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1. Introduction 

 

Concrete-filled steel tubes (CFSTs) are known to be 

composite members, are primarily used in the lateral 

resistance systems of both braced and unbraced 

structures/components. Concrete-filled steel tube columns 

(CFSTCs) combine the advantages of ductility, generally 

associated with steel structures, with the stiffness of a 

concrete structural system. There are several applications in 

Japan and Europe where in CFSTs are also employed as 

bridge piers (Kitada 1998, Abdelkarim et al. 2015). Further, 

CFSTs were also utilized for retrofitting purposes to 

strengthen concrete columns in earthquake prone areas 

(Sakino and Sun 2000). Due to composite action, CFSTCs 

have notable advantages such as high compressive strength, 

stiffness, high tensile strength, ductility and enhanced 

flexural capacity. CFSTCs possess other advantages like (i) 

reduction of construction cost, (ii) no extra reinforcement is 

required since tube serves as longitudinal and lateral 

reinforcement for the concrete core, (iii) effective usage of 

steel, (iv) confining pressure to concrete, (v) reduced cross 

section, (vi) delay and often prevent local buckling of the 

steel member and (vii) economy. It was mentioned in the 

literature that the ultimate strength or failure load of 

CFSTCs depends on material properties and steel ratio 
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(O’Shea and Bridge 2000, Schneider 1998, Sakino et al. 

2004, Johansson and Gylltoft 2002, Han and Yao 2004, Han 

et al. 2005). Various cross sections of CFSTs such as 

circular, square and rectangular, etc. were employed for the 

investigations. Generally, only plain concrete is infilled to 

the hollow tubes. Some situations, where ductility and fire 

resistance are of paramount, fibers are to be added to 

concrete, in such cases the workability of the concrete 

should be ensured. Several investigations were carried out 

on CFSTs having various grades of concrete (Liu et al. 

2003, Liu and Gho 2005, Lue et al. 2007, Yu et al. 2008, Uy 

2001, Aslani et al. 2015). The axial load capacity of CFST 

columns with several grades such as 30 , 60  and 

100 𝑀𝑃𝑎  were examined depending on the effects of 

various steel tube thickness by Giakoumelis and Lam 

(2004). The experimental results indicated that the 

Eurocode 4, American Concrete Institute, and Australian 

Standards predict conservatively the axial load capacities of 

normal and high-strength CFSTCs. Many parametric 

studies were carried out on circular normal and high-

strength CFSTCs by Ellobody et al. (2006). From the 

studies, it was found that the design strengths obtained by 

the ACI and the AS design codes are found to be 

conservative, but EC4 generally overestimates. Lam and 

Gardner (2008) carried out series of tests on the behavior of 

axially loaded square and circular CFST columns with 

concrete compressive strengths varying from 30  to 

100 𝑀𝑃𝑎. It was found that EC4 and Architectural Institute 

of Japan design codes yielded conservative and can be 

applied safely to normal strength CFSTCs. Xiong et al. 
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Abstract.  In the areas highly exposed to earthquakes, concrete-filled steel tube columns (CFSTCs) are known to provide superior 

structural aspects such as (i) high strength for good seismic performance (ii) high ductility (iii) enhanced energy absorption (iv) 

confining pressure to concrete, (v) high section modulus, etc. Numerous studies were reported on behavior of CFSTCs under axial 

compression loadings. This paper presents an analytical model to predict ultimate load capacity of CFSTCs with circular sections 

under axial load by using multivariate adaptive regression splines (MARS). MARS is a nonlinear and non-parametric regression 

methodology. After careful study of literature, 150 comprehensive experimental data presented in the previous studies were 

examined to prepare a data set and the dependent variables such as geometrical and mechanical properties of circular CFST system 

have been identified. Basically, MARS model establishes a relation between predictors and dependent variables. Separate regression 

lines can be formed through the concept of divide and conquers strategy. About 70% of the consolidated data has been used for 

development of model and the rest of the data has been used for validation of the model. Proper care has been taken such that the 

input data consists of all ranges of variables. From the studies, it is noted that the predicted ultimate axial load capacity of CFSTCs 

is found to match with the corresponding experimental observations of literature. 
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(2017) carried out extensive investigations on CFSTs with 

high and ultrahigh strength concrete. A general observation 

is that it takes considerable amount of time and effort to 

carry out experiment. Further, numerical simulation 

requires accurate modeling to represent the realistic 

behavior of experimental findings. In the present scenario, 

several statistical models proposed and implemented by 

many researchers will be useful for adopt and to predict the 

experimental responses. The models include, artificial 

neural network, relevance vector machine, support vector 

machine, multivariate adaptive regression splines, Gaussian 

process regression, extreme learning machine, least-squares 

support vector machine (Yuvaraj et al. 2014, Parab et al. 

2014, Shah et al. 2014, Dutta et al. 2017, Kaur and Kaur 

2017, Erdem 2017, Engin et al. 2015). 

Ultimate capacity prediction of axially loaded CFST 

short columns was provided by Guneyisi et al. (2016) using 

gene expression programming (GEP). Ren et al. (2019) 

investigated the application of the combined PSVM model 

(support vector machine (SVM) optimized by particle 

swarm optimization (PSO)) in the prediction of ultimate 

axial capacity of square CFST short columns. After careful 

study of all the models, it is noticed that each model has its 

own merits and limitations. 

This paper employs multivariate adaptive regression 

splines (MARS) to develop a model to predict ultimate load 

capacity of CFSTCs. MARS is a statistical model which 

accounts the nonlinear behavior of the system for reliable 

and accurate prediction. Mansouri et al. (2016) predicted 

the strength of rotary brace damper by employing multiple 

linear regressions (MLR) and MARS methods. Lokuge et 

al. (2018) proposed a mix design methodology for fly ash 

based geopolymer concrete mix based on the concepts of 

MARS. Li and Yang (2018) assessed the tensile strain 

hardening capacity of fiber reinforced cementitious 

composites by using probabilistic based approach 

considering material heterogeneity. Tensile strain hardening 

was measured in terms performance indices which are 

obtained by using MARS. Cheng and Cao (2016) predicted 

the strength of concrete incorporated with rubber by using 

evolutionary MARS and also predicted shear strength of RC 

deep beams. Yuvaraj et al. (2013) used MARS model to 

predict the fracture characteristics of high strength and 

ultra-high strength concrete beams and found that a good 

agreement between predicted and experimental responses. 
 

