝑛𝑒
𝑖𝜔 𝑡 𝑠𝑖𝑛( 𝛼 𝑥) 𝑐𝑜𝑠( 𝛽 𝑦)

𝑊𝑚𝑛𝑒
𝑖𝜔 𝑡 𝑠𝑖𝑛( 𝛼 𝑥) 𝑠𝑖𝑛( 𝛽 𝑦)

𝛷𝑚𝑛𝑒
𝑖𝜔 𝑡 𝑠𝑖𝑛( 𝛼 𝑥) 𝑠𝑖𝑛( 𝛽 𝑦)}

 
 

 
 ∞

𝑛=1

∞

𝑚=1

 (23) 

 

For the second type “angle-ply”, the following stiffness 

components are identically zero 
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     𝐴16 = 𝐴26 = 𝐵11 = 𝐵12 = 𝐵22 = 𝐵66 
= 𝐵11

𝑠 = 𝐵12
𝑠 = 𝐵22

𝑠 = 𝐵66
𝑠 = 𝐷16 = 𝐷26 

= 𝐷16
𝑠 = 𝐷26

𝑠 = 𝐻16
𝑠 = 𝐻26

𝑠 = 𝐴45
𝑠 = 0 

(24) 

 

And the displacement variables which automatically 

satisfy the boundary conditions can be expressed in the 

following forms 
 

{

𝑢0
𝑣0
𝑤0
𝜃

} = ∑∑

{
 
 

 
 𝑈𝑚𝑛𝑒

𝑖𝜔 𝑡 𝑠𝑖𝑛( 𝛼 𝑥) 𝑐𝑜𝑠( 𝛽 𝑦)

𝑉𝑚𝑛𝑒
𝑖𝜔 𝑡 𝑐𝑜𝑠( 𝛼 𝑥) 𝑠𝑖𝑛( 𝛽 𝑦)

𝑊𝑚𝑛𝑒
𝑖𝜔 𝑡 𝑠𝑖𝑛( 𝛼 𝑥) 𝑠𝑖𝑛( 𝛽 𝑦)

𝛷𝑚𝑛𝑒
𝑖𝜔 𝑡 𝑠𝑖𝑛( 𝛼 𝑥) 𝑠𝑖𝑛( 𝛽 𝑦)}

 
 

 
 ∞

𝑛=1

∞

𝑚=1

 (25) 

 

Where 𝛼 = 𝑚𝜋/𝑎 and𝛽 = 𝑛𝜋/𝑏, 𝜔 is the frequency 

of free vibration of the plate, √𝑖 = −1 the imaginary unit. 

Substituting Eq. (23) into Eq. (21) and collecting the 

displacements and acceleration for any values of 𝑚 and𝑛, 

the following problem is obtained. 
 

[

𝑆11 𝑆12 𝑆13 𝑆14
𝑆12 𝑆22 𝑆23 𝑆24
𝑆13 𝑆23 𝑆33 𝑆34
𝑆14 𝑆24 𝑆34 𝑆44

]

− 𝜔2 [

𝑀11 𝑀12 𝑀13 𝑀14
𝑀12 𝑀22 𝑀23 𝑀24

𝑀13 𝑀23 𝑀33 𝑀34

𝑀14 𝑀24 𝑀34 𝑀44

] {

𝑈𝑚𝑛
𝑉𝑚𝑛
𝑊𝑚𝑛
𝛷𝑚𝑛

} = {

0
0
0
0

} 

(26) 

 

where [𝑆𝑖𝑗] and [𝑀𝑖𝑗] are elements of stiffness matrix and 

mass matrix, respectively. And can be defined for anti-

symmetric cross-ply and angle-ply laminates as follows. 
 

● For anti-symmetric cross-ply laminated plates 
 

𝑆11 = 𝛼
2𝐴11 + 𝛽

2𝐴66,          𝑆12 = 𝛼𝛽(𝐴12 + 𝐴66), 
𝑆13 = −𝛼

3𝐵11,                        𝑆14 = −𝑘1𝛼𝐵11
𝑠 , 

𝑆22 = 𝛼
2𝐴66 + 𝛽

2𝐴22,          𝑆23 = −𝛽
3𝐵22, 

𝑆24 = −𝑘2𝛽𝐵22
𝑠 , 

𝑆33 = 𝛼
4𝐷11 + 𝛽

4𝐷22 + 2𝛼
2𝛽2(𝐷12 + 2𝐷66), 

𝑆34 = 𝑘1𝛼
2𝐷11

𝑠 + (𝑘2𝛼
2 + 𝑘1𝛽

2)𝐷12
𝑠  

           +𝑘2𝛽
2𝐷22

𝑠 − 2(𝑘1𝐴′+ 𝑘2𝐵′)𝛼
2𝛽2𝐷66

𝑠 , 
𝑆44 = 𝑘1

2𝐻11
𝑠 + 𝑘2

2𝐻22
𝑠 + 2𝑘1𝑘2𝐻12

𝑠  

           +(𝑘1
2𝐴′2 + 𝑘2

2𝐵′2 + 2𝑘1𝑘2𝐴′𝐵′)𝛼
2𝛽2𝐻66

𝑠  

           +𝑘2
2𝐵′2𝛽2𝐴44

𝑠 + 𝑘1
2𝐴′2𝛼2𝐴55

𝑠  

(27) 

 

● For anti-symmetric angle-ply laminated plates 
 

𝑆11 = 𝛼
2𝐴11 + 𝛽

2𝐴66, 
𝑆12 = 𝛼𝛽(𝐴12 + 𝐴66), 
𝑆13 = −3𝛼

2𝛽𝐵16 − 𝛽
3𝐵26, 

𝑆14 = −𝑘1𝛽𝐵16
𝑠 − 𝑘2𝛽𝐵26

𝑠 + (𝑘1𝐴′+ 𝑘2𝐵′)𝛼
2𝛽𝐵16

𝑠 , 
𝑆22 = 𝛼

2𝐴66 + 𝛽
2𝐴22, 

𝑆23 = −3𝛼𝛽
2𝐵26 − 𝛼

3𝐵16, 
𝑆24 = −𝑘1𝛼𝐵16

𝑠 − 𝑘2𝛼𝐵26
𝑠 + (𝑘1𝐴′+ 𝑘2𝐵′)𝛼𝛽

2𝐵26
𝑠 , 

𝑆33 = 𝛼
4𝐷11 + 𝛽

4𝐷22 + 2𝛼
2𝛽2(𝐷12 + 2𝐷66), 

𝑆34 = 𝑘1𝛼
2𝐷11

𝑠 + (𝑘2𝛼
2 + 𝑘1𝛽

2)𝐷12
𝑠 + 𝑘2𝛽

2𝐷22
𝑠  

           −2(𝑘1𝐴′+ 𝑘2𝐵′)𝛼
2𝛽2𝐷66

𝑠 , 
𝑆44 = 𝑘1

2𝐻11
𝑠 + 𝑘2

2𝐻22
𝑠 + 2𝑘1𝑘2𝐻12

𝑠  

           +(𝑘1
2𝐴′2 + 𝑘2

2𝐵′2 + 2𝑘1𝑘2𝐴′𝐵′)𝛼
2𝛽2𝐻66

𝑠  

           +𝑘2
2𝐵′2𝛽2𝐴44

𝑠 + 𝑘1
2𝐴′2𝛼2𝐴55

𝑠  

(28) 

