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1. Introduction 

 

Due to high stiffness and relatively light weight, micro 

sandwich structures such as beams, plates, and shells are 

extensively employed across wide range of engineering 

applications including aerospace, automotive, construction 

and biomedical industries (Vinson 2005, Ghorbanpour 

Arani et al. 2011, Zhang et al. 2015, 2019, 

Mohammadimehr et al. 2016a, b, c, Mohammadimehr and 

Alimirzaei 2017, Mohammadimehr and Mehrabi 2017, 

Birman and Kardomateas 2018, Sofiyev 2018, Kim et al. 

2019, Bahaadini and Saidi 2019, Arshid et al. 2019, 

Ghorbanpour Arani and Soleymani 2019). Thus, employing 

stiff facesheets such as carbon nanotubes (CNT) reinforced 

composite and low specific weight core is suggested. Some 

researchers investigated the bending, buckling and vibration 

analysis of sandwich micro beams, plates and shells that 

illustrated as follows: 

Ghorbanpour Arani et al. (2012) presented the obtained 

stress analysis of a long piezoelectric polymeric hollow 
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cylinder reinforced with carbon nanotube (CNT) under 

magneto-thermo-electro-mechanical loadings. They used 

the rule of mixture and modified multiscale bridging model 

to predict effective properties of nanocomposite and 

concluded that increasing CNT volume fraction enhances 

strength of the nanocomposite cylinder. In the other work, 

Mohammadimehr et al. (2015) investigated free vibration of 

viscoelastic double-bonded polymeric nanocomposite plates 

reinforced by FG-SWCNTs using MSGT, sinusoidal shear 

deformation theory and meshless method. Sofiyev (2014) 

considered the vibration and buckling analysis of sandwich 

cylindrical shells covered by different types of coatings 

such as functionally graded (FG), metal and ceramic 

coatings subjected to a uniform hydrostatic pressure using 

first order shear deformation theory (FSDT). 

Mohammadimehr et al. (2016e) illustrated electro-elastic 

analysis of a sandwich thick plate considering FG core and 

composite piezoelectric layers on Pasternak foundation 

using TSDT. Sofiyev et al. (2016) investigated the effects of 

shear stresses and rotary inertia on the stability and 

vibration of sandwich cylindrical shells with FGM core 

surrounded by elastic medium (resting on Pasternak 

foundation) based on FSDT . Mohammadimehr and 

Shahedi (2017) demonstrated high-order buckling and free 
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dependent effects from modified strain gradient theory. The governing equations are derived using the minimum total potential 
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nanotube is lower than that of for carbon nanotube. It is illustrated that the dimensionless critical buckling load for Devineycell 
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carbon nanotubes (case b) is higher than other states (cases a and c).The results of this research can be used in aircraft, automotive, 
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vibration analysis of two types sandwich beam including 

AL or PVC-foam flexible core and CNTs reinforced 

nanocomposite face sheets using GDQM. Yang and He 

(2017) considered the buckling analysis of an orthotropic 

functionally graded (FG) micro-plate on the basis of a re-

modified couple stress theory. They investigated 

simultaneously the macro- and microscopic anisotropy by 

introducing two material length scale parameters. Sofiyev et 

al. (2017) studied the dynamic instability of FG orthotropic 

conical shells using various shear deformation shell theories 

(SDT) such as FSDT and higher order shear deformation 

theory (HSDT) that the conical shell is made from 

functionally graded (FG) orthotropic material. They 

employed in their formulation of problem a dynamic 

version of Donnell’s shell theory and then converted the 

equations to a Mathieu-Hill type differential equation by 

employing Galerkin’s method. Also, they found the 

boundaries of main instability zones by applying the 

method proposed by Bolotin. Hajmohammad et al. (2018) 

presented bending and buckling analyses of functionally 

graded material (FGM) annular sandwich microplate 

integrated with piezoelectric layers subjected to radial 

compressive and uniform transverse load. They considered 

layerwise theory in their equations. Mohammadimehr and 

Mehrabi (2018) illustrated vibration and stability analyses 

of double-bonded micro composite sandwich piezoelectric 

tubes conveying fluid flow under electro-thermo-

mechanical loadings. They obtained the governing 

equations of motion based on Hamilton’s principle and 

solved by differential quadrature method (DQM). Ansari et 

al. (2018) presented a comprehensive numerical study on 

the large-amplitude free vibration of sandwich annular 

plates integrated with functionally graded carbon nanotube-

reinforced composite (FG-CNTRC) face sheets resting on 

elastic foundation. They considered the sandwich plate 

made of a homogeneous core and two FG-CNTRC face 

sheets whose material properties are estimated through a 

micromechanical model. Since the fundamental vibrational 

mode shapes of annular plates are axisymmetric, they 

derived the governing equations assuming the axisymmetric 

formulation. Sobhy and Zenkour (2018) investigated the 

effect of the magnetic field on the thermo-mechanical 

buckling and vibration of viscoelastic sandwich nanobeams 

in humid environment. They took into account the 

nanoscale beam composed of a homogeneous core 

integrated with two FG carbon nanotube (CNT) reinforced 

face sheets. Moradi-Dastjerdi and Aghadavoudi (2018) 

obtained the stress distribution and deflection in sandwich 

plates with FG nanocomposite face sheets by a first order 

shear deformation theory (FSDT) based mesh-free method. 

Li et al. (2018) presented the nonlinear vibration and the 

dynamic buckling of a graphene platelet reinforced 

sandwich functionally graded porous (GPL-SFGP) plate 

that considered the GPL-SFGP plate consists of two metal 

face layers and a functionally graded porous core with 

graphene platelet reinforcement and the open-cell metal 

foam model to model the mechanical properties of the 

porous core. Liu et al. (2019) aroused usually porosity of 

functionally graded materials (FGMs) by fabrication 

defects. They proved that the porosity has a significant 

influence on the static responses of their structures, but the 

effects of porosity on buckling behaviors are still worth 

investigating. To reveal these effects, they investigated the 

thermal-mechanical coupling buckling issue of a clamped-

clamped porous FGM sandwich beam by employing the 

high-order sinusoidal shear deformation theory and used the 

modified Voigt mixture rule to approximate the 

temperature-dependent material properties of porous FGMs. 

Moreover, they considered the physical neutral plane of 

FGM sandwich beams to reflect the actual condition of the 

structures and simplify the calculation. Aria and Friswell 

(2019) investigated hygro-thermal behaviour of functionally 

graded (FG) sandwich microbeams based on nonlocal 

elasticity theory. They considered temperature-dependent 

material properties for the FG microbeam, which are 

assumed to change continuously through the thickness 

based on the power-law form. Emdadi et al. (2019) studied 

the free vibration analysis of annular sandwich plates with 

various functionally graded (FG) porous cores and carbon 

nanotubes reinforced composite (CNTRC) facesheets based 

on modified couple stress theory (MCST) and first order 

shear deformation theories (FSDT). They considered the 

annular sandwich plate composed of two face layers and a 

FG porous core layer which contains different porosity 

distributions. Saidi et al. (2019) presented the vibration and 

stability analyses of FG reinforced porous plates with 

piezoelectric layers under supersonic flow. Amir (2019) 

demonstrated othotropic patterns of visco-Pasternak 

foundation in nonlocal vibration of orthotropic graphene 

sheet under thermo-magnetic fields based on new first-order 

shear deformation theory. Sofiyev (2019) considered an 

exhaustive review of the literature on the vibration and 

buckling of functionally graded materials (FGMs), 

functionally graded conical shells (FGCSs), functionally 

graded layered conical shells (FGLCSs), and functionally 

graded sandwich-conical shells (FGSCSs). Ghannadpour et 

al. (2019) presented nonlinear and post-buckling behaviors 

of internally cracked FG plates subjected to uniaxial 

compressive loading. They modelled the crack by 

decomposing the entire domain of the plate into several 

sub-plates and therefore, a plate decomposition technique is 

applied. Some researchers worked about experimental 

results to obtain the mechanical properties of carbon 

nanotubes reinforced composite (Mohammadimehr et al. 

2018a), CFFT with and without FRP (Khan et al. 2019), the 

effect of CFRP on the beam (Xie et al. 2019), VHSC 

encased composite stub column under compression and end 

moment (Huang et al. 2019). 

In this paper, hydro-thermo-mechanical biaxial buckling 

analysis of sandwich micro-plate with an orthotropic core 

and piezoelectric nanocomposite face sheets is investigated 

based on FSDT and MSGT. Piezoelectric layers reinforced 

by carbon and boron-nitride nanotubes (CNTs and BNNTs) 

under temperature-dependent and hydro material properties 

on the elastic foundations are considered. The first order 

shear deformation theory (FSDT) is adopted to model micro 

sandwich plate and to apply size dependent effects from 

modified strain gradient theory. Using the minimum total 

potential energy principle, the governing equations are 

obtained and then solved by analytical method. 
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2. Governing equations of sandwich microplate 
 

Fig. 1 shows a schematic view of sandwich micro-plate 

with an orthotropic & isotropic cores and piezoelectric 

nanocomposite face sheets that are three-layers sandwich 

rectangular micro-sheet. As shown in the figure, the 

microstructure core in this section is considered as soft 

material (Divinycell H60) and orthotropic with a thickness 

of ℎ𝑐. 
Also, each of the lower and upper facesheets, with 

thicknesses ℎ𝑏 andℎ𝑡, are made of polymeric composite 

(PmPV) and piezoelectric materials as single-wall carbon 

nanotubes (SWCNTs) and boron nitride nanotubes 

(SWBNNT). 