 

In order to build a proper MARS model, one has to 

carefully focus on certain parameters such as (i) maximum 

number of basis function 𝑀𝑚𝑎𝑥 , (ii) penalty parameter 

(smooth parameter) 𝑑  and (iii) maximum interaction 

between variables 𝑚𝑖. These parameters are found to be 

useful for generalization of the model as well as reduction 

of complexity of the model. 

It can be noted that the application of MARS concepts 

in civil/structural engineering are found to be limited in the 

literature. So far, to knowledge of the author, while CFSTCs 

have merit in seismic applications, no guidance exists to 

help the engineer to predict ultimate load capacities using 

MARS with a reasonable degree of accuracy in the current 

technical literature. In this study, the experimental 

behaviors of axially loaded various circular CFSTCs are 

consolidated and developed an analytical model by using 

the concepts of MARS to predict ultimate axial load 

capacity of CFSTCs. The reliability of the developed new 

model has been validated with a data set comprising 150 

experimental data results available in the literature. 
 

 

2. Experimental investigations for CFSTCs with 
circular section 
 

Several experimental investigations were reported in the 

literature on the performance of circular CFSTCs under 

axial compression loadings. From the wide literature 

review, it was observed the ultimate axial load capacity 𝑃𝑢  
is dependent on various factors such as (i) outer diameter of 

steel tube, 𝐷  (ii) wall thickness of steel tube, 𝑡  (iii) 

unconfined concrete strength, 𝑓𝑐 (iv) Young’s modulus of 

concrete, 𝐸𝑐  (v) yield strength of steel, 𝑓𝑦  (vi) Young’s 

modulus of steel, 𝐸𝑠  (vii) length of CFSTC, 𝐿  (viii) 

confinement factor, 𝜉 . Experimental data for stub/short 

CFSTCs were collected with a total of 150 CFSTCs from 

22 different sources and will be used to develop and verify 

the MARS model. 

Table 1 presents the geometrical parameters (namely, 

cross-section properties), material strength properties of 

concrete and steel and failure load of various circular 

CFSTCs with different confinement factors under axial 

load. The test data has a wide range of column parameters 

and the parameters for the test specimens are ranging from 

normal to high yield strength steels (𝑓𝑦 = 186~853 𝑀𝑃𝑎), 

 

 

Table 1 Experimental test data for general details and ultimate load capacity of circular CFSTCs 

Data 

Source 

Test 

specimens 

𝐷 

(𝑚𝑚) 

𝑡 

(𝑚𝑚) 

𝑓𝑐 

(𝑀𝑃𝑎) 

𝐸𝑐 

(𝑀𝑃𝑎) 

𝑓𝑦 

(𝑀𝑃𝑎) 

𝐸𝑠 

(𝑀𝑃𝑎) 

𝐿 

(𝑚𝑚) 
𝜉 𝐷 𝑡⁄  𝐿 𝐷⁄  

𝑃𝑢 

(𝑘𝑁) 

Gardener and 

Jacobson 

(Gardener and 

Jacobson 1967,  

Gardener 1968) 

SPICIMEN8 120.8 4.06 34.40 27566 452 191536 241.3 1.962 30 2.0 1201 

SPICIMEN9 120.8 4.09 29.58 25562 452 191536 241.4 2.300 30 2.0 1201 

SPICIMEN10 120.8 4.09 25.92 23928 452 191536 241.4 2.625 30 2.0 1112 

SPICIMEN13 152.6 3.18 20.89 21482 415 203395 304.8 1.766 48 2.0 1201 

SPICIMEN14 152.6 3.15 23.10 22589 415 203395 304.8 1.581 48 2.0 1201 

SPICIMEN4 101.7 3.07 31.16 26236 605 207050 203.3 2.575 33 2.0 1068 

SPICIMEN3 101.7 3.07 34.13 27458 605 207050 203.3 2.351 33 2.0 1112 

SPICIMEN3a 169.3 2.62 36.54 28411 317 195811 305 0.563 65 1.8 1307 
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Table 1 Continued 

Data 

Source 

Test 

specimens 

𝐷 

(𝑚𝑚) 

𝑡 

(𝑚𝑚) 

𝑓𝑐 

(𝑀𝑃𝑎) 

𝐸𝑐 

(𝑀𝑃𝑎) 

𝑓𝑦 

(𝑀𝑃𝑎) 

𝐸𝑠 

(𝑀𝑃𝑎) 

𝐿 

(𝑚𝑚) 
𝜉 𝐷 𝑡⁄  𝐿 𝐷⁄  

𝑃𝑢 

(𝑘𝑁) 

Tomii et al. 

(1977) 

4HN 150 4.3 28.71 25183 280 209720 450 1.222 35 3.0 1203 

4HN 150 4.3 28.71 25183 280 209720 450 1.222 35 3.0 1225 

4HN 150 4.3 28.71 25183 280 209720 450 1.222 35 3.0 1200 

3HN 150 3.2 28.71 25183 287 190120 450 0.911 47 3.0 1040 

3HN 150 3.2 28.71 25183 287 190120 450 0.911 47 3.0 998 

3HN 150 3.2 28.71 25183 287 190120 450 0.911 47 3.0 980 

2HN 150 2 28.71 25183 336 211680 450 0.65 75 3.0 882 

2HN 150 2 28.71 25183 336 211680 450 0.65 75 3.0 882 

4MN 150 4.3 21.95 22020 280 209720 450 1.599 35 3.0 1065 

4MN 150 4.3 21.95 22020 280 209720 450 1.599 35 3.0 1087 

4MN 150 4.3 21.95 22020 280 209720 450 1.599 35 3.0 1096 

3MN 150 3.2 21.95 22020 287 190120 450 1.191 47 3.0 841 

3MN 150 3.2 21.95 22020 287 190120 450 1.191 47 3.0 840 

3MN 150 3.2 21.95 22020 287 190120 450 1.191 47 3.0 858 

2MN 150 2 21.95 22020 336 211680 450 0.85 75 3.0 773 

2MN 150 2 21.95 22020 336 211680 450 0.85 75 3.0 756 

4LN 150 4.3 18.03 19957 280 209720 450 1.946 35 3.0 963 

3LN 150 3.2 18.03 19957 287 190120 450 1.45 47 3.0 790 

3LN 150 3.2 18.03 19957 287 190120 450 1.45 47 3.0 790 

3LN 150 3.2 18.03 19957 287 190120 450 1.45 47 3.0 747 

2LN 150 2 18.03 19957 336 211680 450 1.035 75 3.0 656 

2LN 150 2 18.03 19957 336 211680 450 1.035 75 3.0 638 

2LN 150 2 18.03 19957 336 211680 450 1.035 75 3.0 672 

Sakino and 

Hayashi 

(1991) 