Elements of mass matrix [𝑀] for both cross-ply and 

angle-ply laminated plates 

 

𝑀11 = 𝐼0,     𝑀12 = 0,    𝑀13 = 0,   𝑀14 = 0, 
𝑀22 = 𝐼0,    𝑀23 = 0,    𝑀24 = 0, 
𝑀33 = 𝐼0 + 𝐼2(𝛼

2 + 𝛽2), 
𝑀34 = −(𝑘1𝐴′𝛼

2 + 𝑘2𝐵′𝛽
2)𝐽2, 

𝑀44 = (𝑘1
2𝐴′2𝛼2 + 𝑘2

2𝐵′2𝛽2)𝐾2 

(29) 

 

 

5. Numerical results and discussions 
 

Various numerical examples are solved to ensure the 

accuracy of the proposed mathematical model of this theory 

for the prediction of dynamic response of multi-layered 

antisymmetric laminated composite and sandwich plates, 

the closed form solution are obtained using the Navier 

solution for free vibration analysis of simply supported 

cross-ply and angle-ply laminated composite plates on all 

edges. The validity of the present theory is demonstrated by 

comparison with previously published results. For this 

purpose, suitable sets of material properties will be used in 

the numerical studies as follows 
 

Laminated composite: 
 

Material 1: 
 

𝐸1/𝐸2 = 𝑜𝑝𝑒𝑛,                  𝐺12/𝐸2 = 𝐺13/𝐸2 = 0.6,       
𝐺23/𝐸2 = 0.5,                    𝜈12 = 0.25 
 

Material 2: 
 

𝐸1/𝐸2 = 40,                  𝐺12/𝐸2 = 𝐺13/𝐸2 = 0.6,          
𝐺23/𝐸2 = 0.5,               𝜈12 = 0.25 
 

Material 3: 
 

𝐸1 = 276𝐺𝑃𝑎,                              𝐸2 = 𝐸3 = 6.9𝐺𝑃𝑎,     
𝐺12 = 𝐺13 = 4.14𝐺𝑃𝑎,              𝐺23 = 3.45𝐺𝑃𝑎, 
𝜈12 = 0.25,                                   𝜌 = 1578𝑘𝑔/𝑚

3 
 

Material 4: 
 

𝐸1/𝐸2 = 15,                    𝐺12/𝐸2 = 𝐺13/𝐸2 = 0.5,          
𝐺23/𝐸2 = 0.35,               𝜈12 = 0.3 
 

Sandwich: 
 

Material 5: 
 

𝐸 = 73𝐺𝑃𝑎,            𝜈12 = 0.3, 

𝜌 =
2800𝑘𝑔

𝑚3
,        (Aluminum alloy for face sheets) 

 

Material 6: 
 

𝐸 = 180𝐺𝑃𝑎,                𝜈12 = 0.37, 
𝜌 = 50𝑘𝑔/𝑚3,             (PVC material for foam core) 
 

Material 7: 
 

𝐸1 = 132.38𝐺𝑃𝑎,                    𝐸2 = 𝐸3 = 10.756𝐺𝑃𝑎, 
𝐺12 = 𝐺13 = 5.6537𝐺𝑃𝑎,      𝐺23 = 3.603𝐺𝑃𝑎, 
𝜈12 = 0.24,                                𝜌 = 1600𝑘𝑔/𝑚

3 
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Material 8: 
 

𝐸1 = 131.0𝐺𝑃𝑎,                        𝐸2 = 𝐸3 = 10.34𝐺𝑃𝑎, 
𝐺12 = 𝐺13 = 6.895𝐺𝑃𝑎,          𝐺23 = 6.205𝐺𝑃𝑎, 
𝜈12 = 0.22,                                  𝜌 = 1627𝑘𝑔/𝑚

3 

 

 

 

 

 

Material 9: 
 

𝐸1 = 𝐸2 = 𝐸3 = 00.689𝐺𝑃𝑎,                                          
𝐺12 = 𝐺13 = 𝐺23 = 00.345𝐺𝑃𝑎, 
𝜈12 = 0,   𝜌 = 97𝑘𝑔/𝑚

3 

 

 

 

 

 

 

Table 1 Non-dimensional natural frequencies (�̄�) of multilayered (0/90)𝑛 anti-symmetric cross-ply 

laminated composite square plates (𝑎/ℎ = 5, material 1) 