In the buckling analysis and microstructure stability, the 

equivalent properties of composite materials composed of 

the piezoelectric material and carbon and boron nitride 

nanotube as reinforcement. Using representative volume 

element (RVE) of micromechanical approach as well as the 

buckling of the structure are the equivalent properties of the 

composite procedures composed of the polymer and 

reinforced by carbon nanotubes are obtained from to the 

extended rule of mixture . 

First, the equivalent properties for piezoelectric layer are 

expressed on the basis of the micromechanical approach 

(Mohammadimehr et al. 2016d) 

 

𝐶11𝑖 =
𝑞11

𝑆𝑊𝑁𝑇
𝑞11𝑚

(𝑉𝑖
𝑆𝑊𝑁𝑇

𝑞11𝑚 + (1 − 𝑉
𝑖

𝑆𝑊𝑁𝑇
)𝑞11𝑆𝑊𝑁𝑇

)
 

 

𝐶12𝑖 = 𝐶11𝑖 (
𝑉𝑖

𝑆𝑊𝑁𝑇
𝑞12𝑆𝑊𝑁𝑇

𝑞11𝑆𝑊𝑁𝑇

+
(1 − 𝑉𝑖

𝑆𝑊𝑁𝑇
)𝑞12𝑚

𝑞11𝑚
) 

 

𝐶22𝑖 = 𝑉
𝑖

𝑆𝑊𝑁𝑇
𝑞22𝑆𝑊𝑁𝑇

+ (1 − 𝑉𝑖
𝑆𝑊𝑁𝑇

)𝑞11𝑚 
 

𝐶66𝑖 =
𝑞66𝑆𝑊𝑁𝑇

𝑞66𝑚
(𝑉𝑖

𝑆𝑊𝑁𝑇
𝑞66𝑆𝑊𝑁𝑇

+ (1 − 𝑉𝑖
𝑆𝑊𝑁𝑇

)𝑞66𝑚)
 

 

𝐶44𝑖 = 𝐶66𝑖        𝐶55𝑖 = 𝐶66𝑖 

(1) 

 

𝑒24𝑖 = (1 − 𝑉
𝑖

𝑆𝑊𝑁𝑇
)𝑒24𝑚 + 𝑉

𝑖
𝑆𝑊𝑁𝑇

𝑒24𝑆𝑊𝑁𝑇
 

 

𝑒32𝑖 = (1 − 𝑉
𝑖

𝑆𝑊𝑁𝑇
)𝑒32𝑚 + 𝑉

𝑖
𝑆𝑊𝑁𝑇

𝑒32𝑆𝑊𝑁𝑇
 

 

𝑒31𝑖 = 𝐶11𝑖

(

 
 
(
(1 − 𝑉𝑖

𝑆𝑊𝑁𝑇
)𝑒31𝑆𝑊𝑁𝑇

𝑞11𝑆𝑊𝑁𝑇

)

+(
𝑉𝑖

𝑆𝑊𝑁𝑇
𝑒31𝑚

𝑞11𝑚
)

)

 
 

 

 

𝑒15𝑖 =
𝑒15_𝑚𝑒15_𝑆𝑊𝑁𝑇

((1 − 𝑉𝑖_𝑆𝑊𝑁𝑇)𝑒15_𝑚 + 𝑉
𝑖
_𝑆𝑊𝑁𝑇𝑒15_𝑆𝑊𝑁𝑇)

 

(2) 

 

𝜂11𝑖 = (1 − 𝑉
𝑖

𝑆𝑊𝑁𝑇
)𝜂∗

11𝑚
+ 𝑉𝑖

𝑆𝑊𝑁𝑇
𝜂∗
11𝑆𝑊𝑁𝑇

 
 

𝜂22𝑖 = (1 − 𝑉
𝑖

𝑆𝑊𝑁𝑇
)𝜂∗

22𝑚
+ 𝑉𝑖

𝑆𝑊𝑁𝑇
𝜂∗
22𝑆𝑊𝑁𝑇

 
 

𝜂33𝑖 = (1 − 𝑉
𝑖

𝑆𝑊𝑁𝑇
)𝜂∗

33𝑚
+ 𝑉𝑖

𝑆𝑊𝑁𝑇
𝜂∗
33𝑆𝑊𝑁𝑇

 

 
𝑖 = 𝑡, 𝑏 

(3) 

 

 

Fig. 1 An schematic view of sandwich micro plates 

reinforced by FG-NTs subjected to in-plane loading 

 

 

Eqs. (1)-(3) denote the equivalent properties for elastic 

constants, the piezoelectric and the dielectric in the 

facesheet layers, respectively, that are obtained based on 

micro-mechanical approach. 

The relationship (4) is related to the distributions of the 

nanotube in the upper facesheet layer of the microstructure 

(Alashti and Khorsand 2012) 

 

𝑉𝑡_𝑆𝑊𝑁𝑇
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𝑤𝐶𝑁𝑇

𝑤𝐶𝑁𝑇+(
𝜌𝐶𝑁𝑇
𝜌𝑚

)(1−𝑤𝐶𝑁𝑇)
. 𝑤𝐶𝑁𝑇  is the mass 

fraction of CNT in the composite plate, and 𝜌𝑚 and 𝜌𝐶𝑁𝑇 

are the densities of the matrix and CNT, respectively. 

The distributions of the nanotubes in the lower facesheet 

layer is given by the relation (5). 
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Also 𝑉𝑆𝑊𝑁𝑇 and 𝑉𝑚 are the SWNT and matrix volume  

fractions, respectively and we have 

 

𝑉𝑚 + 𝑉𝑆𝑊𝑁𝑇 = 1 (6) 

 

For microstructure buckling of polymeric layers and 

nano-carbon reinforced structures, the equivalent properties 

are calculated using the extended rule of mixture, which is 

presented in accordance with relations (7) to (10) 

(Mohammadimehr et al. 2018b, Mohammadimehr and 

Shahedi 2016). 
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𝐸11 = 𝜂1𝑉𝐶𝑁𝑇𝐸11𝐶𝑁𝑇 + 𝑉𝑚𝐸𝑚 (7) 

 
𝜂2
𝐸22

=
𝑉𝐶𝑁𝑇
𝐸22𝐶𝑁𝑇

+
𝑉𝑚
𝐸𝑚

 (8) 

 
𝜂3
𝐺12

=
𝑉𝐶𝑁𝑇
𝐺12𝐶𝑁𝑇

+
𝑉𝑚
𝐺𝑚

 (9) 

 

𝜌 = 𝑉𝐶𝑁𝑇𝜌𝐶𝑁𝑇 + 𝑉𝑚𝜌𝑚 
 
𝜐12 = 𝑉

∗
𝐶𝑁𝑇𝜐12

𝐶𝑁𝑇 + 𝑉𝑚𝜐
𝑚 

(10) 

 

where 𝐸22_𝐶𝑁𝑇 , 𝐸11_𝐶𝑁𝑇  and 𝐺12_𝐶𝑁𝑇  are the Young’s 

modulus and shear modulus of the single-walled carbon 

nanotubes, respectively. 𝐸𝑚  and 𝐺𝑚  are the corresponding 

properties of the polymer matrix and 𝜂𝑖 (𝑖 = 1, 2, 3) are 

the CNT efficiency parameters respectively. Also, VCNT  

and Vm are the CNT and matrix volume fractions and are 

related as follows 

 

𝑉𝐶𝑁𝑇 + 𝑉𝑚 = 1 (11) 

 

Fig. 2 shows various configurations of nanotubes (NTs) 

reinforced composite face sheets including (a) uniform 

distribution (UD)-carbon nanotube reinforced composite 

(CNTRC) (b) FG-X CNTRC (c) FG-OCNTRC (d) FG-V 

CNTRC. 

In this paper, the displacement fields are defined on the 

basis of the first-order shear deformation theory (FSDT) as 

follows 
 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑧𝜑𝑥(𝑥, 𝑦, 𝑡) 
 

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑧𝜑𝑦(𝑥, 𝑦, 𝑡) 

 
𝑤(𝑥, 𝑦, 𝑧, 𝑡) =  𝑤(𝑥, 𝑦, 𝑡) 

(12) 

 

where w are displacement in z direction. 𝜑𝑥 and 𝜑𝑦 are 

the rotation around x and y directions, respectively. 