L-20-1 178 9 22.15 22120 283 200000 360 3.036 20 2.0 2042 

L-20-2 178 9 22.15 22120 283 200000 360 3.036 20 2.0 2102 

H-20-1 178 9 45.37 31658 283 200000 360 1.482 20 2.0 2667 

H-20-2 178 9 45.37 31658 283 200000 360 1.482 20 2.0 2677 

L-32-1 179 5.5 22.15 22120 248 200000 360 1.514 33 2.0 1467 

L-32-2 179 5.5 23.91 22982 248 200000 360 1.403 33 2.0 1530 

H-32-1 179 5.5 43.61 31038 248 200000 360 0.769 33 2.0 2040 

H-32-2 179 5.5 43.61 31038 248 200000 360 0.769 33 2.0 2030 

L-58-1 174 3 23.91 22982 266 200000 360 0.809 58 2.1 1135 

L-58-2 174 3 23.91 22982 266 200000 360 0.809 58 2.1 1135 

H-58-1 174 3 45.67 31762 266 200000 360 0.423 58 2.1 1608 

H-58-2 174 3 45.67 31762 266 200000 360 0.423 58 2.1 1677 

O’Shea 

and Bridge 

(1994, 1998) 

R12CF1 190 1.15 110.3 32405 202 193200 662 0.045 165 3.5 2991 

R12CF3 190 1.15 110.3 32405 202 193200 662 0.045 165 3.5 3137 

S10CS50A 190 0.86 41 17810 211 177000 659 0.094 221 3.5 1350 

S12CS50A 190 1.13 41 17810 186 178400 664.5 0.11 168 3.5 1377 

S16CS50B 190 1.52 48.3 21210 306 207400 664.5 0.208 125 3.5 1695 

S20CS50A 190 1.94 41 17810 256 204700 663.5 0.263 98 3.5 1678 

S30CS50B 165 2.82 48.3 21210 363 200600 580.5 0.541 59 3.5 1662 

S10CS80B 190 0.86 74.7 27576 211 177000 663.5 0.052 221 3.5 2451 

S12CS80A 190 1.13 80.2 28445 186 178400 662.5 0.056 168 3.5 2295 

S16CS80A 190 1.52 80.2 28445 306 207400 663.5 0.125 125 3.5 2602 
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Table 1 Continued 

Data 

Source 

Test 

specimens 

𝐷 

(𝑚𝑚) 

𝑡 

(𝑚𝑚) 

𝑓𝑐 

(𝑀𝑃𝑎) 

𝐸𝑐 

(𝑀𝑃𝑎) 

𝑓𝑦 

(𝑀𝑃𝑎) 

𝐸𝑠 

(𝑀𝑃𝑎) 

𝐿 

(𝑚𝑚) 
𝜉 𝐷 𝑡⁄  𝐿 𝐷⁄  

𝑃𝑢 

(𝑘𝑁) 

 
S20CS80B 190 1.94 74.7 27576 256 204700 663.5 0.144 98 3.5 2592 

S30CS80A 165 2.82 80.2 28445 363 200600 580.5 0.326 59 3.5 2295 

Scneider 

(1998) 

C1 140.8 3 28.18 25599 285 189475 602 0.92 47 4.3 790 

C2 141.4 6.5 23.81 23528 313 206011 602 2.797 22 4.3 1332 

Tan et al. 

(1999) 

A1-1 125 1 106 48389 232 200000 438 0.072 125 3.5 1275 

A1-2 125 1 106 48389 232 200000 438 0.072 125 3.5 1239 

A2-1 127 2 106 48389 258 200000 445 0.161 64 3.5 1491 

A2-2 127 2 106 48389 258 200000 445 0.161 64 3.5 1339 

A3-1 133 3.5 106 48389 352 200000 465 0.379 38 3.5 1995 

A3-2 133 3.5 106 48389 352 200000 465 0.379 38 3.5 1991 

A4-1 133 4.7 106 48389 352 200000 465 0.524 28 3.5 2273 

A4-2 133 4.7 106 48389 352 200000 465 0.524 28 3.5 2158 

C-1 133 4.7 92 45081 352 200000 465 0.604 28 3.5 1854 

C-2 133 4.7 92 45081 352 200000 465 0.604 28 3.5 1933 

Yamamoto 

et al. 

(2000) 

C10A-2A-3 101.8 3.03 23.2 22638 371 200000 305 2.088 34 3.0 628 

C20A-2A 216.4 6.61 24.3 23169 452 200000 650 2.499 33 3.0 3278 

C30A-2A 318.3 10.36 24.2 23121 335 200000 950 1.995 31 3.0 6319 

C20A-4A 216.4 6.61 46.8 32153 452 200000 650 1.298 33 3.0 4214 

C10A-4A-1 101.9 3.03 51.3 33663 371 200000 305 0.943 34 3.0 877 

C30A-4A 318.5 10.36 52.2 33957 334 200000 950 0.921 31 3.0 8289 

Huang et al. 

(2002) 

CU-040 200 5 27.15 24490 266 200000 600 1.058 40 3.0 1951 

CU-070 280 4 31.15 26232 273 200000 840 0.523 70 3.0 3025 

CU-150 300 2 27.23 24526 342 200000 900 0.342 150 3.0 2608 

Han and Yao 

(2004) 

scv2-1 200 3 49.5 37420 304 206500 600 0.386 67 3.0 2383 

scv2-2 200 3 49.5 37420 304 206500 600 0.386 67 3.0 2256 

Giakomelis 

and Lam 

(2004) 

C7 114.9 4.91 28.23 24972 365 200000 300.5 2.53 23 2.6 1020 

C9 115 5.02 48.6 32765 365 200000 300.5 1.506 23 2.6 1378 

C11 114.3 3.75 48.6 32765 343 200000 300 1.026 30 2.6 1033 

C12 114.3 3.85 25.71 23831 343 200000 300 1.997 30 2.6 761 

C4 114.6 3.99 83.6 42974 343 200000 300 0.637 29 2.6 1308 

C8 115 4.92 94.9 45786 365 200000 300 0.753 23 2.6 1787 

C14 114.5 3.84 88.9 44315 343 200000 300 0.575 30 2.6 1359 

Sakino et al. 