N Lay-ups Theory 
𝐸1/𝐸2 

3 10 20 30 40 

2 (0 /90)1 

Present 6.2188 6.9964 7.8379 8.5316 9.1236 

Sayyad and Ghugal (2017) 6.2190 6.9967 7.8385 8.5320 9.1246 

Thai and Kim (RPT1) (2010) 6.2169 6.9887 7.8210 8.5050 9.0871 

Thai and Kim (RPT2) (2010) 6.2167 6.9836 7.8011 8.4646 9.0227 

Sayyad and Ghugal (2015) 6.2417 7.0150 7.8537 8.5452 9.1357 

Reddy (1984) 6.2169 6.9887 7.8210 8.5050 9.0871 

Mindlin (1951) 6.2085 6.9392 7.7060 8.3211 8.8383 

CPT (a) 6.7705 7.7420 8.8555 9.8337 10.721 

Exact (1990) 6.2578 6.9845 7.6745 8.1763 8.5625 

4 (0 /90)2
 

Present 6.5012 8.1929 9.6205 10.5268 11.1628 

Sayyad and Ghugal (2017) 6.5012 8.1929 9.6205 10.5268 11.1628 

Thai and Kim (RPT1) (2010) 6.5008 8.1954 9.6265 10.5348 11.1716 

Thai and Kim (RPT2) (2010) 6.5008 8.1949 9.6252 10.5334 11.1705 

Sayyad and Ghugal (2015) 6.5255 8.2177 9.6437 10.5477 11.1815 

Reddy (1984) 6.5008 8.1954 9.6265 10.5348 11.1716 

Mindlin (1951) 6.5043 8.2246 9.6885 10.6198 11.2708 

CPT (a) 7.1690 9.7192 12.476 14.7250 16.6725 

Exact (1990) 6.5455 8.1445 9.4055 10.1650 10.6789 

6 (0 /90)3
 

Present 6.5567 8.4066 9.9210 10.8603 11.5102 

Sayyad and Ghugal (2017) 6.5567 8.4065 9.9210 10.8603 11.5100 

Thai and Kim (RPT1) (2010) 6.5558 8.4052 9.9181 10.8547 11.5012 

Thai and Kim (RPT2) (2010) 6.5558 8.4052 9.9181 10.8547 11.5009 

Sayyad and Ghugal (2015) 6.5815 8.4305 9.9407 10.855 11.5025 

Reddy (1984) 6.5558 8.4052 9.9181 10.8547 11.5012 

Mindlin (1951) 6.5569 8.4183 9.9427 10.8828 11.5264 

CPT (a) 7.2415 10.053 13.058 15.4907 17.5897 

Exact (1990) 6.6100 8.4143 9.8398 10.6958 11.2728 

10 (0 /90)5
 

Present 6.5854 8.5156 10.0740 11.0309 11.6893 

Sayyad and Ghugal (2017) 6.5854 8.5156 10.0740 11.0309 11.6893 

Thai and Kim (RPT1) (2010) 6.5842 8.5126 10.0674 11.0197 11.6730 

Thai and Kim (RPT2) (2010) 6.5842 8.5126 10.0671 11.0186 11.6705 

Sayyad and Ghugal (2015) 6.6100 8.5397 10.0957 11.0500 11.6855 

Reddy (1984) 6.5842 8.5126 10.0614 11.0197 11.6730 

Mindlin (1951) 6.5837 8.5132 10.0638 11.0058 11.6444 

CPT (a) 7.2415 10.053 13.0585 15.4907 17.5897 

Exact (1990) 6.6458 8.5625 10.0843 11.0027 11.6245 
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The following non-dimensional form is used while 

presenting numerical result of natural frequencies. 
 

�̄� = 𝜔(𝑏2/ℎ)√(𝜌 𝐸2⁄ ) (30) 

 

5.1 Free vibration analysis of anti-symmetric 
laminated composite plates 

 

Example 1: Free vibration analysis of cross-ply 

(0°/90°)n laminated composite plates 

In this example, free vibration analysis of anti-

symmetric cross-ply laminated square plates is investigated 

using Eq. (26) in the absence of external load. In Table 1, 

 

 

the non-dimensional natural frequencies of multilayered 

(0/90)n laminated composite plates by using different 

theories are shown for various numbers of layers, varied 

from 2 to 10. The modulus ratio 𝐸1/𝐸2 is varied from 3 to 

40. All the layers have the same thickness and made up of 

Material 1. The present results are compared with those 

presented by Mindlin (1951), Reddy (1984), Thai and Kim 

(RPT2) (2010), Sayyad and Ghugal (2015, 2017) and the 

exact elasticity solution given by Noor and Burton (1990). 

It is observed that the present approach can provide 

accurate results in comparison with the three-dimensional 

elasticity solutions given by Noor and Burton (1990) and 

the previous studies based on the higher-order shear 

Table 2 Non-dimensional natural frequencies (�̄�) of multilayered (0/90)𝑛 anti-symmetric cross-ply 

laminated composite square plates (material 2) 

N Lay-ups Theory 
𝑎/ℎ 

5 10 20 50 100 

2 (0 /90)1 

Present 9.1236 10.5811 11.1089 11.2757 11.3003 

Sayyad and Ghugal (2017) 9.1246 10.5815 11.1090 11.2757 11.3003 

Thai and Kim (RPT1) (2010) – 10.5680 11.1052 11.2751 11.3002 

Thai and Kim (RPT2) (2010) – 10.5480 11.0997 11.2742 11.2999 

Sayyad and Ghugal (2015) – 10.5930 11.1320 11.3000 11.3000 

Reddy (1984) 9.0871 10.5680 11.1052 11.2751 11.3002 

Mindlin (1951) 8.8383 10.4731 11.0779 11.2705 11.2990 

CPT (a) 10.721 11.1537 11.2693 11.3023 11.3070 

4 (0 /90)2
 

Present 11.1628 14.8376 16.5700 17.1843 17.2782 

Sayyad and Ghugal (2017) 11.1628 14.8376 16.5700 17.1842 17.2782 

Thai and Kim (RPT1) (2010) – 14.8463 16.5733 17.1849 17.2784 

Thai and Kim (RPT2) (2010) – 14.8433 16.5719 17.1847 17.2783 

Sayyad and Ghugal (2015) – 14.8570 16.6080 17.2250 17.3000 

Reddy (1984) 11.1716 14.8463 16.5733 17.1849 17.2784 

Mindlin (1951) 11.2708 14.9214 16.6008 17.1899 17.2796 

CPT (a) 16.6725 17.1448 17.2682 17.3032 17.3082 

6 (0 /90)3
 

Present 11.5102 15.4633 17.3768 18.0643 18.1698 

Sayyad and Ghugal (2017) 11.5100 15.4633 17.3768 18.0642 18.1698 

Thai and Kim (RPT1) (2010) – 15.4632 17.3772 18.0644 18.1698 

Thai and Kim (RPT2) (2010) – 15.4627 17.3769 18.0643 18.1698 

Sayyad and Ghugal (2015) – 15.4830 17.4160 18.1250 18.2000 

Reddy (1984) 11.5012 15.4632 17.3772 18.0644 18.1698 

Mindlin (1951) 11.5264 15.5010 17.3926 18.0673 18.1706 

CPT (a) 17.5897 18.0461 18.1652 18.1990 18.2038 

10 (0 /90)5
 

Present 11.6893 15.7739 17.7751 18.4985 18.6097 

Sayyad and Ghugal (2017) 11.6893 15.7739 17.7751 18.4985 18.6097 

Thai and Kim (RPT1) (2010) – 15.7700 17.7743 18.4984 18.6097 

Thai and Kim (RPT2) (2010) – 15.7700 17.7743 18.4984 18.6097 

Sayyad and Ghugal (2015) – 15.7930 17.8160 18.5500 18.6000 

Reddy (1984) 11.6730 15.7700 17.7743 18.4984 18.6097 

Mindlin (1951) 11.6444 15.7790 17.7800 18.4995 18.6100 

CPT (a) 17.5897 18.0461 18.1652 18.1990 18.2038 
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Table 3 Non-dimensional natural frequencies (�̄�) of anti-symmetric (45°/−45°) angle-ply laminated 

composite square plates (material 1) 