Therefore, the strain-displacement (kinematic) relations 

for the sandwich microstructure are obtained in the 

following form (Ventsel and Krauthammer 2001) 
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𝜕

𝜕𝑧
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𝜕

𝜕𝑥
𝑤( 𝑥, 𝑦, 𝑧, 𝑡) 

 

𝛾𝑦𝑧 =
𝜕

𝜕𝑧
𝑣( 𝑥, 𝑦, 𝑧, 𝑡) +

𝜕

𝜕𝑦
𝑤( 𝑥, 𝑦, 𝑧, 𝑡) 

(13) 

 

Using Hook’s law, stress–strain relations for core can be 

stated as follows 

 

{

𝜎𝑥𝑥 = 𝑄11𝜀𝑥𝑥 + 𝑄12𝜀𝑦𝑦
𝜎𝑦𝑦 = 𝑄21𝜀𝑥𝑥 + 𝑄22𝜀𝑦𝑦
𝜎𝑥𝑦 = 𝑄66𝛾𝑥𝑦, 𝜎𝑥𝑧 = 𝑄55𝛾𝑥𝑧, 𝜎𝑦𝑧 = 𝑄44𝛾𝑦𝑧

 (14) 

 

where 𝜎𝑖𝑗 and 𝜀𝑖𝑗 are the stress, strain components. Also, 

Qij is the reduced elastic constant for core which can be 

expressed as follows (Mohammadimehr et al. 2018c) 

 

𝑄11 =
𝐸

1 − 𝜈2
                𝑄22 = 𝑄11 

 

𝑄12 =
𝜈 𝐸

1 − 𝜈2
               𝑄21 = 𝑄12 

 

𝑄66 =
𝐸

2(1 + 𝜈)
 

 

𝑄55 = 𝑄66                 𝑄44 = 𝑄66 

(15) 

 

In order to obtain the governing equations for micro 

sandwich plate with piezoelectric facesheet and composite- 

reinforced with carbon and boron-nitride nanotubes, the 

principle of minimum total potential energy is used. In this 

method, the total potential energy is obtained from the sum 

of the energy of the strain potential and the work done by 
 

 

  

(a) (b) 
 

  

(c) (d) 

Fig. 2 Configurations of NTs reinforced composite face sheets. (a) UD; (b) FG-X; (c) FG-O; (d) FG-V 
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the external forces in the following form 
 

∏= (𝑈 + 𝑉) 

 
𝛿∏ = 0 →  𝛿𝑈 + 𝛿𝑉 = 0 

(16) 

 

where U and V are strain energy and the work done by the 

external forces, respectively. 

Work done by the external loads can be stated as 
 

𝑉 = 𝑉𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒𝑙𝑜𝑎𝑑 + 𝑉𝑒𝑙𝑎𝑠𝑡𝑖𝑐 + 𝑉𝐵𝑢𝑐𝑘 (17) 
 

In the above relation, 𝑉𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒𝑙𝑜𝑎𝑑 , 𝑉𝑒𝑙𝑎𝑠𝑡𝑖𝑐  and 

𝑉𝐵𝑢𝑐𝑘 are the transvers load , the elastic foundation and the 

buckling load due to the presence of 𝑁𝑥 and 𝑁𝑦 that is 

defined as follows (Nasihatgozar et al. 2016) 
 

𝛿𝑉𝐵𝑢𝑐𝑘 = ∫[𝑁𝑥
0 (
𝜕2𝑤

𝜕𝑥2
) + 𝑁𝑦

0 (
𝜕2𝑤

𝜕𝑦2
)] 𝛿𝑤𝑑𝐴 (18) 

 

In the relationship (18), 𝑁𝑥
0  and 𝑁𝑦

0  are in-plane 

forces for micro sandwich plate. 

The work done due to elastic foundation is considered as 

follows 
 

𝛿𝑉𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑙𝑜𝑎𝑑&𝐸𝑙𝑎𝑠𝑡𝑖𝑐 

= −∫𝐴

{
 
 

 
 

[
 
 
 
 𝐾𝑤𝑤(𝑥, 𝑦) − 𝐾𝐺(

𝜕2𝑤(𝑥, 𝑦)

𝜕𝑥2

+
𝜕2𝑤(𝑥, 𝑦)

𝜕𝑦2
)

]
 
 
 
 

𝛿𝑤

}
 
 

 
 

𝑑𝐴 

     +∫𝐴[𝑞𝛿𝑤]𝑑𝐴 

(19) 

 

By substituting Eqs. (18) and (19) into Eq. (17), we 

have the sum of the obtained relations from the transvers 

load and elastic foundation and buckling load (relationship 

(18) and (19)) that is stated as follows 
 

𝛿𝑉 = ∫𝐴

{
 
 

 
 

[
 
 
 
 𝐾𝑤𝑤(𝑥, 𝑦) − 𝐾𝐺(

𝜕2𝑤(𝑥, 𝑦)

𝜕𝑥2

+
𝜕2𝑤(𝑥, 𝑦)

𝜕𝑦2
)

]
 
 
 
 

𝛿𝑤

}
 
 

 
 

𝑑𝐴 

           +∫𝐴[𝑞𝛿𝑤]𝑑𝐴 +∫

[
 
 
 
 𝑁𝑥

0 (
𝜕2𝑤

𝜕𝑥2
)

+𝑁𝑦
0 (
𝜕2𝑤

𝜕𝑦2
)
]
 
 
 
 

𝛿𝑤𝑑𝐴 

(20) 

 

The variation of strain energy based on modified strain 

gradient theory (MSGT) for the micro sandwich 

piezoelectric plate can be obtained as follows 

(Mohammadimehr et al. 2016d) 
 

𝛿𝑈 = ∫(𝜎𝑖𝑗𝛿𝜀𝑖𝑗 + 𝑝𝑖𝛿𝛾𝑖 + 𝜏𝑖𝑗𝑘
(1)𝛿𝜂𝑖𝑗𝑘

(1)

∀

 

               +𝑚𝑖𝑗
(𝑠)𝛿𝜒𝑖𝑗

(𝑠) − 𝐷𝑖𝛿𝐸𝑖)𝑑∀ 

(21) 

 

where 𝜂𝑖𝑗𝑘 , 𝜒𝑖𝑗  and 𝛾𝑖  are deviatoric stretch gradient 

tensor, symmetric rotation gradient tensor and dilatation 

Table 1 The values of three material length scale parameters 

for classical, modified couple stress and modified 

strain gradient theories 

Theory 𝑙0 (𝜇𝑚) 𝑙1 (𝜇𝑚) 𝑙2 (𝜇𝑚) 

CPT 0 0 0 

MCST 0 0 17.6 

MSGT 17.6 17.6 17.6 
 

 

 

gradient vector, respectively, and 𝐷𝑖  and 𝐸𝑖  denote the 

electric displacement and the electric field, respectively that 

is defined in Appendix A. 

Table 1 shows the values of three material length scale 

parameters for classical, modified couple stress and 

modified strain gradient theories, respectively. 

The electric field is considered in two ways according to 

the relations (22) and (23) for the above mentioned 

structure. 

For the upper facesheet 

 

{
 
 

 
 
𝜓𝑡(𝑥, 𝑦, 𝑧, 𝑡) = −𝜓(𝑥, 𝑦, 𝑡) 𝑐𝑜𝑠 (

𝜋 (𝑧 −
1

2
ℎ𝑐 −

1

2
ℎ)

ℎ
)

𝐸𝑖 = −
𝜕𝜑̃𝐸(𝑥, 𝑦, 𝑧)

𝜕𝑥𝑖

 (22) 

 

For the bottom facesheet 

 

{
 
 

 
 
𝜓𝑏(𝑥, 𝑦, 𝑧, 𝑡) = −𝜓(𝑥, 𝑦, 𝑡) 𝑐𝑜𝑠 (

𝜋 (𝑧 +
1

2
ℎ𝑐 +

1

2
ℎ)

ℎ
)

𝐸𝑖 = −
𝜕𝜑̃𝐸(𝑥, 𝑦, 𝑧)

𝜕𝑥𝑖

 (23) 

 

The proposed structural relations are defined as relations 

(23)-(25) for composite, piezoelectric facesheet and core, 

respectively. 

There are two different structures such as a 

microstructure with polymer composite layers reinforced by 

nanotubes and a piezoelectric microstructure reinforced 

with carbon and boron nitride nanotubes. 