(2004) 

CC4-A-4-1 149 2.96 40.5 29911 308 200000 447 0.642 50 3.0 1064 

CC8-A-8 108 6.47 77 41242 853 200000 324 3.221 17 3.0 2667 

CC8-C-8 222 6.47 77 41242 843 200000 666 1.397 34 3.0 7304 

CC8-D-8 337 6.47 85.1 43357 823 200000 1011 0.788 52 3.0 13776 

CC4-D-4-1 450 2.96 41.1 30131 279 200000 1350 0.182 152 3.0 6870 

CC4-D-4-2 450 3 41 30131 279 200000 1350 0.182 152 3.0 6985 

Han et al. 

(2005) 

CA1-1 60 1.87 75.2 41540 282 201500 180 0.515 32 3.0 312 

CA1-2 60 1.87 75.2 41540 282 201500 180 0.515 32 3.0 320 

CA2-1 100 1.87 75.2 41540 282 201500 300 0.297 53 3.0 822 

CA2-2 100 1.87 75.2 41540 282 201500 300 0.297 53 3.0 845 

CA3-1 150 1.87 75.2 41540 282 201500 450 0.194 80 3.0 1701 

CA3-2 150 1.87 75.2 41540 282 201500 450 0.194 80 3.0 1670 

CA4-1 200 1.87 75.2 41540 282 201500 600 0.144 107 3.0 2783 
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Table 1 Continued 

Data 

Source 

Test 

specimens 

𝐷 

(𝑚𝑚) 

𝑡 

(𝑚𝑚) 

𝑓𝑐 

(𝑀𝑃𝑎) 

𝐸𝑐 

(𝑀𝑃𝑎) 

𝑓𝑦 

(𝑀𝑃𝑎) 

𝐸𝑠 

(𝑀𝑃𝑎) 

𝐿 

(𝑚𝑚) 
𝜉 𝐷 𝑡⁄  𝐿 𝐷⁄  

𝑃𝑢 

(𝑘𝑁) 

 

CA4-2 200 1.87 75.2 41540 282 201500 600 0.144 107 3.0 2824 

CA5-1 250 1.87 75.2 41540 282 201500 750 0.115 134 3.0 3950 

CA5-2 250 1.87 75.2 41540 282 201500 750 0.115 134 3.0 4102 

CB2-1 100 2 75.2 41540 404 207000 300 0.457 50 3.0 930 

CB2-2 100 2 75.2 41540 404 207000 300 0.457 50 3.0 920 

CB3-1 150 2 75.2 41540 404 207000 450 0.298 75 3.0 1870 

CB3-2 150 2 75.2 41540 404 207000 450 0.298 75 3.0 1743 

CB4-1 200 2 75.2 41540 404 207000 600 0.222 100 3.0 3020 

CB4-2 200 2 75.2 41540 404 207000 600 0.222 100 3.0 3011 

CB5-1 250 2 75.2 41540 404 207000 750 0.176 125 3.0 4442 

CB5-2 250 2 75.2 41540 404 207000 750 0.176 125 3.0 4550 

CC2-1 150 2 80 41540 404 207000 450 0.281 75 3.0 1980 

CC2-2 150 2 80 41540 404 207000 450 0.281 75 3.0 1910 

CC3-1 250 2 80 41540 404 207000 750 0.166 125 3.0 4720 

CC3-2 250 2 80 41540 404 207000 750 0.166 125 3.0 4800 

Gupta et al. 

(2007) 

D3M4C2 89.32 2.74 33 26999 360 200000 340 1.473 33 3.8 494 

D3M4F13 89.32 2.74 31.48 26370 360 200000 340 1.544 33 3.8 495 

D3M4F22 89.32 2.74 31.48 26370 360 200000 340 1.544 33 3.8 478 

D3M4F33 89.32 2.74 28.19 24954 360 200000 340 1.724 33 3.8 529 

D4M4C1 112.6 2.89 30.84 26101 360 200000 340 1.297 39 3.0 702 

D4M4F13 112.6 2.89 31.48 26370 360 200000 340 1.271 39 3.0 757 

D4M4F21 112.6 2.89 25.28 23631 360 200000 340 1.583 39 3.0 659 

D4M4F32 112.6 2.89 26.2 24057 360 200000 340 1.527 39 3.0 638 

Yu et al. 

(2007) 

SZ3S4A1 165 2.72 48 32563 350 213000 510 0.506 61 3.1 1750 

SZ3S6A1 165 2.73 67.2 38529 350 213000 510 0.363 60 3.1 2080 

de Oliveira 

(2009) 

C-30-3D 114.3 3.35 32.7 26876 287 206000 342.9 1.128 34 3.0 669 

C-60-3D 114.3 3.35 58.7 36009 287 206000 342.9 0.629 34 3.0 946 

C-80-3D 114.3 3.35 88.8 44290 287 206000 342.9 0.416 34 3.0 1133 

C-100-3D 114.3 3.35 105.5 48275 287 206000 342.9 0.350 34 3.0 1455 

Lee et al. (2011) 049C36 30 360 6 31.5 26379 498 202000 1760 1.109 60 4.9 6888 

Xiong et al. 