𝐸1/𝐸2 Theory 
𝐸1/𝐸2 

4 10 20 50 100 

3 

Present 6.0900 7.0747 7.2706 7.3293 7.3378 

Sayyad and Ghugal (2017) 6.0902 7.0747 7.2706 7.3293 7.3382 

Thai and Kim (RPT1) (2010) 6.0861 7.0739 7.2705 7.3293 7.3378 

Thai and Kim (RPT2) (2010) 6.0852 7.0738 7.2704 7.3293 7.3378 

Kant and Manjunatha (1988) 6.1223 7.1056 7.3001 7.3583 7.3666 

Pandya and Kant (1988) 6.0803 7.0728 7.2702 7.3295 7.3383 

Reddy (1984) 6.0861 7.0739 7.2705 7.3293 7.3378 

Mindlin (1951) 6.0665 7.0700 7.2694 7.3291 7.3378 

CPT (a) 6.9251 7.2699 7.3228 7.3378 7.3400 

10 

Present 7.3670 8.9709 9.3279 9.4379 9.4541 

Sayyad and Ghugal (2017) 7.3676 8.9711 9.3279 9.4379 9.4541 

Thai and Kim (RPT1) (2010) 7.3470 8.9660 9.3266 9.4377 9.4540 

Thai and Kim (RPT2) (2010) 7.3259 8.9621 9.3255 9.4376 9.4540 

Kant and Manjunatha (1988) 7.2647 8.9893 9.3265 9.4377 9.5123 

Pandya and Kant (1988) 7.2159 8.9328 9.3174 9.4363 9.4540 

Reddy (1984) 7.3470 8.966 9.3266 9.4377 9.4540 

Mindlin (1951) 7.2169 8.9324 9.3173 9.4362 9.4537 

CPT (a) 8.7950 9.3444 9.4304 9.4548 9.4583 

20 

Present 8.4595 10.728 11.281 11.456 11.482 

Sayyad and Ghugal (2017) 8.4606 10.728 11.281 11.456 11.482 

Thai and Kim (RPT1) (2010) 8.4152 10.715 11.277 11.455 11.481 

Thai and Kim (RPT2) (2010) 8.3396 10.698 11.272 11.454 11.481 

Kant and Manjunatha (1988) 8.049 10.641 11.298 11.507 11.539 

Pandya and Kant (1988) 8.0074 10.588 11.240 11.449 11.480 

Reddy (1984) 8.4152 10.715 11.277 11.455 11.482 

Mindlin (1951) 8.1185 10.627 11.252 11.451 11.481 

CPT (a) 10.631 11.341 11.453 11.484 11.489 

30 

Present 9.2434 12.118 12.872 13.116 13.153 

Sayyad and Ghugal (2017) 9.2448 12.119 12.872 13.116 13.153 

Thai and Kim (RPT1) (2010) 9.1752 12.097 12.866 13.115 13.152 

Thai and Kim (RPT2) (2010) 9.0341 12.062 12.856 13.113 13.152 

Kant and Manjunatha (1988) 8.5212 11.893 12.842 13.157 13.204 

Pandya and Kant (1988) 8.4847 11.844 12.789 13.102 13.149 

Reddy (1984) 9.1752 12.097 12.866 13.115 13.152 

Mindlin (1951) 8.7213 11.946 12.821 13.108 13.151 

CPT (a) 12.159 12.989 13.120 13.158 13.163 

40 

Present 9.2434 12.118 12.872 13.116 13.153 

Sayyad and Ghugal (2017) 9.2448 12.119 12.872 13.116 13.153 

Thai and Kim (RPT1) (2010) 9.1752 12.097 12.866 13.115 13.152 

Thai and Kim (RPT2) (2010) 9.0341 12.062 12.856 13.113 13.152 

Kant and Manjunatha (1988) 8.5212 11.893 12.842 13.157 13.204 

Pandya and Kant (1988) 8.4847 11.844 12.789 13.102 13.149 

Reddy (1984) 9.1752 12.097 12.866 13.115 13.152 

Mindlin (1951) 8.7213 11.946 12.821 13.108 13.151 

CPT (a) 12.159 12.989 13.120 13.158 13.163 
 

(a) Results taken from reference Sayyad and Ghugal (2017) 
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deformation theories. 

Table 2 demonstrates the comparison of non-

dimensional natural frequencies of multilayered 

antisymmetric cross-ply laminated composite plates for 

various side-to-thickness ratio a/h, ranging from 5 to 100 

(corresponding to from thick to thin plates), and the plate 

consists of material 2. The obtained results are compared 

with the solution reported by Sayyad and Ghugal (2015, 

2017), Thai and Kim (2010) and Reddy (1984). This 

comparison demonstrates clearly that the present results are 

in good agreement with them. Whereas the classical plate 

theory (CPT) overestimates the natural frequency as 

compared to the results of other theories due to neglect of 

transverse shear strains and provided acceptable results only 

for thin laminated plates. 

 

Example 2: Free vibration analysis of angle-ply 

laminated (45°/-45°) composite plates 

In the next example, anti-symmetric angle-ply laminated 

(45°/-45°) square plates with two layers are considered. The 

modulus ratio 𝐸1/𝐸2 is varied from 3 to 40. All layers are 

of equal thickness and made up of Material 1. The side-to-

thickness ratio a/h varied from 4 to 100. Numerical results 

of non-dimensional natural frequencies (�̄�) are listed in 

Table 3. It is observed that the present method can provide 

accurate results in comparison with those generated by 

Sayyad and Ghugal (2017), Thai and Kim (2010), Kant and 

Manjunatha (1988), Pandya and Kant (1988), and Reddy 

(1984). It can be seen again that the computed results are in 

very good agreement with those calculated by other shear 

deformation theories for different values of thickness ratio 

 

 

ranging from thick to thin laminated composite plates. 

The non-dimensional natural frequencies of anti-

symmetric angle-ply laminated square plates with two 

layers made up of material 2 for both fiber orientation angle 

(𝜃 = 15°)  and (𝜃 = 30°)  are given in Table 4 and 

compared to other theories cited previously in the literature. 

It is evident from the obtained results that the present 

computations are in good concordance with the analytical 

results reported by Sayyad and Ghugal (2017) and 

Senthilnathan et al. (1988). Moreover, it can be noticed that 

the increase of the thickness ratio has a significant effect on 

the increase of the natural frequencies. 

Further the comparison of natural frequencies for simply 

supported anti-symmetric angle-ply laminated square plates 

with two layers made up of material 1 are illustrated in 

Table 5 for different values of side-to-thickness ratio 

(𝑎/ℎ = 5, 10, 20, 50, 100) and for various values of both 

modulus ratio (𝐸1/𝐸2 = 3, 10, 20, 30, 40)  and fiber 

orientation angle (𝜃 = 15°, 30°, 60°) . From the 

examination of Table 5, it can be seen that the increase of 

modulus ratio leads to an increase of non-dimensional 

natural frequencies and this is due to the increase of the 

stiffness of the anti-symmetric angle-ply laminated 

composite plates. 
 