 

{
 
 

 
 
𝜎𝑖𝑥
𝜎𝑖𝑦

𝜏𝑖𝑧𝑦

𝜏𝑖𝑥𝑧
𝜏𝑖𝑥𝑦}

 
 

 
 

=

[
 
 
 
 
 
𝐶𝑖11
𝐶𝑖12

𝐶𝑖12
𝐶𝑖22

0
0

0 0
0 0

0 0 𝐶𝑖44 0 0

0 0 0 𝐶𝑖55 0

0 0 0 0 𝐶𝑖66]
 
 
 
 
 

{
 
 

 
 
𝜀𝑥 − 𝛼𝑥𝛥𝑇 − 𝛽𝑥𝛥𝐻
𝜀𝑦 − 𝛼𝑦𝛥𝑇 − 𝛽𝑦𝛥𝐻

𝛾𝑧𝑦
𝛾𝑥𝑧
𝛾𝑥𝑦 }

 
 

 
 

     𝑖 = 𝑡, 𝑏 (24) 

 

{
 
 
 
 
 

 
 
 
 
 
𝜎𝑖𝑥𝑥 = 𝐶11(𝑧)𝜀

𝑖
𝑥𝑥 + 𝐶12(𝑧)𝜀

𝑖
𝑦𝑦 + 𝑒31(𝑧)𝐸𝑧

𝑖

𝜎𝑖𝑥𝑥 = 𝐶12(𝑧)𝜀
𝑖
𝑥𝑥 + 𝐶22(𝑧)𝜀

𝑖
𝑦𝑦 + 𝑒32(𝑧)𝐸𝑧

𝑖

𝜎𝑖𝑥𝑦 = 𝐶66(𝑧)𝛾
𝑖
𝑥𝑦

𝜎𝑖𝑦𝑧 = 𝐶44(𝑧)𝛾
𝑖
𝑦𝑧 + 𝑒24(𝑧)𝐸𝑥

𝑖

𝜎𝑖𝑥𝑧 = 𝐶55(𝑧)𝛾
𝑖
𝑥𝑧 + 𝑒15(𝑧)𝐸𝑥

𝑖

𝐷𝑥
𝑖 = 𝑒15(𝑧)𝛾

𝑖
𝑥𝑧 + 𝜂11(𝑧)𝐸𝑥

𝑖

𝐷𝑦
𝑖 = 𝑒24(𝑧)𝛾

𝑖
𝑦𝑧 + 𝜂22(𝑧)𝐸𝑦

𝑖

𝐷𝑧
𝑖 = 𝑒31(𝑧)𝜀

𝑖
𝑥𝑥 + 𝑒32(𝑧)𝜀

𝑖
𝑦𝑦 + 𝜂33(𝑧)𝐸𝑧

𝑖

      𝑖 = 𝑡, 𝑏 (25) 
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{
 
 
 
 

 
 
 
 
𝐸11𝜐21 = 𝐸22𝜐12

𝐶11 =
𝐸11

1 − 𝜐12𝜐21

𝐶12 =
𝜐21𝐸11

1 − 𝜐12𝜐21

𝐶22 =
𝐸22

1 − 𝜐12𝜐21
𝐶44 = 𝐺23, 𝐶55 = 𝐺13, 𝐶66 = 𝐺12

 (26) 

 

Using the minimum total potential energy, the governing 

equations for micro sandwich plate with an orthotropic core 

and piezoelectric/polymeric nanocomposite face sheets 

based on FSDT and MSGT are obtained. 

 
𝛿𝜑𝑥: 

          −
𝜕

𝜕𝑥
𝑀𝑥𝑥 −

𝜕

𝜕 𝑦
𝑀𝑥𝑦 +𝑁0𝑥𝑧 +

𝜕2

𝜕 𝑥2
𝑃1𝑥 

          +
𝜕2

𝜕𝑥 𝜕𝑦
 𝑃1𝑦 −

𝜕

𝜕𝑥
𝑃0𝑧 +

2

5

𝜕2

𝜕𝑥2
𝑇1𝑥𝑥𝑥  

          −
1

5

𝜕2

𝜕 𝑦2
𝑇1𝑥𝑥𝑥 + 3(

8

15

𝜕2

𝜕𝑥 𝜕𝑦
𝑇1𝑥𝑥𝑦) 

          +3 (−
8

15

𝜕

𝜕 𝑥
 𝑇0𝑥𝑥𝑧) + 6 (−

1

3

𝜕

𝜕 𝑦
 𝑇0𝑥𝑦𝑧) 

          +3 (
4

15

𝜕2

𝜕 𝑦2
 𝑇1𝑥𝑦𝑦 −

1

5

𝜕2

𝜕𝑥2
𝑇1𝑥𝑦𝑦) 

          +3 (−
1

5

𝜕2

𝜕𝑥2
𝑇1𝑥𝑧𝑧 −

1

15

𝜕2

𝜕 𝑦2
 𝑇1𝑥𝑧𝑧) 

          −
2

5

𝜕2

𝜕𝑥 𝜕𝑦
𝑇1𝑦𝑦𝑦 + 3(

2

15

𝜕

𝜕𝑥
𝑇0𝑦𝑦𝑧) 

          +3 (−
2

15

𝜕2

𝜕𝑥 𝜕𝑦
𝑇1𝑦𝑧𝑧) +

2

5

𝜕

𝜕𝑥
𝑇0𝑧𝑧𝑧  

          −
1

2

𝜕

𝜕𝑦
𝑅0𝑦 +

1

2

𝜕

𝜕 𝑦
 𝑅0𝑧 −

1

4

𝜕

𝜕 𝑥
 𝑅0𝑥𝑦 

          −
1

4

𝜕2

𝜕 𝑥𝜕 𝑦
 𝑅1𝑥𝑧 −

1

4

𝜕2

𝜕 𝑦2
 𝑅1𝑦𝑧 = 0 

(27) 

 

𝛿𝑤: 

          −
𝜕

𝜕𝑥
𝑁0𝑥𝑧 −

𝜕

𝜕𝑦
 𝑁0𝑧𝑦  

          +3(
4

15

𝜕2

𝜕𝑥2
𝑇0𝑥𝑥𝑧 −

1

15

𝜕2

𝜕𝑦2
𝑇0𝑥𝑥𝑧) 

          +
6

3

𝜕2

𝜕𝑥𝜕𝑦
𝑇0𝑥𝑦𝑧 

          +3(
4

15

𝜕2

𝜕𝑦2
𝑇0𝑦𝑦𝑧 −

1

15

𝜕2

𝜕𝑥2
 𝑇0𝑦𝑦𝑧) 

          −
1

5

𝜕2

𝜕𝑥2
 𝑇0𝑧𝑧𝑧 −

1

5

𝜕2

𝜕𝑦2
 𝑇0𝑧𝑧𝑧 +

1

2

𝜕2

𝜕𝑥𝜕𝑦
 𝑅0𝑥 

          −
1

2

𝜕2

𝜕𝑥𝜕𝑦
𝑅0𝑦 +

1

4

𝜕2

𝜕𝑦2
𝑅0𝑥𝑦 −

1

4

𝜕2

𝜕𝑥2
 𝑅0𝑥𝑦 

          +𝐾𝑤 ⋅ 𝑤(𝑥, 𝑦, 𝑡)−𝐾𝑔 ⋅
𝜕2

𝜕 𝑥2
𝑤(𝑥, 𝑦, 𝑡 ) 

          −𝐾𝑔 ⋅
𝜕2

𝜕 𝑦2
 𝑤(𝑥, 𝑦, 𝑡)− 𝑞(𝑥, 𝑦) 

          +𝑁𝑥 (
𝜕2

𝜕 𝑥2
𝑤(𝑥, 𝑦, 𝑡 )+ 𝑡

𝜕2

𝜕 𝑦2
𝑤(𝑥, 𝑦, 𝑡 )) = 0 

(28) 

 

𝛿𝜑𝑦: 

          −
𝜕

𝜕𝑦
𝑀𝑦𝑦 −

𝜕

𝜕 𝑥
𝑀𝑥𝑦 +𝑁0𝑧𝑦 +

𝜕2

𝜕𝑥 𝜕𝑦
 𝑃1𝑥 

          +
𝜕2

𝜕𝑦2
 𝑃1𝑦 −

𝜕

𝜕𝑦
𝑃0𝑧 −

2

5

𝜕2

𝜕𝑥 𝜕𝑦
𝑇1𝑥𝑥𝑥 

          +3(
4

15

𝜕2

𝜕𝑥2
𝑇1𝑥𝑥𝑦 −

1

5

𝜕2

𝜕𝑦2
𝑇1𝑥𝑥𝑦) 

          +3(
2

15

𝜕

𝜕𝑦
 𝑇0𝑥𝑥𝑧)− 6(

1

3

𝜕

𝜕𝑥
 𝑇0𝑥𝑦𝑧) 

          +3(
8

15

𝜕2

𝜕𝑥 𝜕𝑦
𝑇1𝑥𝑦𝑦)− 3(

2

15

𝜕2

𝜕𝑥𝜕𝑦
 𝑇1𝑥𝑧𝑧) 

          +
2

5

𝜕2

𝜕𝑦2
𝑇1𝑦𝑦𝑦 −

1

5

𝜕2

𝜕𝑥2
 𝑇1𝑦𝑦𝑦 − 3(

8

15

𝜕

𝜕𝑦
 𝑇0𝑦𝑦𝑧) 

          −3(
1

5

𝜕2

𝜕𝑦2
𝑇1𝑦𝑧𝑧 +

1

15

𝜕2

𝜕𝑥2
 𝑇1𝑦𝑧𝑧)+

2

5

𝜕

𝜕𝑦
𝑇0𝑧𝑧𝑧 

          +
1

2

𝜕

𝜕𝑥
𝑅0𝑥 −

1

2

𝜕

𝜕𝑥
 𝑅0𝑧 +

1

4

𝜕

𝜕𝑦
 𝑅0𝑥𝑦 

          +
1

4

𝜕2

𝜕𝑥2
 𝑅1𝑥𝑧 +

1

4

𝜕2

𝜕𝑥 𝜕𝑦
𝑅1𝑦𝑧 = 0 

(29) 

 

𝛿𝜓: 

          
𝜕

𝜕 𝑥
 𝐷1𝑥 +

𝜕

𝜕 𝑦
 𝐷1𝑦 +𝐷1𝑧 = 0 

(30) 

 

where 𝑁0𝑥𝑧, 𝑁0𝑧𝑦, 𝑀𝑥𝑥, 𝑀𝑦𝑦, 𝑀𝑥𝑦 are defined the force 

and torque results, as well as the constants defined for 

simplifying the equations in Appendix (B). 