(2017) 

C3 114.3 3.6 173.5 63000 403 213000 250 0.323 32 2.2 2422 

C4 114.3 3.6 173.5 63000 403 213000 250 0.323 32 2.2 2340 

C5 114.3 3.6 184.2 63000 403 213000 250 0.304 32 2.2 2497 

C6 114.3 3.6 184.2 63000 403 213000 250 0.304 32 2.2 2314 

C7 114.3 6.3 173.5 63000 428 209000 250 0.649 18 2.2 2610 

C8 114.3 6.3 173.5 63000 428 209000 250 0.649 18 2.2 2633 

C9 219.1 5 51.6 28000 377 205000 600 0.684 44 2.7 3118 

C10 219.1 5 185.1 66000 377 205000 600 0.199 44 2.7 7813 

C11 219.1 5 193.3 66000 377 205000 600 0.191 44 2.7 8527 

C12 219.1 10 51.6 28000 381 212000 600 1.489 22 2.7 4309 

C13 219.1 10 185 66000 381 212000 600 0.435 22 2.7 9085 

C14 219.1 10 193.3 66000 381 212000 600 0.416 22 2.7 9187 

C15 219.1 6.3 163 66000 300 202000 600 0.231 35 2.7 6915 

C16 219.1 6.3 175.4 59000 300 202000 600 0.215 35 2.7 7407 
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from normal concrete strength to ultra-high strength 

concrete with an unconfined concrete strength ( 𝑓𝑐 =
18~193 𝑀𝑃𝑎), outer diameter of circular sections (𝐷 =
60~450 𝑚𝑚 ), the ratio of the outer diameter to the 

thickness (𝐷 𝑡 = 17~221⁄ ) and the ratio of the length to 

outer diameter (𝐿 𝐷 = 1.8 − 4.9⁄ ), respectively. As can be 

observed in Table 1, these parameters cover sufficiently 

wide practical ranges. 
 

 

3. Multivariate adaptive regression splines (MARS) 
 

MARS is an advanced statistical technique first 

proposed by Friedman (Friedman and Silverman 1989, 

Friedman 1991). MARS concepts can be employed for 

development of models by training the data. Various 

relationships can be established among the input and output 

data. It has been found that using the MARS concepts, the 

relations can be established easily among the dependent 

variables. Basically, this technique identifies the critical 

variables that form input and output. MARS critically 

examines the relationship between input variables and the 

response of output variables. Based on the response, the 

interactions and conditional relationships can be identified 

between the predictor variables. MARS attempts to 

establish the unknown functional form by using multilinear 

piecewise regression splines. The nonlinear relationship 

between some input variables and output can be treated as 

piecewise linear so that all the dependent input and output 

variables can be treated in similar manner. MARS discards 

certain data which is over-fitting in nature and also 

inconsistencies in the data. MARS can also identify the 

interdependent variables. Separate regression lines can be 

formed through the concept of divide and conquers strategy. 

MARS is widely recognized and accepted by research 

and practitioners community due to many reasons such as 

(i) MARS establishes the nonlinear relationship among 

variables with no model assumptions (ii) it captures the 

relative importance of independent variables to the 

dependent variable if there are several independent 

variables (iii) the training data set in MARS is relatively 

faster than other statistical models and (iv) interpretations 

can be drawn easily. The following are the important steps 

to develop a MARS based model: 
 

● Dividing the training data into many splines on an 

equivalent interval basis. 

 

 

● The data can further be divided into many subgroups 

and forms several knots, which can be located 

between various input variables or various intervals 

within the same input variable, to separate the 

subgroups. 

● To represent the data, in each subgroup, the model 

approximates a regression function using smoothing 

splines, which is known as a basis function (BF). 

● Piecewise polynomials have pieces which connect 

together and the intersection points are called knots. 

● Between any two knots, the model can characterize 

the data between any two knots either globally or by 

using linear regression. 

● Between any two knots, the BF is unique and is 

shifted to another BF at each knot. 

● In order to make the model output continuous, the 

two BFs in two adjacent domains of data intersect at 

the knot. 

● Finally, MARS generates a mixed regression line to 

fit the data from various subgroups to subgroups and 

from splines to splines. 

● To avoid over fitting and over regressing, the 

shortest distance between two neighboring knots can 

be pre-determined to prevent too few data in a 

subgroup. 
 

MARS function is expressed by the equation as follows 

(Friedman 1988, 1991) 
 

𝑦 = 𝑓(𝑥) = 𝑎0 + ∑ 𝑎𝑚𝐵𝑚
(𝑞)

𝑀

𝑚=1

(𝑥) (1) 

 

where,  𝑎0 = coefficient of the constant BF, 𝑚 = number 

of non-constant BFs, {𝑎𝑚}1
𝑀 = vector of coefficients of the 

non-constant BFs (𝑚 = 1, 2, … , 𝑀), 𝐵𝑚
(𝑞)

= BFs that are 

selected for inclusion in the model of 𝑞𝑡ℎorder. 
 

𝐵𝑚
(𝑞)(𝑥) = ∏[𝑠𝑘𝑚 ∙ (𝑥𝑣(𝑘,𝑚) − 𝑡𝑘𝑚)]

+

𝑞

𝑘𝑚

𝑘−1

 (2) 

 

where 𝐵𝑚
(𝑞)(𝑥) = vector of non-constant (truncated) BFs 

(see Fig. 1), 𝑚 = number of non-constant functions 

(1,2, … , 𝑀), 𝑞 = the power to which the spline is raised to 

control the degree of smoothness of the resultant function 

estimate if, the power is += only positive results of the 

Table 1 Continued 

Data 

Source 

Test 

specimens 

𝐷 

(𝑚𝑚) 

𝑡 

(𝑚𝑚) 

𝑓𝑐 

(𝑀𝑃𝑎) 

𝐸𝑐 

(𝑀𝑃𝑎) 

𝑓𝑦 

(𝑀𝑃𝑎) 

𝐸𝑠 

(𝑀𝑃𝑎) 

𝐿 

(𝑚𝑚) 
𝜉 𝐷 𝑡⁄  𝐿 𝐷⁄  

𝑃𝑢 

(𝑘𝑁) 

 
C17 219.1 6.3 148.8 52000 300 202000 600 0.254 35 2.7 6838 

C18 219.1 6.3 174.5 52000 300 202000 600 0.216 35 2.7 7569 

Guler et al. (2013, 

2014) 

CF3-1 76.19 2.99 145 56595 278 200000 300 0.341 25 3.9 795 

CF3.3-1 76.18 3.31 145 56595 305 200000 300 0.419 23 3.9 847 

C4NG-1 114.2 4.02 115 50402 306 200000 400 0.418 28 3.5 1428 

C6NG-1 114.3 5.98 115 50402 314 200000 400 0.675 19 3.5 1833 

Han et al. (2014) c0 160 3.83 51 33900 409 200000 480 0.827 42 3.0 2023 
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Fig. 1 Typical BF 