Example 3: Free vibration analysis of angle-ply 

laminated (45°/-45°)2 composite plates 

This example is performed for free vibration analysis of 

(45°/-45°)2 anti-symmetric angle-ply laminated plate to 

investigate the accuracy and applicability of the present 

theory. The thickness of the four layers was taken as 

 

 

 

Table 4 Non-dimensional natural frequencies (�̄�) of anti-symmetric (𝜃/−𝜃) angle-ply laminated composite 

square plates (material 2) 

𝜃 Theory 
𝑎/ℎ 

4 10 20 50 100 

15° 

Present 9.4639 13.1956 14.3222 14.7059 14.7638 

Sayyad and Ghugal (2017) 9.5421 13.4284 14.6293 15.0420 15.1044 

Senthilnathan et al. (1988) 9.4119 13.1793 14.3173 14.7050 14.6745 

Kant and Manjunatha (1988) 8.5142 12.7600 14.2324 14.7629 14.8445 

Pandya and Kant (1988) 8.4789 12.6928 14.1507 14.6754 14.7563 

Reddy (1984) 8.8117 12.8126 14.1881 14.6819 14.7577 

Mindlin (1951) 8.4662 12.6802 14.1457 14.6745 14.7557 

Present 9.6358 12.9540 13.8744 14.1783 14.2238 

Sayyad and Ghugal (2017) 9.6610 13.0383 13.9852 14.2992 14.3461 

30° 

Senthilnathan et al. (1988) 9.5564 12.9283 13.8667 14.1770 14.2235 

Kant and Manjunatha (1988) 8.6739 12.5935 13.8010 14.2137 14.2763 

Pandya and Kant (1988) 8.6393 12.5442 13.5452 14.1562 14.2184 

Reddy (1984) 9.4455 12.8730 13.8487 14.1738 14.2225 

Mindlin (1951) 8.9169 12.6807 13.7896 14.1637 14.2198 

Present 9.4639 13.1956 14.3222 14.7059 14.7638 

Sayyad and Ghugal (2017) 9.5421 13.4284 14.6293 15.0420 15.1044 

Senthilnathan et al. (1988) 9.4119 13.1793 14.3173 14.7050 14.6745 

Kant and Manjunatha (1988) 8.5142 12.7600 14.2324 14.7629 14.8445 
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0.25h/0.25h/0.25h/0.25h, and the plate is made of material 

3. The variation of natural frequencies for first six modes 

with respect to side-to-thickness ratio (a/h) is presented in 

Table 6. In order to assure the accuracy of the present 

theory, the numerical results obtained for this example are 

compared with the results predicted by Sayyad and Ghugal 

(2017) using a simple four-variable trigonometric shear 

deformation theory, the analytical solutions reported by 

Matsunaga (2001) using the method of power series 

expansion of displacement components and a global higher-

order plate theory, the quadrilateral element results achieved 

by Kulkarni and Kapuria (2008) based on the third-order 

zigzag theory, the finite element solutions presented by 

Chalak et al. (2013) and the solutions given by Chakrabarti 

and Sheikh (2004) based on the refined higher-order shear 

deformation plate theory. It should be clearly pointed out 

that the present theory gives more accurate results in 

 

 

predicting the natural frequencies when compared to 

Sayyad and Ghugal (2017) and Kulkarni and Kapuria 

(2008). 

 

Example 4: Free vibration analysis of angle-ply 

laminated (45°/-45°)5 composite plates 

This study discusses the free vibration analysis of (45°/-

45°)5 anti-symmetric angle-ply laminated square composite 

plates, with layers of the same thickness and made up of 

material 4. The natural frequencies computed using present 

theory and other shear deformation theories with the three-

dimensional elasticity solutions given by Noor and Burton 

(1990) are listed in Table 7. It can be confirmed from the 

Table 7 that, the results of the proposed theory agree well 

with the results of Sayyad and Ghugal (2017), Reddy 

(1984), Thai and Kim (2010) and FSDT of Mindlin (1951). 

By comparing the results to those obtained by CPT, it can 

Table 5 Non-dimensional natural frequencies (�̄�) of anti-symmetric (𝜃/−𝜃) angle-ply laminated composite 

square plates (material 1) 

𝜃 𝑎/ℎ Theory 
𝐸1/𝐸2 

3 10 20 30 40 

15° 

4 
Present 6.1752 7.5093 8.4440 9.0274 9.4639 

Sayyad and Ghugal (2017) 6.5130 7.7721 8.6007 9.1337 9.5421 

10 
Present 7.1890 9.3233 11.0766 12.2692 13.1956 

Sayyad and Ghugal (2017) 7.7624 9.8333 11.4492 12.5576 13.4284 

20 
Present 7.3904 9.7347 11.7544 13.1827 14.3222 

Sayyad and Ghugal (2017) 8.0191 10.3180 12.2060 13.5489 14.6293 

50 
Present 7.4506 9.8622 11.9725 13.4859 14.7059 

Sayyad and Ghugal (2017) 8.0965 10.4697 12.4520 13.8810 15.0420 

100 
Present 7.4594 9.8809 12.0049 13.5313 14.7638 

Sayyad and Ghugal (2017) 8.1078 10.4920 12.4886 13.9309 15.1044 

30° 

4 
Present 6.1083 7.3253 8.3400 9.0670 9.6358 

Sayyad and Ghugal (2017) 6.2027 7.4276 8.3994 9.1516 9.6610 

10 
Present 7.0987 8.9264 10.5771 11.8668 12.9540 

Sayyad and Ghugal (2017) 7.2635 9.1279 10.7242 12.0686 13.0383 

20 
Present 7.2956 9.2816 11.1209 12.5975 13.8744 

Sayyad and Ghugal (2017) 7.4772 9.5113 11.2978 12.8437 13.9852 

50 
Present 7.3545 9.3909 11.2929 12.8339 14.1783 

Sayyad and Ghugal (2017) 7.5413 9.6299 11.4800 13.0958 14.2992 

100 
Present 7.3631 9.4070 11.3183 12.8690 14.2238 

Sayyad and Ghugal (2017) 7.5506 9.6472 11.5069 13.1334 14.3461 

60° 

4 
Present 6.1083 7.3253 8.3400 9.0670 9.6358 

Sayyad and Ghugal (2017) 6.2027 7.4276 8.3994 9.1516 9.6610 

10 
Present 7.0987 8.9264 10.5771 11.8668 12.9540 

Sayyad and Ghugal (2017) 7.2635 9.1279 10.7242 12.0686 13.0383 

20 
Present 7.2956 9.2816 11.1209 12.5975 13.8744 

Sayyad and Ghugal (2017) 7.4772 9.5113 11.2978 12.8437 13.9852 

50 
Present 7.3545 9.3909 11.2929 12.8339 14.1783 

Sayyad and Ghugal (2017) 7.5413 9.6299 11.4800 13.0958 14.2992 

100 
Present 7.3631 9.4070 11.3183 12.8690 14.2238 

Sayyad and Ghugal (2017) 7.5506 9.6472 11.5069 13.1334 14.3461 
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Table 7 Non-dimensional natural frequencies (�̄�) of ten-

layer (45°/−45°)5 anti-symmetric angle-ply 

laminated composite square plates (material 4) 