 

 

3. Solution of basic equations 
 

Navier’s type solution for the micro sandwich 

piezoelectric polymeric nanocomposite rectangular plates 

with all edges simply supported boundary conditions are 

considered as follows 

 

𝑤(𝑥, 𝑦) = ∑∑

∞

𝑚=1

∞

𝑛=1

𝑤𝑚𝑛 𝑠𝑖𝑛 (
𝑚 𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛 𝜋𝑦

𝑏
) 

𝜑𝑥(𝑥, 𝑦) = ∑∑

∞

𝑚=1

∞

𝑛=1

𝐴𝑚𝑛 𝑐𝑜𝑠 (
𝑚 𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛 𝜋𝑦

𝑏
) 

𝜑𝑦(𝑥, 𝑦) = ∑∑

∞

𝑚=1

∞

𝑛=1

𝐵𝑚𝑛 𝑠𝑖𝑛 (
𝑚 𝜋𝑥

𝑎
) 𝑐𝑜𝑠 (

𝑛 𝜋𝑦

𝑏
) 

𝜓(𝑥, 𝑦) = ∑∑

∞

𝑚=1

∞

𝑛=1

𝜓𝑚𝑛 ⋅ 𝑠𝑖𝑛 (
𝑚 𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛 𝜋𝑦

𝑏
) 

(31) 

 

In (31), 𝑤𝑚𝑛 , 𝐴𝑚𝑛 , 𝐵𝑚𝑛 , 𝜓𝑚𝑛are Fourier’s constant 

coefficients. In addition, m and n are wave numbers in two 

directions of the longitudinal and transverse directions, 

respectively. By replacing the relationship variables (31) 

into the governing equations, following matrix form for 

micro sandwich plate is obtained as follows 

 

([𝐾] − 𝜆2[𝑆]){𝐶̃} = 0 (32) 
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Finally, the resulting algebraic equation system is solved 

in the form of an eigen-value problem in the form of 

relation (32). In the above relation, 𝐾 and 𝑆 are stiffness 

and buckling matrices, respectively. 

 

 

4. Numerical results and discussion 
 
In this section, we examine the effects of different 

parameters on the buckling of the micro sandwich plate in 

 

 

 

 

 

 

 

 

 

 

 

the form of tables and figures. In the analysis, all conditions 

such as geometric, mechanical, and loading on facesheets 

are assumed to be the same. 

In Table 2, the geometric and mechanical properties of 

the plate for validation are considered. 

Two types of core including isotropic and orthotropic 

are considered for the present work. The first type core is an 

orthotropic material. Five isotropic materials such as 

Devinycell H30, H45, H60, H100 and H200 are considered 

for core. 

 

 

 

 

Table 2 The geometric and mechanical properties of the plate for validation 

(Lei et al. 2013, Timohsneko and Gere 1961) 

Specifications 

𝑎(𝑚) 𝑏(𝑚) ℎ(𝑚) 𝜐 𝜙 𝐾𝑤 𝐾𝐺  𝑞 𝐸(𝐺𝑃𝑎) 

0.254 0.254 0.00508 0.3 0 0 0 0 20.68427188 
 

Table 3 Comparison the obtained results for present work and the other literatures 

Mode number Present work Lei et al. (2013) Analytical (Timohsneko and Gere 1961) 

1 39.40 39.47 39.47 

2 61.39 60.48 61.68 

3 108.64 105.39 109.65 
 

Table 4 Geometric and mechanical properties of sandwich micro-plate with isotropic and orthotropic core 

Geometry 

ℎ = 𝑙 ℎ𝑐 𝐻 𝑏 = 𝑎 ℎ𝑡,𝑏 

(Base size) (Core thickness) (Total thickness) (Length and width) (Thickness of the facesheets) 

17.6 × 10−6𝑚 5ℎ ℎ𝑐 + (2ℎ) 10𝐻 ℎ 

Mechanical properties of the core 

Isotropic (Devinycell H200) Orthotropic (Mohammadimehr et al. 2018c) 

𝐸(𝑃𝑎) 𝜐 𝜌(𝐾𝑔/𝑚3) 𝐸11(𝑃𝑎) 𝐸22(𝑃𝑎) 𝜐12 𝜐21 𝜌(𝐾𝑔/𝑚3) 𝐺12(𝑃𝑎) 𝐺13 = 𝐺23(𝑃𝑎) 

277 × 106 0.3 200 7.347 × 109 8.816 × 109 0.25 0.3 1000 3.159 × 109 4.218 × 109 
 

Table 5 Mechanical properties of a polymeric matrix (𝑃𝑀𝑀𝐴) 

(Sharif Zarei et al. 2018, Mohammadimehr and Mostafavifar 2016) 

Mechanical properties of Matrix 

𝐸𝑚(𝐺𝑃𝑎) 𝜐𝑚 𝜌𝑚 (
𝑘𝑔

𝑚3
) 𝛼𝑚 (

10−6

𝐶

∘

) 𝛽𝑚 (
10−3

𝑤𝑡

∘

∘
𝐻2𝑂) 

(3.51 − 0.0034𝑇 − 0.142𝐻)  0.34 1200  45.0 2.68 
 

Table 6 Mechanical and thermal properties of carbon nanotubes (Mohammadimehr et al. 2016c) 

𝐾 𝐸11
𝐶𝑁𝑇(𝑇𝑃𝑎) 𝐸22

𝐶𝑁𝑇(𝑇𝑃𝑎) 𝐺12
𝐶𝑁𝑇(𝑇𝑃𝑎) 𝛼11

𝐶𝑁𝑇 (×
10−6

𝐾
) 𝛼22

𝐶𝑁𝑇 (×
10−6

𝐾
) 

300 5.6664 7.0800 1.9445 3.4548 5.1682 

500 5.5308 6.9348 1.9643 4.5361 5.0189 

700 5.4744 6.8641 1.9644 4.6677 4.8943 
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According to Table 3, the obtained results for present 

work and the other literatures (Lei et al. 2013 and 

Timoshenko and Gere 1961) compare each other that there 

is a good agreement between them. 

Table 4 shows the geometric and mechanical properties 

of sandwich micro-plate with isotropic and orthotropic core. 

As mentioned earlier, the used facesheets in the present 

work are two cases: 
 

Case 1: Consider nano composite material with a 

polymeric matrix (𝑃𝑀𝑀𝐴) reinforced by carbon nanotubes 

 

 

Table 7 Performance parameters for different volume 

fractions of carbon nanotubes 

𝑉𝐶𝑁𝑇
∗  𝜂1 𝜂2 𝜂3 

0.12 0.137 1.022 0.715 

0.17 0.142 1.626 1.138 

0.28 0.141 1.585 1.109 
 

 

 

 

 

that the mechanical properties are given in Tables 5 and 6 
(𝑇 = 𝑇0 + 𝛥𝑇,   𝑇0 = 300

∘𝐾) 
 

𝐻 = 𝐻0 + 𝛥𝐻,   𝐻0 = 0  
∘

∘
𝐻2𝑂 

 

Performance parameters for various volume fractions of 

carbon nanotubes are presented in Table 7. 
 

Case 2: Consider nano composite material with a 

piezoelectric (PVDF matrix) reinforced by carbon and 

boron nitride nanotubes that the mechanical properties are 

given in Table 8. 
 