 

 

right-hand side of the equation will be considered, 

otherwise, the functions evaluate to 0, 𝑠𝑘𝑚 = indicates the 

(left/right) sense of truncation, which has only 2 values 

(±1). For 𝑠𝑘𝑚 equal to +1, the BF has a value 𝑥 − 𝑡 if 

𝑥 > 𝑡 and 0 if 𝑥 ≤ 𝑡. If it is −1, the BF has a value 𝑡 −
𝑥 when 𝑥 < 𝑡, while 0 if 𝑥 ≥ 𝑡; 𝑥𝑣(𝑘,𝑚) = value of the 

predictor, 𝑣(𝑘, 𝑚) = label of the predictor (1 ≤ 𝑣(𝑘, 𝑚) ≤
𝑛), 𝑛 = number of predictors, 𝑡𝑘𝑚 = “knot” location on 

the corresponding predictor region, or value that defines an 

inflection point, 𝐾 =  maximum level or order of 

interaction, or the number of factors, in the 𝑚𝑡ℎ BF 

(1,2, … , 𝐾𝑚). 

BFs contain set of functions required to represent the 

data of one or more variables. MARS parameters will be 

evaluated by using the penalized least squares of the form 

as given below in Eq. (3) 
 

𝑃(𝑥) = min ∑(𝑦𝑖 − 𝑓(𝑥𝑖))
2

+ 𝜆 ∫ 𝑓𝑛(𝑥𝑖)𝑑𝑥𝑖 (3) 

 

The first term in Eq. (3), is the residual sum of squares 

and the other term, is the roughness penalty term, which is 

weighted by a smoothing constant 𝜆. The penalty term is 

more when the integrated second derivative of the 

regression function 𝑓′′(𝑥)  is large, ie 𝑓(𝑥)  is ‘rough’ 

(with rapidly changing slope). At one extreme, when the 𝜆 

is set to zero, the objective function simply interpolates the 

data. For the case of other extreme, if 𝜆 is very large, then 

the objective function will be selected so that its second 

derivative is zero everywhere, indicating a globally linear 

least squares fit to the data (Fox 2002). Knots are chosen in 

an iterative forward stepwise procedure during the 

development of MARS model. One of the most useful 

applications of variable nesting in MARS is in focussing 

𝑖𝑡ℎ  missing values among the independent variables. 

MARS generates two BFs for any variable with missing 

data, one BF for the presence of missing values and another 

BF for the absence (Francis 2001). 

It is to be noted that MARS does not account 

interactions with missing value indicators to be genuine 

interactions. There is possibility that if additive model is 

generated using MARS, it may still contain interactions 

related to missing value indicators. After over-fitting the 

model with many BFs, a snubbing procedure is carried out 

where in unproductive BFs will be removed. Even, a 

predictor variable will be dropped from the model if all 

corresponding BFs are not contribute meaningfully to 

predictive performance. 

The models developed through this process are then 

evaluated using the generalized cross-validation (GCV), 

and the model with the best predictive fit is finally selected. 

The GCV can be calculated by using Eq. (4). 
 

𝐺𝐶𝑉(𝑀) =

1

𝑁
∑ [𝑦𝑖 − 𝑓

𝑀
∧

(𝑥𝑖)]

2

𝑁
𝑖=1

[1 −
𝐶(𝑀)

𝑁
]

2  
(4) 

 

In Eq. (4), the numerator denotes lack-of-fit on the 

training data and the denominator considers the penalty for 

increasing model complexity 𝐶(𝑀) , 𝑁 =  number of 

observations, 𝐶(𝑀) = cost penalty measures of a model, 

𝑀 =BFs, 𝐹𝑚(𝑥𝑖) = basis function model. Towards best fit 

of the model, MARS minimizes 𝐺𝐶𝑉(𝑀). 

Friedman and Silverman (1989) suggested that by using 

Eq. (3) as a lack-of-fit criterion, proposed Eq. (5) to account 

for additional BF parameters. Typical complexity function 

can be expressed as 
 

�̃�(𝑀) = 𝐶(𝑀) + 𝑑. 𝑀 (5) 
 

where 𝐶(𝑀) = number of parameters being fitted, 𝑀 = 

number of non-constant BFs in the model BF parameters, 

𝑑 = cost for each BF optimization and is a smoothing 

parameter of the procedure, Eq. (1) can be re-written in the 

following form 
 

𝑓(𝑥) = 𝑎0 + ∑ 𝑓𝑖(𝑥𝑖)

𝐾𝑚=1

 

              + ∑ 𝑓𝑖𝑗(𝑥𝑖 , 𝑥𝑗) + ∑ (𝑥𝑖 , 𝑥𝑗 , 𝑥𝑘) + ⋯

𝐾𝑚=3𝐾𝑚=2

 
(6) 

 

This is known as ANOVA decomposition of the MARS 

model. The first term is a single variable corresponding to 

all BFs. The second term comprising of all BFs that involve 

exactly two variables and their interactions if any. Similarly, 

the third term signifies three variables and their interactions 

if any. More information about the model and the model 

building process can be found in Friedman (1991). 
 

 

4. Mars based analysis and development of model 
 

To predict the ultimate capacity of CFSTC, a model was 

developed by utilizing the concepts of MARS in MATLAB 

environment. From Table 1, it can be noticed that input 

vector has different quantitative limits and normalization of 

the data is required before processing the data. Eq. (7) is 

used for the linear normalization of the data, with the data 

ranging from 0 to 1. 
 

𝑥𝑖
𝑛 =

𝑥𝑖
𝑎 − 𝑥𝑖

𝑚𝑖𝑛

𝑥𝑖
𝑚𝑎𝑥 − 𝑥𝑖

𝑚𝑖𝑛
 (7) 

 

where 𝑥𝑖
𝑎 and 𝑥𝑖

𝑛  are the 𝑖𝑡ℎ  components of the input 

vector before and after normalization, respectively, and 

𝑥𝑖
𝑚𝑎𝑥 and 𝑥𝑖

𝑚𝑖𝑛 are the maximum and minimum values of 
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all the components of the input vector before the 

normalization. The MARS equation for the prediction of 

ultimate load capacity of CFSTCs is given by Eq. (8). 