Theory 
𝑎/ℎ 

5 10 100 

Present 10.1672 13.6111 15.9482 

Sayyad and Ghugal (2017) 10.1672 13.6111 15.9482 

Reddy (1984) 10.1537 13.6078 15.9482 

Thai and Kim (RPT1) (2010) 10.1537 13.6078 15.9482 

Thai and Kim (RPT2) (2010) 10.1516 13.6078 15.9482 

Mindlin (1951) 10.1288 13.6140 15.9484 

CPT (a) 15.4661 15.8460 15.9775 

Exact (1990) 9.9825 13.5100 15.9500 
 

 

 

be shown that the effect of shear deformation is to decrease 

the natural frequencies 

 

5.2 Free vibration analysis of sandwich plates 
 

Example 1: Free vibration analysis of symmetric 

sandwich plates (0°/core/0°) 

In this section, efficiency of proposed theory is proved 

for the free vibration response of simply supported 

symmetric square and rectangular sandwich plates with thin 

face sheets and thick core for different values of side-to-

thickness ratio. The thickness of each face sheet is 0.15h 

and made up of isotropic aluminum alloy (material 5) 

whereas thickness of central core is 0.7h and made up of 

PVC foam (material 6).The non-dimensional frequencies of 

first three vibration modes obtained by present theory are 

presented in Table 8 and are compared with those obtained 

by exact elasticity solution given by Brischetto (2014) and 

the four-variable trigonometric shear deformation theory 

developed by Sayyad and Ghugal (2017). Examination of 

Table 8 also reveals that, the present theory gives excellent 

results for the frequencies of second and third modes for 

 

 

Table 8 Non-dimensional natural frequencies (�̄�) of three-

layer (0°/𝐶𝑜𝑟𝑒/0°) symmetric rectangular 

sandwich plates (material 5 and 6) 

b/a Theory Modes 
𝑎/ℎ 

5 10 50 100 

1 

Present 

I 4.4221 6.5923 8.5408 8.6349 

II 13.535 27.070 135.35 270.70 

III 22.885 45.771 228.85 457.71 

Sayyad 

and Ghugal 

(2017)
 

I 4.4220 6.5923 8.5408 8.6384 

II 13.535 27.070 135.35 270.70 

III 22.885 45.771 228.85 457.70 

Exact 3D 

(2014) 

I 1.4786 2.4879 7.0764 8.1693 

II 6.8059 27.045 135.35 270.70 

III 13.473 28.081 228.77 457.67 

3 

Present 

I 2.9876 4.0581 4.7757 4.8051 

II 10.088 20.177 100.88 201.77 

III 17.058 34.116 170.57 341.16 

Sayyad 

and Ghugal 

(2017)
 

I 2.9876 4.0581 4.7756 4.8050 

II 10.088 20.176 100.88 201.77 

III 17.057 34.115 170.56 341.14 

Exact 3D 

(2014) 

I 1.0092 1.7567 4.2583 4.6553 

II 6.9197 20.167 100.88 201.77 

III 10.066 24.201 170.55 341.14 
 

 

 

square and rectangular sandwich plates. However, there is a 

considerable difference with 3D-elasticity solution for non-

dimensional frequencies of first mode. 
 

Example 2: Free vibration analysis of symmetric cross-

ply sandwich plates (0°/90°/core/90°/0°) 

In second example, present theory is applied for the free 

vibration analysis of simply supported (0°/90°/core/90°/0°) 

symmetric sandwich plates. The sandwich plate is 

Table 6 Non-dimensional natural frequencies (�̄�) of four-layer (45°/−45°)2anti-symmetric angle-ply laminated composite 

square plates (material 3) 

𝑎/ℎ Theory 
Modes of vibration

 
1 2 3 4 5 6 

5 

Present 12.5295 21.7713 21.7713 29.4406 32.4781 32.4781 

Sayyad and Ghugal (2017) 12.5295 21.7713 21.7713 29.4406 32.4780 32.4780 

Kulkarni and Kapuria (2008) 12.5293 21.4012 21.4012 29.3154 32.0688 32.0688 

Chakrabarti and Sheikh (2004) 11.8130 18.7780 18.9260 23.9570 25.3290 25.4380 

Chalak et al. (2013) 11.9131 20.2298 20.2298 27.2263 30.1399 30.3087 

10 

Present 18.3062 35.0905 35.0905 50.1181 54.8631 54.8631 

Sayyad and Ghugal (2017) 18.3062 35.0905 35.0905 50.1181 54.8630 54.8630 

Matsunaga (2001) 17.5885 32.6571 32.6571 46.6888 50.6147 50.6147 

Kulkarni and Kapuria (2008) 18.3144 34.5392 34.5392 50.0729 53.8869 53.8869 

Chakrabarti and Sheikh (2004) 17.9340 33.3000 33.4640 47.2370 50.5840 50.6340 

Chalak et al. (2013) 17.6921 32.8839 32.8839 47.2914 51.5889 52.0283 
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Table 9 Non-dimensional natural frequencies (�̄�) of 

five-layer (0°/90°/𝐶𝑜𝑟𝑒/90°/0°) symmetric 

rectangular sandwich plates (material 6 and 7) 

b/a Theory Modes 
𝑎/ℎ 

5 10 50 100 

1 

Present 

I 5.7104 9.6654 15.702 16.129 

II 38.581 77.161 385.80 771.61 

III 43.074 86.148 430.74 861.48 

Sayyad 

and Ghugal 

(2017)
 

I 5.7107 9.6657 15.702 16.129 

II 38.580 77.161 385.80 771.60 

III 43.074 86.148 430.73 861.48 

Exact 3D 

(2014) 

I 3.2639 5.9275 14.440 15.754 

II 17.398 71.631 385.73 771.58 

III 37.351 76.817 430.56 861.39 

3 

Present 

I 4.1627 7.0263 11.169 11.449 

II 17.122 34.245 171.22 342.45 

III 39.554 79.108 395.54 791.08 

Sayyad 

and Ghugal 

(2017)
 

I 4.1626 7.0265 11.169 11.448 

II 17.122 34.245 171.22 342.45 

III 39.554 79.108 395.54 791.08 

Exact 3D 

(2014) 

I 2.4968 4.5385 10.421 11.231 

II 19.965 34.219 171.22 342.45 

III 17.876 48.469 395.40 791.01 
 

 

 

consisting of two face sheets at the top and bottom surfaces 

of the plate and made up of graphite-epoxy orthotropic 

composite material (material 7) whereas the flexible core at 

the center made up of PVC foam (material 6). The thickness 

of each face sheet is 0.075h and thickness of soft core is 

0.7h. The comparison of  non-dimensional frequencies for 

first three vibration modes of free vibration of square and 

rectangular sandwich plates is reported in Table 9 for four 

values of the thickness ratio (a/h = 5, 10, 50, 100). It is 

evident from the obtained results that the present 

computations are in an excellent agreement with those of 

exact elasticity solution and the trigonometric shear 
 

 

deformation theory given by Sayyad and Ghugal (2017). 
 