The dimensionless critical buckling load of the 

sandwich microplate versus core to the facesheets thickness 

ratio for different distributions of carbon nanotubes 

including uniform distribution (UD), functionally graded 

(FG)-X, FG-O and FG-V carbon nanotube reinforced 

composite (CNTRC) with various cores: (a) isotopic 

(Devineycell H200); (b) orthotropic is shown in Figs. 3(a) 

and (b). With increasing core to facesheet thickness ratio 

 

 

 

 

 
 

Table 8 Mechanical properties of nanotubes and piezoelectric (PVDF matrix) (Mohammadimehr et al. 2016d) 

𝑆𝑊𝐶𝑁𝑇 𝑆𝑊𝐵𝑁𝑁𝑇 𝑃𝑉𝐷𝐹(𝑚𝑎𝑡𝑟𝑖𝑥) 

𝑞11
𝑆𝑊𝐶𝑁𝑇𝑠 = 5.8249𝑇𝑃𝑎 

𝑞22
𝑆𝑊𝐶𝑁𝑇𝑠 = 7.3037𝑇𝑃𝑎 

𝑞12
𝑆𝑊𝐶𝑁𝑇𝑠  = 1.01937𝑇𝑃𝑎 

𝑞44
𝑆𝑊𝐶𝑁𝑇𝑠 = 1.9445𝑇𝑃𝑎 

𝑞55
𝑆𝑊𝐶𝑁𝑇𝑠 = 𝑞44

𝑆𝑊𝐶𝑁𝑇𝑠 = 𝑞66
𝑆𝑊𝐶𝑁𝑇𝑠 

𝑞11
𝑆𝑊𝐵𝑁𝑁𝑇𝑠 = 𝑞22

𝑆𝑊𝐵𝑁𝑁𝑇𝑠 = 2035𝐺𝑃𝑎 
𝑞12

𝑆𝑊𝐵𝑁𝑁𝑇𝑠  = 692 𝐺𝑃𝑎 
𝑞44

𝑆𝑊𝐵𝑁𝑁𝑇𝑠 = 672 𝐺𝑃𝑎 
𝑞55

𝑆𝑊𝐵𝑁𝑁𝑇𝑠 = 𝑞66
𝑆𝑊𝐵𝑁𝑁𝑇𝑠 = 𝑞44

𝑆𝑊𝐵𝑁𝑁𝑇𝑠  

𝑒31
𝑆𝑊𝐵𝑁𝑁𝑇𝑠 = 0.95

𝐶

𝑚
 

𝑒32
𝑆𝑊𝐵𝑁𝑁𝑇𝑠 = −0.45

𝐶

𝑚
 

𝑒24
𝑆𝑊𝐵𝑁𝑁𝑇𝑠 = −0.276

𝐶

𝑚
 

𝑒15
𝑆𝑊𝐵𝑁𝑁𝑇𝑠 = −0.009

𝐶

𝑚
 

𝜂11
𝑆𝑊𝐵𝑁𝑁𝑇𝑠 = 1.7708𝑒 − 10

𝐹

𝑚
 

𝜂22
𝑆𝑊𝐵𝑁𝑁𝑇𝑠 = 𝜂33

𝑆𝑊𝐵𝑁𝑁𝑇 = 𝜂11
𝑆𝑊𝐵𝑁𝑁𝑇𝑠 

𝑞11
𝑚 = 𝑞22

𝑚 = 8.5779𝐺𝑃𝑎 
𝑞12

𝑚  = 1.544𝐺𝑃𝑎 
𝑞44

𝑚 = 3.5169𝐺𝑃𝑎 
𝑞55

𝑚 = 𝑞66
𝑚 = 𝑞44

𝑚 

𝑒31
𝑚 = −0.13

𝐶

𝑚
 

𝑒32
𝑚 = −0.45

𝐶

𝑚
 

𝑒24
𝑚 = −0.276

𝐶

𝑚
 

𝑒15
𝑚 = −0.009

𝐶

𝑚
 

𝜂11
𝑚 = 1.1068𝑒 − 8

𝐹

𝑚
 

𝜂22
𝑚 = 𝜂33

𝑚 = 𝜂11
𝑚 

 

  

(a) (b) 

Fig. 3 The dimensionless critical buckling load of the sandwich microplate versus core to the facesheets thickness ratio for 

different distributions of carbon nanotubes with various cores: (a) isotopic (H200); (b) orthotropic 
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Fig. 4 The influence of biaxial and axial on the 

dimensionless critical buckling load of the sandwich 

microplate versus side ratio with isotropic core and 

piezoelectric facesheets reinforced by carbon and 

boron nitride nanotubes 

 

 

 

Fig. 5 The influence of temperature changes on the 

dimensionless critical buckling load for the sandwich 

microplate versus side ratio with isotropic core 

 

 

(hc/h) increases the critical buckling load for isotropic core 

sandwich plate and reduces for the orthotropic core. The 

critical buckling load of FG-X has the highest value and 

vice versa for FG-O. 

Fig. 4 shows the influence of biaxial and axial on the 

dimensionless critical buckling load of the sandwich 

microplate versus side ratio (a/b) with isotropic core 

(Devineycell H200) and piezoelectric facesheets reinforced 

by single-walled carbon and boron nitride nanotubes 

(SWCNTs and SWBNNTs). It is concluded from this figure 

that the biaxial critical buckling load is lower than axial 

critical buckling load for CNT and BNNT. Also, it is seen 

that the dimensionless critical buckling load for SWBNNT 

is lower than that of for SWCNT in two states including 

biaxial and axial; while for biaxial state, the obtained results 

from CNT and BNNT are near to each other with respect to 

 

Fig. 6 The influence of temperature changes on the 

dimensionless critical buckling load for the sandwich 

microplate versus side ratio with orthotropic core 

 

 

 

Fig. 7 The dimensionless critical buckling load versus 

volume fraction of CNT for the sandwich microplate 

with isotropic core in various moisture changes 

 

 
axial buckling load. 

Figs. 5 and 6 illustrated the influences of temperature 

changes on the dimensionless critical buckling load for the 

sandwich microplate versus side ratio with isotropic and 

orthotropic cores, respectively. It is shown from two figures 

that the difference between two cases such as isotropic and 

orthotropic cores in lower temperature changes is negligible 

while in higher values of temperature changes the 

difference between curves for isotropic core increases but 

for orthotropic is not noticeable. 

The dimensionless critical buckling load versus volume 

fraction of CNT for the sandwich microplate with 

orthotropic and orthotropic cores in various moisture 

changes is plotted in Figs. 7 and 8. It is shown from two 

figures that the difference between two cases such as 

isotropic and orthotropic cores in various moisture changes 

ignores while the dimensionless critical buckling load 

enhances by increasing of volume fractions of CNT for 
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Fig. 8 The dimensionless critical buckling load versus 

volume fraction of CNT for the sandwich microplate 

with orthotropic core in various moisture changes 

 

 

 

 

 

Fig. 9 The dimensionless critical buckling load versus side 

ratio of the sandwich micro-plate with isotropic core 

for various size dependent theories 

 

 

 

  

(a) (b) 
 

 

(c) 

Fig. 10 The influence of various mechanical properties for isotropic core with (a) piezoelectric facesheets reinforced with 

boron nitride nanotubes; (b) piezoelectric facesheets reinforced with carbon nanotubes; (c) polymeric matrix 

reinforced by carbon nanotubes 
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orthotropic and orthotropic cores. It is due to increasing the 

stiffness of microstructures, when the carbon nanotubes add 

to polymeric matrix. 

In Fig. 9, the effect of various size dependent theories 

such as classical plate theory (CPT), modified couple stress 

theory (MCST) and modified strain gradient theory 

(MSGT) on the dimensionless critical buckling load with 

isotropic core is investigated. It can be seen that the 

dimensionless critical buckling load for MSGT is higher 

than other theories because of this theory considers three 

material length scale parameter according to Table 1. Also, 

with increasing the value of axial wave number, the 

dimensionless critical buckling load increases. 