Initially, about 25 BFs have been employed to build the 

model and the final model was with 20BFs (see in Table 

2). The highest degree of interaction was set to 2. The Eq. 

(1) will become as below 

 

𝑦 = 𝑃𝑚𝑎𝑥 = 0.359 + ∑ 𝑎𝑚𝐵𝑚
1 (𝑥)

20

𝑚=1

 (8) 

 

In the Table 3, the ANOVA decomposition is presented 

in row wise for each ANOVA function. The columns 

contain the corresponding quantities for corresponding 

ones. The first column is the function number. The second 

is the standard deviation (STD) of the function, which is 

very important and is same as a standard regression 

coefficient in a linear model. The third column contains the 

GCV score corresponding to BFs and combination of BFs. 

This score has very significant value to judge whether 

corresponding ANOVA function contribution is meaningful 

or not. The fourth column is the number of BFs consisting 

the ANOVA and the last column of Table 3 presents the 

corresponding predictor variables associated with the 

ANOVA function. 

The value of coefficient of correlation (𝑅)  is 

determined by using Eq. (9) 

 

 

 

Table 2 Final BFs to build a model for the prediction of 

ultimate capacity of CFSTC 

BF 

𝐵𝑚
1 (𝑥) 

Equation 
Coefficient 

(𝑎𝑚) 

𝐵1(𝑥) max (0,  𝑓𝑐 − 𝐿 𝐷⁄ ) 1.212 

𝐵2(𝑥) max (0,  𝐿 𝐷⁄ − 𝑓𝑐) −0.165 

𝐵3(𝑥) max (0, 𝐿 − 𝐷 𝑡)⁄  −0.321 

𝐵4(𝑥) max (0, 𝐷 𝑡⁄ − 𝐿) −0.632 

𝐵5(𝑥) max (0,  𝑓𝑐 ∗ 𝜉) 2.654 

𝐵6(𝑥) 𝐵3(𝑥) ∗ max (0,  𝐿 𝐷⁄ − 4.9) −2.054 

𝐵7(𝑥) 𝐵3(𝑥) ∗ max(0, 221 − 𝐷 𝑡⁄ ) 3.165 

𝐵8(𝑥) 𝐵5(𝑥) ∗ max (0,  𝐿 𝐷)⁄  4.654 

𝐵9(𝑥) 𝐵3(𝑥) ∗ max (0,  𝑓𝑐 ∗ 𝜉) 1.876 

𝐵10(𝑥) 𝐵4(𝑥) ∗ max (0, 𝑓𝑦 ∗ 𝜉) 0.721 

𝐵11(𝑥) 𝐵3(𝑥) ∗ max (0, 193 − 𝑓𝑐) 0.312 

𝐵12(𝑥) 𝐵4(𝑥) ∗ max (0,  𝑓𝑦 − 853) −2.321 

𝐵13(𝑥) 𝐵3(𝑥) ∗ max (0,  𝐸𝑐 − 66000) 0.08 

𝐵14(𝑥) max (193 − 𝑓𝑐) ∗ max (0, 𝑓𝑦 − 853) 4.167 

𝐵15(𝑥) max (0,  𝑓𝑐 − 193) 0.127 

𝐵16(𝑥) 𝐵1(𝑥) ∗ max (0, 𝐸𝑠 − 213000) 3.156 

𝐵17(𝑥) 𝐵2(𝑥) ∗ max (0, 853 − 𝑓𝑦) −1.765 

𝐵18(𝑥) 𝐵3(𝑥) ∗ max (0, 213000 − 𝐸𝑠) −0.543 

𝐵19(𝑥) 𝐵2(𝑥) ∗ (0, 𝜉 ∗ 𝐸𝑠 − 213000) 2.654 

𝐵20(𝑥) 𝐵2(𝑥) ∗ max (0, 213000 − 𝜉 ∗ 𝐸𝑠) −0.245 
 

 

𝑅 =
∑ (𝐸𝑎𝑖 − 𝐸𝑎)(𝐸𝑝𝑖 − 𝐸𝑝)𝑛

𝑖=1

√∑ (𝐸𝑎𝑖 − 𝐸𝑎)𝑛
𝑖=1 √∑ (𝐸𝑝𝑖 − 𝐸𝑝)𝑛

𝑖=1

 
(9) 

 

where 𝐸𝑎𝑖 and 𝐸𝑝𝑖 are the actual and the predicted values, 

respectively, and are mean of actual and predicted 𝐸 

values corresponding to 𝑛 patterns. 

The key features of the developed model are tabulated in 

Table 4. On successful development of MARS model with 

105  dataset, the model is verified with remaining 40 

dataset. Table 5 shows the results of ultimate load capacity 

of CFSTCs predicted with MARS modeling and 

experimentally, respectively. 

Since, the output vector obtained from the MARS model 

is a normalized data; it has been reverted to its actual value 

 

 

Table 3 ANOVA decomposition –ultimate axial load 

capacity (𝑃𝑢) 

Func. STD GCV #basis Variable(s) 

1 0.127 0.102 2 𝑓𝑐 , 𝐿, 𝐷 

2 0.329 0.31 2 𝑓𝑐 , 𝐿, 𝐷 

3 0.421 0.483 2 𝐿, 𝐷, 𝑡 

4 0.273 0.201 5 𝐿, 𝐷, 𝑡 

5 0.106 0.028 2 𝑓𝑐 , 𝜉 

6 0.107 0.027 1 𝐿, 𝐷 

7 0.144 0.07 4 𝐷, 𝑡 

8 0.231 0.12 1 𝐿, 𝐷 

9 0.124 0.032 2 𝑓𝑐 

10 0.201 0.02 3 𝑓𝑦 

11 0.214 0.134 1 𝑓𝑐 , 𝜉 

12 0.112 0.034 2 𝑓𝑦 

13 0.321 0.102 1 𝐸𝑐 

14 0.102 0.06 2 𝑓𝑐 , 𝑓𝑦 

15 0.284 0.102 2 𝑓𝑐 

16 0.301 0.07 1 𝐸𝑠 

17 0.261 0.112 3 𝑓𝑦 

18 0.318 0.142 2 𝐸𝑠 

19 0.156 0.08 2 𝜉, 𝐸𝑠 

20 0.286 0.01 1 𝜉, 𝐸𝑠 
 

 

 

Table 4 The key features of the developed model 

User defined max. no. of BFs 25 

Interactions ratio allowed 2 

Final number of BFs 20 

Mean square error 
Training 6.34𝐸 − 05 

Testing 8.65𝐸 − 04 

Root mean square error 0.0332 

Generalized cross validation 3.21𝐸 − 04 

Coefficient of correlation (𝑅) 
Training 0.993 

Testing 0.995 
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by using Eq. (10). 
 