Example 3: Free vibration analysis of anti-symmetric 

cross-ply sandwich plates 

(0°/90°/core/0°/90°) 

The third example is carried out for simply supported 

anti-symmetric cross-ply square sandwich plate 

(0°/90°/core/0°/90°) with side-to-thickness ratio varied 

from 2 to 100. The thickness of the core to thickness of the 

face sheets is adopted(𝑡𝑐/𝑡𝑓 = 10). The face sheets of the 

plate are made of an orthotropic composite material 8 

whereas the soft core is made of material 9. The non-

dimensional natural frequencies obtained by the present 

solution are compared with those predicted by available 

results in Table 10 whereas non-dimensional natural 

frequencies for first six modes of vibration are mentioned in 

Table 11. The present results are compared with those 

provided by other existing theories such as the one 

proposed by Sayyad and Ghugal (2015, 2017), Reddy 

(1984), Rao et al. (2004), Kant and Manjunatha (1988), 

Pandya and Kant (1988), Senthilnathan et al. (1988) and 

Mindlin (1951). It can be seen that the results of present 

study again agree well with those reported by Sayyad and 

Ghugal (2017) using a four-variable trigonometric shear 

deformation theory and to those reported by Reddy (1984) 

based on HSDT. On the other hand, Table 12 presents 

comparison of non-dimensional natural frequencies for 

antisymmetric rectangular sandwich plates. 
 

Example 4: Free vibration analysis of anti-symmetric 

angle-ply sandwich plates (/-/core//-) 

In last example, anti-symmetric (/-/core//-) angle-

ply square sandwich plates are considered for the 

calculation of non-dimensional natural frequencies with 

respect to the several values of both thickness ratio (𝑎/ℎ =
10, 20, 50, 100)  and  f iber  or ien ta t ion  angle  (𝜃 =
15°, 30°, 45°) whereas the thickness of the core to 

thickness of the face sheets is taken (𝑡𝑐/𝑡𝑓 = 4,  10). The 

Face sheets of the plate are made up of orthotropic material 

8 whereas the isotropic core is made of material 9. The 

obtained numerical results are presented in Table 13 and 

have been compared with previously published results 

obtained from other plate theories. Examination of 
 

 

Table 10 Non-dimensional natural frequencies (�̄�) of five-layer (0°/90°/𝐶𝑜𝑟𝑒/0°/90°) anti-symmetric 

sandwich square plates (material 8 and 9,𝑡𝑐/𝑡𝑓 = 10) 

Theory 
𝑎/ℎ 

2 4 10 20 50 100 

Present 0.8718 1.6694 4.0051 7.2849 12.3028 14.3519 

Sayyad and Ghugal (2017)
 

0.8209 1.6439 3.9964 7.2820 12.3004 14.3474 

Sayyad and Ghugal (2015)
 

0.8778 1.6767 4.1312 7.5829 13.3791 15.5978 

Reddy (1984) 1.6252 3.1013 7.0473 11.2664 15.0323 15.9522 

Rao et al. (2004) 0.7141 0.9363 1.8480 3.4791 7.7355 11.9400 

Kant and Manjunatha (1988) 1.1941 2.1036 4.8594 8.5955 13.6899 15.5093 

Pandya and Kant (1988) 1.1734 2.0913 4.8519 8.5838 13.6577 15.4647 

Senthilnathan et al. (1988) 1.6252 3.1013 7.0473 11.2664 15.0323 15.9522 

Mindlin (1951) 5.2017 9.0312 13.869 15.5295 16.1264 16.2175 
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Table 13 also reveals that, the present computations are in 

an excellent agreement with the analytical solutions 

provided by Ghugal and Sayyad (2017); however, a 

significant difference is observed as compared to other 

shear deformation theories as Kant and Manjunatha (1988), 

Pandya and Kant (1988), Reddy (1984) and Senthilnathan 

et al. (1988). This is due to the different approaches used to 

predict the natural frequencies. Moreover, the first-order 

shear deformation theory of Mindlin (1951) overestimates 

the natural frequency values for all thickness ratios. 

 

 

 

 

 

 

6. Conclusions 
 

A simple four-variable trigonometric shear deformation 

model with undetermined integral terms is developed for 

the free vibration analysis of simply supported 

antisymmetric laminated composite and soft core sandwich 

plates. The most important feature of this theory is that it 

has only four-unknown variables and four governing 

equations derived from the principle of virtual work and 

does not require any shear correction factors. Various 

numerical examples are presented and compared with those 

provided by other existing theories to prove the validity of 

Table 11 Non-dimensional natural frequencies (�̄�) of five-layer (0°/90°/𝐶𝑜𝑟𝑒/0°/90°) anti-symmetric 

sandwich square plates (material 8 and 9,𝑡𝑐/𝑡𝑓 = 10) 