 

 

5. Conclusions 
 

In this article, the biaxial and axial buckling analysis of 

micro sandwich plate with an isotropic/orthotropic cores 

and piezoelectric/polymeric nanocomposite face sheets is 

investigated. In this research, two cases for core of micro 

sandwich plate is considered that involve five isotropic 

Devineycell materials (H30, H45, H60, H100 and H200) 

and an orthotropic material also two cases for facesheets of 

micro structure is illustrated that include a piezoelectric 

matrix (PVDF) reinforced by carbon and boron-nitride 

nanotubes (CNTs and BNNTs) and a polymeric matrix 

(PMMA) reinforced by carbon nanotubes (CNTs) under 

temperature-dependent and hydro material properties on the 

elastic foundations. Also, different distributions of carbon 

nanotubes including uniform distribution (UD), functionally 

graded (FG) carbon nanotube reinforced composite 

(CNTRC) such as FG-X, FG-O and FG-V are taken into 

account. The first order shear deformation theory (FSDT) is 

consider to model sandwich micro plate and to apply size 

dependent effects from modified strain gradient theory. The 

governing equations are derived using the minimum total 

potential energy principle and then solved by analytical 

method. Also, the effects of different parameters such as 

size dependent, side ratio, core to facesheet thickness ratio, 

volume fraction, different distributions of nanotubes, 

various material properties for cores and facesheets and 

temperature and humidity changes on the dimensionless 

critical buckling load are investigated. The obtained results 

showed that with increasing core to facesheet thickness 

ratio (hc/h), the critical buckling load for isotropic core 

sandwich plate increases and reduces for the orthotropic 

core. The critical buckling load of FG-X has the highest 

value and vice versa for FG-O. Also, it is concluded from 

the figure that the biaxial critical buckling load is lower 

than axial critical buckling load for CNT and BNNT. Also, 

it is seen that the dimensionless critical buckling load for 

SWBNNT is lower than that of for SWCNT. It is shown 

that the difference between two cases such as isotropic and 

orthotropic cores in lower temperature changes is negligible 

while in higher values of temperature changes, the 

difference between curves for isotropic core increases but 

for orthotropic is not noticeable. It is expressed that the 

difference between two cases such as isotropic and 

orthotropic cores in various moisture changes ignores while 

the dimensionless critical buckling load enhances by 

increasing of volume fractions of CNT for orthotropic and 

orthotropic cores. It is due to increasing the stiffness of 

microstructures, when the carbon nanotubes add to 

polymeric matrix. It can be seen that the dimensionless 

critical buckling load for MSGT is higher than other 

theories. It is demonstrated that the dimensionless critical 

buckling load for Devineycell H200 is highest and lowest 

for H30, because of the mechanical properties for H200 is 

higher than other states. Also, the obtained results for micro 

sandwich plate with piezoelectric facesheets reinforced with 

carbon nanotubes (case b) is higher than other states (cases 

a and c). The results of this research can be used in aircraft, 

automotive, shipbuilding industries and biomedicine. 
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Appendix A 
 

𝜂𝑖𝑗𝑘, 𝜒𝑖𝑗 and 𝛾𝑖 are deviatoric stretch gradient tensor, 

symmetric rotation gradient tensor and dilatation gradient 

vector, respectively, and 𝐷𝑖  and 𝐸𝑖  denote the electric 

displacement and the electric field, respectively, that they 

can be obtained as the following form 

 

𝜀𝑖𝑗 =
1

2
(
𝜕𝑢𝑖(𝑥, 𝑧, 𝑡)

𝜕𝑥𝑗
+
𝜕𝑢𝑗(𝑥, 𝑧, 𝑡)

𝜕𝑥𝑖
) (A1) 

 

𝛾𝑖 =
𝜕𝜀𝑘𝑘
𝜕𝑥𝑖

 (A2) 

 

𝜒𝑖𝑗
(𝑠)
=
1

2
(𝑒𝑖𝑝𝑞

𝜕𝜀𝑞𝑗

𝜕𝑥𝑝
+ 𝑒𝑗𝑝𝑞

𝜕𝜀𝑞𝑖
𝜕𝑥𝑝

) (A3) 

 

𝜂𝑖𝑗𝑘
(1) =

1

3
(𝜀𝑗𝑘,𝑖 + 𝜀𝑘𝑖,𝑗 + 𝜀𝑖𝑗,𝑘) 

            −
1

15
𝛿𝑖𝑗(𝜀𝑚𝑚,𝑘 + 2𝜀𝑚𝑗,𝑚) 

            −
1

15
𝛿𝑗𝑘(𝜀𝑚𝑚,𝑖 + 2𝜀𝑚𝑖,𝑚) 

            −
1

15
𝛿𝑘𝑖(𝜀𝑚𝑚,𝑗 + 2𝜀𝑚𝑗,𝑚) 

(A4) 

 

𝜎𝑖𝑗 = 𝑄𝑖𝑗𝜀𝑖𝑗 − 𝑒
𝑇𝐸𝑖 (A5) 

 

𝑃𝑖 = 2𝐺𝑙0
2𝛾𝑖 (A6) 

 

𝜏𝑖𝑗𝑘
(1)
= 2𝐺𝑙1

2𝜂𝑖𝑗𝑘
(1)

 (A7) 

 

𝑚𝑖𝑗
(𝑠)
= 2𝐺𝑙2

2𝜒𝑖𝑗 (A8) 

 

In the above relations, 𝑢𝑖 represents the displacement 

field components, 𝐺 the shear modulus, 𝛿 the Kronecker 

delta, and 𝑒𝑖𝑗𝑘 permutation symbol, which, in accordance 

with Eq. (A9), can take values of zero, 1, and -1. Also 𝑙0, 𝑙1 

and  𝑙2 known as three material length scale parameters are 

the length of a substance, whose values are according to 

Table 1 for classical, modified couple stress and modified 

strain gradient theories. 

 

{
𝑒123 = 𝑒231 = 𝑒312 = 1
𝑒321 = 𝑒132 = 𝑒213 = −1

 (A9) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix B 
 

The values for higher order stresses and electrical 

displacement are defined as relationships (B1) to (B24). 

  

𝑀𝑥𝑥 = ∫ 𝜎𝑥𝑥𝑧

𝐻

2

ℎ𝑐

2

𝑑𝑧 + ∫ 𝜎𝑥𝑥𝑧

ℎ𝑐

2

−ℎ𝑐

2

𝑑𝑧 + ∫ 𝜎𝑥𝑥 𝑧

−ℎ𝑐

2

−𝐻

2

𝑑𝑧 (B1) 

 

𝑀𝑦𝑦 = ∫ 𝜎𝑦𝑦𝑧𝑑𝑧

𝐻

2

ℎ𝑐

2

+∫ 𝜎𝑦𝑦𝑧𝑑𝑧

ℎ𝑐

2

−ℎ𝑐

2

+∫ 𝜎𝑦𝑦 𝑧𝑑𝑧

−ℎ𝑐

2

−𝐻

2

 (B2) 

 

𝑀𝑥𝑦 = ∫ 𝜏𝑥𝑦𝑧𝑑𝑧

𝐻

2

ℎ𝑐

2

+∫ 𝜏𝑥𝑦𝑧𝑑𝑧

ℎ𝑐

2

−ℎ𝑐

2

+∫ 𝜏𝑥𝑦 𝑧𝑑𝑧

−ℎ𝑐

2

−𝐻

2

 (B3) 

 

𝑃1𝑥 = ∫ 2𝐺𝑙0
2𝛾𝑥𝑧

𝐻

2

ℎ𝑐

2

𝑑𝑧 + ∫ 2𝐺𝑙0
2𝛾𝑥𝑧

ℎ𝑐

2

−ℎ𝑐

2

𝑑𝑧 

           +∫ 2𝐺𝑙0
2𝛾𝑥𝑧

−ℎ𝑐

2

−𝐻

2

𝑑𝑧 

(B4) 

 

𝑃1𝑦 = ∫ 2𝐺𝑙0
2𝛾𝑦𝑧

𝐻

2

ℎ𝑐

2

𝑑𝑧 + ∫ 2𝐺𝑙0
2𝛾𝑦

ℎ𝑐

2

−ℎ𝑐

2

𝑑𝑧 

           +∫ 2𝐺𝑙0
2𝛾𝑦𝑧

−ℎ𝑐

2

−𝐻

2

𝑑𝑧 

(B5) 

 

𝑃0𝑧 = ∫ 2𝐺𝑙0
2𝛾𝑦𝑑𝑧

𝐻

2

ℎ𝑐

2

+∫ 2𝐺𝑙0
2𝛾𝑦𝑑𝑧

ℎ𝑐

2

−ℎ𝑐

2

 

           +∫ 2𝐺𝑙0
2𝛾𝑦𝑑𝑧

−ℎ𝑐

2

−𝐻

2

 

(B6) 

 

𝑇1𝑥𝑥𝑥 = ∫ 2𝐺𝑙1
2𝜂𝑥𝑥𝑥𝑧𝑑𝑧

𝐻

2

ℎ𝑐

2

+∫ 2𝐺𝑙1
2𝜂𝑥𝑥𝑥𝑧𝑑𝑧

ℎ𝑐

2

−ℎ𝑐

2

 

               +∫ 2𝐺𝑙1
2𝜂𝑥𝑥𝑥𝑧𝑑𝑧

−ℎ𝑐

2

−𝐻

2

 

(B7) 

 

𝑇1𝑥𝑥𝑦 = ∫ 2𝐺𝑙1
2𝜂𝑥𝑥𝑦𝑧𝑑𝑧

𝐻

2

ℎ𝑐

2

+∫ 2𝐺𝑙1
2𝜂𝑥𝑥𝑦𝑧𝑑𝑧

ℎ𝑐

2

−ℎ𝑐

2

 

               +∫ 2𝐺𝑙1
2𝜂𝑥𝑥𝑦𝑧𝑑𝑧

−ℎ𝑐

2

−𝐻

2

 

(B8) 

 