𝑥𝑖
𝑎 = 𝑥𝑖

𝑛(𝑥𝑖
𝑚𝑎𝑥 − 𝑥𝑖

𝑚𝑖𝑛) + 𝑥𝑖
𝑚𝑖𝑛 (10) 

 

where 𝑥𝑖
𝑛 is the normalized result obtained after the test 

corresponding to ith component. 𝑥𝑖
𝑎  is the actual result 

obtained corresponding to ith component, and 𝑥𝑖
𝑚𝑎𝑥 and 

𝑥𝑖
𝑚𝑖𝑛  are the maximum and minimum values of input 

vector before the normalization. 

 

 

5. Results of MARS model 
 

From Table 5, it can be observed that the predicted 

ultimate axial load capacity values of 𝑃𝑢  in MARS 

modeling are in very good agreement with the 

corresponding experimental data values. Fig. 2 shows the 

comparison ultimate axial load capacity values between 

experimental (𝑃𝑢
𝐸) and predicted with MARS modeling 

(𝑃𝑢
𝑀𝐴𝑅𝑆), respectively. 

Table 5 Comparison of ultimate load capacity values between experimental and predicted with MARS modeling 

𝑓𝑐  (𝑀𝑃𝑎) 𝑓𝑦 (𝑀𝑃𝑎) 𝐷/𝑡 𝐿/𝐷 𝜉 𝑃𝑢
𝐸(𝑘𝑁) 𝑃𝑢

𝑀𝐴𝑅𝑆(𝑘𝑁) 𝑃𝑢
𝑀𝐴𝑅𝑆/𝑃𝑢

𝐸 

34.40 452 30 2.0 1.962 1201 1125 0,94 

31.16 605 33 2.0 2.575 1068 930 0,87 

36.54 317 65 1.8 0.563 1307 1265 0,97 

28.71 287 47 3.0 0.911 998 980 0,98 

28.71 336 75 3.0 0.65 882 802 0,91 

21.95 336 75 3.0 0.85 773 790 1,02 

18.03 336 75 3.0 1.035 656 660 1,01 

22.15 283 20 2.0 3.036 2042 1978 0,97 

45.37 283 20 2.0 1.482 2667 2489 0,93 

22.15 248 33 2.0 1.514 1467 1402 0,96 

43.16 248 33 2.0 0.769 2040 1965 0,96 

23.91 266 58 2.1 0.809 1135 1098 0,97 

45.67 266 58 2.1 0.423 1677 1689 1,01 

110.3 202 165 3.5 0.045 3137 2876 0,92 

80.2 306 125 3.5 0.125 2602 2453 0,94 

28.18 285 47 4.3 0.92 790 710 0,90 

106 258 64 3.5 0.161 1339 1280 0,96 

106 352 28 3.5 0.524 2158 2087 0,97 

96 358 24 3.5 0.709 1518 1432 0,94 

23.2 371 34 3.0 2.088 628 643 1,02 

46.8 452 33 3.0 1.298 4214 3798 0,90 

52.2 334 31 3.0 0.921 8289 7654 0,92 

31.15 273 70 3.0 0.523 3025 2865 0,95 

49.5 304 67 3.0 0.386 2256 2076 0,92 

83.6 343 29 2.6 0.637 1308 1207 0,92 

88.9 343 30 2.6 0.575 1359 1287 0,95 

77 853 17 3.0 3.221 2667 2543 0,95 

77 843 34 3.0 1.397 7304 7021 0,96 

85.1 823 52 3.0 0.788 13776 12765 0,93 

41 279 152 3.0 0.1582 6985 6340 0,91 

75.2 282 32 3.0 0.515 320 352 1,10 

75.2 282 53 3.0 0.297 845 893 1,06 

75.2 282 107 3.0 0.144 2783 2521 0,91 

75.5 282 134 3.0 0.115 3950 3652 0,92 

75.2 404 50 3.0 0.457 920 821 0,89 

75.2 404 125 3.0 0.176 4442 4129 0,93 

31.48 360 33 3.8 1.544 478 432 0,90 

26.2 360 39 3.0 1.527 638 610 0,96 

185.1 377 44 2.7 0.199 7813 7231 0,93 

148.8 300 35 2.7 0.254 6838 6234 0,91 
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Close agreement between Mars modeling results and the 

corresponding experimental findings are observed for the 

developed model. The difference between the predicted and 

the corresponding experimental values is found to be less 

than 10%, hence the developed MARS model is robust and 

reliable. 

 

 

6. Conclusions 
 

In the present study, by employing MARS modeling 

concepts, an advanced statistical model has been developed 

to predict the ultimate load capacity of CFSTC member 

under axial loading. The existing experimental data on 

CFSTCs considering variation in geometrical and 

mechanical properties has been collected and consolidated 

for the development of model. Based on the experimental 

findings, MARS model established a relationship between a 

set of predicators and dependent variables. MARS is based 

on a divide and conquers strategy partitioning the training 

data sets into separate regions; each gets its own regression 

line. Key input variables have been identified for the 

prediction of ultimate load capacity of CFSTCs. MARS 

model has been developed by using MATLAB software for 

training and prediction of the failure load. Model has been 

developed by training about 70% of the mixed data (about 

105 data sets) and the remaining data sets (about 45) have 

been used for validation of the developed model. It is 

observed that the predicted value of ultimate load capacity 

is in close agreement with those of the experimental values. 

The predicted ultimate load capacity is comparable with 

that of experimental value and the percentage difference 

between the predicted value and the corresponding 

experimental value is found to be less than 10%. The ratio 

of predicted and the corresponding experimental ultimate 

load 𝑃𝑢
𝑀𝐴𝑅𝑆/𝑃𝑢

𝐸 was found to vary in between 0.87 and 

1.10 . The model could serve as an alternative to 

experimental studies and hence the predicted ultimate load 

can be used for the design of CFSTC members. 
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