𝑎/ℎ Theory 
Modes of vibration

 
1 2 3 4 5 6 

10 

Present 4.0051 6.5102 8.2788 9.3364 10.6617 12.6177 

Sayyad and Ghugal (2017) 3.9964 6.4622 8.1987 9.1760 10.4767 11.9465 

Sayyad and Ghugal (2015) 4.1312 6.7339 8.6150 9.6638 11.0885 13.1232 

Reddy (1984) 7.0473 11.9087 15.2897 17.3211 19.8121 23.5067 

Rao and Desai (2004) 4.9624 8.1934 10.5172 11.9867 13.7488 16.4514 

Kant and Manjunatha (1988) 4.8594 8.0187 10.2966 11.7381 13.4706 16.1320 

Pandya and Kant (1988) 4.8519 7.9965 10.2550 11.6809 13.3889 16.0039 

Senthilnathan et al. (1988) 7.0473 11.9624 15.2897 17.3698 19.8325 23.5067 

Mindlin (1951) 13.869 30.6432 41.5577 50.9389 58.3636 71.3722 

100 

Present 14.3519 35.5662 49.2113 64.7584 74.0710 92.2246 

Sayyad and Ghugal (2017) 14.3474 35.5583 49.2015 64.7474 74.0586 92.2090 

Sayyad and Ghugal (2015) 15.5978 38.3778 53.5165 69.8024 80.0727 100.3965 

Reddy (1984) 15.9521 42.2271 60.1272 83.9982 96.3132 124.2047 

Rao and Desai (2004) 15.5480 39.2652 73.4951 55.1512 84.2919 106.5897 

Kant and Manjunatha (1988) 15.5093 39.0293 54.7618 72.7572 83.4412 105.3781 

Pandya and Kant (1988) 15.4646 38.9232 54.6330 72.5925 83.2699 105.1807 

Senthilnathan et al. (1988) 15.9521 42.3708 60.1272 84.4215 96.7259 124.2047 

Mindlin (1951) 16.2175 44.7072 64.5044 94.9097 108.9049 143.7969 
 

Table 12 Non-dimensional natural frequencies (�̄�) of five-layer (0°/90°/𝐶𝑜𝑟𝑒/0°/90°) anti-symmetric 

rectangular sandwich plates (material 8 and 9,𝑡𝑐/𝑡𝑓 = 10, 𝑎/ℎ = 10) 

Theory 
𝑎/𝑏 

0.5 1 1.5 2 2.5 3 5 

Present 12.5275 4.0051 2.3075 1.6275 1.2638 1.0374 0.6184 

Sayyad and Ghugal (2017) 12.5073 3.9964 2.2980 1.6155 1.2489 1.0195 0.5886 

Rao et al. (ESL) (2004) 15.3407 4.9624 2.8797 2.0483 1.6057 1.3317 0.8342 

Rao et al. (LW) (2004) 5.7328 1.8480 1.0884 0.8049 0.6626 0.5792 0.4493 

Reddy (1984) 21.4500 7.0473 4.1587 3.6444 2.3324 1.9242 1.1541 

Kant and Manjunatha (1988) 15.0316 4.8594 2.8188 2.4560 1.5719 1.3040 0.8187 

Pandya and Kant (1988) 15.0128 4.8519 2.8130 2.4469 1.5660 1.2976 0.8102 

Senthilnathan et al. (1988) 21.6668 7.0473 4.1725 3.6582 2.3413 1.9216 1.1550 

Mindlin (1951) 39.4840 13.869 10.165 9.4910 6.5059 5.6588 3.6841 
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the proposed mathematical model. The effects of number of 

layers, modulus ratio, side-to-thickness ratio and fiber 

orientation angle are examined and discussed. It is observed 

from this entire investigation that the present theory with 

four unknowns predicts excellent results for natural 

frequencies as compared to those obtained using other 

refined shear deformation theories for all modes of 

vibrations. Finally, the present mathematical model is found 

to be appropriate and efficient in analyzing vibration 

 

 

problem of laminated composite and soft core sandwich 

plates. An improvement of the present formulation will be 

considered in the future work to consider other type of 

materials (Avcar 2015, 2016, Hadji et al. 2016, Mehar et al. 

2016, Kar and Panda 2015a, b, 2017, Chandra Mouli et al. 

2018, Belmahi et al. 2018, Bensattalah et al. 2018, Chemi 

et al. 2018, Kumar and Srinivas 2018, Faleh et al. 2018, 

Shahadat et al. 2018, Safa et al. 2019). 

 

Table 13 Non-dimensional natural frequencies (�̄�) of five-layer (𝜃/−𝜃/𝐶𝑜𝑟𝑒/𝜃/−𝜃) anti-symmetric angle-

ply sandwich square plates (material 8 and 9) 

  Theory 
𝑎/ℎ 

10 20 50 100 

4 

15° 

Present 7.5923 12.1491 16.2539 17.2622 

Sayyad and Ghugal (2017) 7.5929 12.1489 16.2527 17.2608 

Kant and Manjunatha (1988) 8.8342 12.9787 16.2421 16.9744 

Pandya and Kant (1988) 8.8109 12.9633 16.2330 16.9666 

Reddy (1984) 10.585 14.3884 16.6537 17.0840 

Senthilnathan et al. (1988) 11.284 14.9062 16.7857 17.1196 

Mindlin (1951) 14.360 16.3410 17.0808 17.1965 

30° 

Present 7.7412 12.8130 17.9614 19.3510 

Sayyad and Ghugal (2017) 7.7421 12.8128 17.9602 19.3495 

Kant and Manjunatha (1988) 9.5383 14.4318 18.2621 19.1154 

Pandya and Kant (1988) 9.5153 14.4130 18.2465 19.1005 

Reddy (1984) 11.631 16.0979 18.7384 19.2378 

Senthilnathan et al. (1988) 11.832 16.2517 18.7787 19.2487 

Mindlin (1951) 16.096 18.3818 19.2351 19.3685 

45° 

Present 7.7982 13.0779 18.7132 20.3004 

Sayyad and Ghugal (2017) 7.7993 13.0778 18.7119 20.2988 

Kant and Manjunatha (1988) 9.8197 15.0371 19.1695 20.0845 

Pandya and Kant (1988) 9.7973 15.0173 19.1513 20.0667 

Reddy (1984) 12.051 16.8312 19.6858 20.2163 

Senthilnathan et al. (1988) 12.051 16.8312 19.6858 20.2163 

Mindlin (1951) 16.848 19.3022 20.2263 20.3573 

10 

30 

Present 4.0530 7.5673 13.8217 16.9422 

Sayyad and Ghugal (2017) 4.0393 7.5623 13.8192 16.9372 

Kant and Manjunatha (1988) 5.0035 9.0294 15.5303 18.4008 

Pandya and Kant (1988) 4.9949 9.0227 15.5216 18.3900 

Reddy (1984) 7.3280 12.2477 17.6159 19.1603 

Senthilnathan et al. (1988) 7.4382 12.4504 17.7286 19.1974 

Mindlin (1951) 15.926 18.5408 19.5550 19.7222 

45 

Present 4.0624 7.6287 14.2074 17.6676 

Sayyad and Ghugal (2017) 4.0471 7.6230 14.2049 17.6626 

Kant and Manjunatha (1988) 5.0653 9.2740 16.2062 19.3098 

Pandya and Kant (1988) 5.0566 9.2675 16.1965 19.2970 

Reddy (1984) 7.4895 12.6964 18.4604 20.1355 

Senthilnathan et al. (1988) 7.4895 12.6964 18.4604 20.1355 

Mindlin (1951) 16.654 19.4671 20.5661 20.7477 
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