𝑇0𝑥𝑥𝑧 = ∫ 2𝐺𝑙1
2𝜂𝑥𝑥𝑧𝑑𝑧

𝐻

2

ℎ𝑐

2

+∫ 2𝐺𝑙1
2𝜂𝑥𝑥𝑧𝑑𝑧

ℎ𝑐

2

−ℎ𝑐

2

𝐴 

               +∫ 2𝐺𝑙1
2𝜂𝑥𝑥𝑧𝑑𝑧

−ℎ𝑐

2

−𝐻

2

 

(B9) 
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𝑇0𝑥𝑦𝑧 = ∫ 2𝐺𝑙1
2𝜂𝑥𝑦𝑧𝑑𝑧

𝐻

2

ℎ𝑐

2

+∫ 2𝐺𝑙1
2𝜂𝑥𝑦𝑧𝑑𝑧

ℎ𝑐

2

−ℎ𝑐

2

 

               +∫ 2𝐺𝑙1
2𝜂𝑥𝑦𝑧𝑑𝑧

−ℎ𝑐

2

−𝐻

2

 

(B10) 

 

𝑇1𝑥𝑦𝑦 = ∫ 2𝐺𝑙1
2𝜂𝑥𝑦𝑦𝑧𝑑𝑧

𝐻

2

ℎ𝑐

2

+∫ 2𝐺𝑙1
2𝜂𝑥𝑦𝑦𝑧𝑑𝑧

ℎ𝑐

2

−ℎ𝑐

2

 

               +∫ 2𝐺𝑙1
2𝜂𝑥𝑦𝑦𝑧𝑑𝑧

−ℎ𝑐

2

−𝐻

2

 

(B11) 

 

𝑇1𝑥𝑧𝑧 = ∫ 2𝐺𝑙1
2𝜂𝑥𝑧𝑧𝑧𝑑𝑧

𝐻

2

ℎ𝑐

2

+∫ 2𝐺𝑙1
2𝜂𝑥𝑧𝑧𝑧𝑑𝑧

ℎ𝑐

2

−ℎ𝑐

2

 

              +∫ 2𝐺𝑙1
2𝜂𝑥𝑧𝑧𝑧𝑑𝑧

−ℎ𝑐

2

−𝐻

2

 

(B12) 

 

𝑇1𝑦𝑦𝑦 = ∫ 2𝐺𝑙1
2𝜂𝑦𝑦𝑦𝑧𝑑𝑧

𝐻

2

ℎ𝑐

2

+∫ 2𝐺𝑙1
2𝜂𝑦𝑦𝑦𝑧𝑑𝑧

ℎ𝑐

2

−ℎ𝑐

2

 

              +∫ 2𝐺𝑙1
2𝜂𝑦𝑦𝑦𝑧𝑑𝑧

−ℎ𝑐

2

−𝐻

2

 

(B13) 

 

𝑇0𝑦𝑦𝑧 = ∫ 2𝐺𝑙1
2𝜂𝑦𝑦𝑧𝑑𝑧

𝐻

2

ℎ𝑐

2

+∫ 2𝐺𝑙1
2𝜂𝑦𝑦𝑧𝑑𝑧

ℎ𝑐

2

−ℎ𝑐

2

 

              +∫ 2𝐺𝑙1
2𝜂𝑦𝑦𝑧𝑑𝑧

−ℎ𝑐

2

−𝐻

2

 

(B14) 

 

𝑇1𝑦𝑧𝑧 = ∫ 2𝐺𝑙1
2𝜂𝑦𝑧𝑧𝑧𝑑𝑧

𝐻

2

ℎ𝑐

2

+∫ 2𝐺𝑙1
2𝜂𝑦𝑧𝑧𝑧𝑑𝑧

ℎ𝑐

2

−ℎ𝑐

2

 

               +∫ 2𝐺𝑙1
2𝜂𝑦𝑧𝑧𝑧𝑑𝑧

−ℎ𝑐

2

−𝐻

2

 

(B15) 

 

𝑇0𝑧𝑧𝑧 = ∫ 2𝐺𝑙1
2𝜂𝑧𝑧𝑧𝑑𝑧

𝐻

2

ℎ𝑐

2

+∫ 2𝐺𝑙1
2𝜂𝑧𝑧𝑧𝑑𝑧

ℎ𝑐

2

−ℎ𝑐

2

 

              +∫ 2𝐺𝑙1
2𝜂𝑧𝑧𝑧𝑑𝑧

−ℎ𝑐

2

−𝐻

2

 

(B16) 

 

𝑅0𝑥 = ∫ 2𝐺𝑙2
2𝜒𝑥𝑥𝑑𝑧

𝐻

2

ℎ𝑐

2

+∫ 2𝐺𝑙2
2𝜒𝑥𝑥𝑑𝑧

ℎ𝑐

2

−ℎ𝑐

2

 

            +∫ 2𝐺𝑙2
2𝜒𝑥𝑥𝑑𝑧

−ℎ𝑐

2

−𝐻

2

 

(B17) 

 

 

 

 

 

𝑅0𝑦 = ∫ 2𝐺𝑙2
2𝜒𝑦𝑦𝑑𝑧

𝐻

2

ℎ𝑐

2

+∫ 2𝐺𝑙2
2𝜒𝑦𝑦𝑑𝑧

ℎ𝑐

2

−ℎ𝑐

2

 

            +∫ 2𝐺𝑙2
2𝜒𝑦𝑦𝑑𝑧

−ℎ𝑐

2

−𝐻

2

 

(B18) 

 

𝑅0𝑦𝑥 = ∫ 2𝐺𝑙2
2𝜒𝑥𝑦𝑑𝑧

𝐻

2

ℎ𝑐

2

+∫ 2𝐺𝑙2
2𝜒𝑥𝑦𝑑𝑧

ℎ𝑐

2

−ℎ𝑐

2

 

             +∫ 2𝐺𝑙2
2𝜒𝑥𝑦𝑑𝑧

−ℎ𝑐

2

−𝐻

2

 

(B19) 

 

𝐷1𝑥 = ∫ (−𝑒11𝑧
𝜕2

𝜕𝑥2
𝑤(𝑥, 𝑦, 𝑡)

𝐻

2

ℎ𝑐

2

 

             −𝑒12𝑧
𝜕2

𝜕𝑦2
𝑤(𝑥, 𝑦, 𝑡)) 𝑐𝑜𝑠2 (

𝜋𝑧

ℎ
)𝑑𝑧 

             +∫ (
𝜕

𝜕𝑥
𝜓(𝑥, 𝑦, 𝑡) 𝑐𝑜𝑠 (

𝜋𝑧

ℎ
) 𝜂11

−ℎ𝑐

2

−𝐻

2

 

             −𝑒11𝑧
𝜕2

𝜕𝑥2
𝑤(𝑥, 𝑦, 𝑡) 

             −𝑒12𝑧
𝜕2

𝜕𝑦2
𝑤(𝑥, 𝑦, 𝑡)) 𝑐𝑜𝑠2 (

𝜋𝑧

ℎ
)𝑑𝑧 

(B20) 

 

𝐷1𝑦 = ∫ (𝜂22
𝜕

𝜕𝑦
𝜓(𝑥, 𝑦, 𝑡)) (

𝜋𝑧

ℎ
)𝑑𝑧

𝐻

2

ℎ𝑐

2

 

            +∫ (𝜂22
𝜕

𝜕𝑦
𝜓(𝑥, 𝑦, 𝑡)) 𝑐𝑜𝑠2 (

𝜋𝑧

ℎ
)𝑑𝑧

−ℎ𝑐

2

−𝐻

2

 

(B21) 

 

𝐷1𝑧 = ∫ −ℎ2𝜂33𝜓(𝑥, 𝑦, 𝑡) 𝑠𝑖𝑛
2 (
𝜋𝑧

ℎ
)𝜋2𝑑𝑧

𝐻

2

ℎ𝑐

2

 

            +∫ −ℎ2𝜂33𝜓(𝑥, 𝑦, 𝑡) 𝑠𝑖𝑛
2 (
𝜋𝑧

ℎ
)𝜋2𝑑𝑧

−ℎ𝑐

2

−𝐻

2

 

(B22) 

 

𝑁0𝑥𝑧 = ∫ 𝜎𝑥𝑧
𝑡 𝑑𝑧

𝐻

2

ℎ𝑐
2

+∫ 𝜎𝑥𝑧
𝑐  𝑑𝑧

ℎ𝑐
2

−ℎ𝑐
2

+∫ 𝜎𝑥𝑧
𝑏  𝑑𝑧

−ℎ𝑐
2

−𝐻

2

 (B23) 

 

𝑁0𝑧𝑦 = ∫ 𝜎𝑦𝑧
𝑡 𝑑𝑧

𝐻

2

ℎ𝑐
2

+∫ 𝜎𝑦𝑧
𝑐  𝑑𝑧

ℎ𝑐
2

−ℎ𝑐
2

+∫ 𝜎𝑦𝑧
𝑏  𝑑𝑧

−ℎ𝑐
2

−𝐻

2

 (B24) 
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