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1. Introduction 

 

Fibre reinforced composite materials have a wide range 

of applications in civil, mechanical, aerospace engineering 

and the related areas. The interest is due to their high 

strength, lightness, corrosion resistance, good thermal 

properties, design flexibility, etc. The mechanical behaviour 

of such materials under loading greatly depends on ply-

stacking sequences. Due to anisotropic properties of 

composite materials, their structural analysis is more 

complicated than the metallic ones. 

Since the laminated composite beams are often 

considered as important load-carrying elements of 

structures, an accurate model to predict their dynamic 

characteristics is necessary. In some cases, angle-ply and 

unsymmetric laminates may be essential from better design 

viewpoints. For angle-ply laminates, elastic couplings 

among extension, bending and torsion deformations due to 

anisotropy will become important. Furthermore, in one-

dimensional analysis of laminated composites with no 

stresses in the width direction, neglecting the Poisson’s 

effect causes the loss of some stiffness coefficients (Shao et 

al. 2017). Hence, the elastic couplings and the Poisson’s 

effect should be considered in analysis of laminated 

composite beams with arbitrary lay-ups. 

Various analytical and numerical models, which are 

based on various beam theories to consider the effect of 

shear deformation, rotary inertia, warping, and so forth, 

have been developed for laminated composite beams. 
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A comprehensive literature review on their structural 

behaviours was summarized in Sayyad and Ghugal (2017). 

Among the solution methods, the finite element method 

(FEM) has been widely used by researchers due to its 

flexibility to define the unknown displacement variables by 

various polynomial expressions. In literature, various finite 

element models based on the first-order/Timoshenko and 

higher-order as well as layer-wise and zig-zag beam 

theories for the free vibration analysis of laminated 

composite and sandwich beams have been developed. Some 

papers related to each theory are briefly summarized in the 

following separate paragraphs. 

Based on the first-order beam theory, Kadivar and 

Mohebpour (1998) proposed a beam element having 16, 20 

and 24 degrees of freedom (DOFs) for dynamic analysis of 

unsymmetric laminated composite beams subjected to 

moving loads. Chakraborty et al. (2002) developed a 

refined locking-free beam element for free vibration and 

wave propagation analyses of asymmetric laminated 

composite beams. Goyal and Kapania (2007) developed a 

21-DOF beam element for analysis of laminated composite 

beams with arbitrary lay-ups, in which an accurate model 

for the shear correction factor was used. Jun et al. (2008) 

derived a dynamic FEM, which incorporated the Poisson’s 

effect and couplings among extensional, flexural and 

torsional deformations, to perform free vibration analysis of 

generally laminated composite beams. Mohebpour et al. 

(2011) studied the dynamic response of laminated 

composite beams under the action of a moving oscillator. 

They accounted for the complete dynamic interaction 

between the beam and oscillator. Kahya (2012) studied the 

dynamic response of laminated composite beams subjected 

to moving loads by using a multi-layered finite element. 

This model considered separate rotational DOFs for each 

lamina but did not require any additional axial or 

transversal DOFs. Jafari-Talookolaei et al. (2017) proposed 
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a FEM for in-plane and out-of-plane vibrations of laminated 

composite beams. They indicated the importance of out-of-

plane displacement component in calculation of torsional 

modes. 

Based on higher-order beam theories, Shi and Lam 

(1999) developed a two-noded beam element for free 

vibration of laminated composite beams. They studied the 

effect of mass components due to the higher-order 

displacement and the coupling of the different order axial 

displacement components on the accuracy of analysis. 

Subramanian (2006) presented the free vibration analysis of 

laminated composite beams by two-noded C1 beam 

elements. In-plane and out-of-plane displacements were, 

respectively, assumed as a quantic and quartic variation 

through-the-thickness. Lezgy-Nazargah et al. (2011) 

developed a refined high-order global-local theory for 

laminated and sandwich beams, that satisfies all the 

kinematic and stress continuity conditions at the layer 

interfaces and considers the effects of transverse normal 

stress and transverse flexibility. Vo and co-workers 

proposed a two-noded beam element for vibration and 

buckling of laminated composite beams with arbitrary lay-

ups (Vo and Thai 2012a, b, Vo et al. 2013). They took into 

account the parabolical and sinusoidal variation of shear 

strains through-the-thickness. Later, they included both 

shear and normal deformations to study free vibrations of 

composite beams with axial loads (Vo et al. 2017). 

This paragraph reviews few papers related to layer-wise 

and zig-zag beam theories for free vibrations of laminated 

composite beams. Ramtekkar et al. (2002) developed a six-

noded, plane-stress mixed FEM by using Hamilton’s 

principle. Vidal and Polit (2010) proposed a family of sinus 

models for the free vibration analysis of laminated 

composite beams. Chalak et al. (2012) investigated the free 

vibration of soft-core sandwich beams using a C0 beam 

element based on a higher-order zig-zag theory, in which 

the cubic and quadratic distribution of axial and transverse 

displacement were considered. Filippi and Carrera (2016) 

proposed 1D layer-wise theories using the higher-order zig-

zag functions defined over fictitious/mathematical layers of 

the cross-sectional area. Wimmer and Gherlone (2017) 

presented explicit expressions for the linear and geometric 

stiffness matrix, the mass matrix and the equivalent nodal 

force vector of a simple planar beam element based on the 

refined zig-zag theory. Kahya and Turan (2018) presented a 

multilayer finite element for buckling and free vibration of 

laminated composite and sandwich beams based on a 

higher-order layer-wise theory. They gave some 

comparisons for buckling loads and natural frequencies of 

beams with different end conditions and lamina stacking to 

show the accuracy of proposed element. 

Although the elastic couplings due to anisotropy and the 

Poisson’s effect are well-studied in laminated composite 

beams by various analytical/semi-analytical methods, 

according to above-given literature survey, the numerical 

solutions based on FEM accounting for both bending-

extension, bending-twist and extension-twist couplings and 

the Poisson’s effect in free vibrations of such structural 

elements has not been adequately studied. To fill this gap, 

we proposed a five-noded finite element with 13 DOFs 

based on the first-order shear deformation theory. This 

higher-order element is capable of considering the 

aforementioned couplings due to anisotropy and the 

Poisson’s effect. By using Lagrange’s principle, governing 

equations of motion and the element mass and stiffness 

matrices are derived. Natural frequencies and corresponding 

mode shapes of laminated composite beams are then 

obtained by solving the standard eigenvalue problem under 

various boundary conditions, lay-ups, orthotropy ratio and 

slenderness. In order to show accuracy of the present 

element, comparisons with the experimental study, available 

literature and finite element analyses in ANSYS®  (2014) 

are made. Some numerical results are presented for the first 

time as a reference for the future studies in the area. 

 

 

2. Governing equations of motion 
 

A laminated composite beam of length L, width b and 

height h is considered as illustrated in Fig. 1. The beam is 

made of n orthotropic layers with different fibre angle 

measured in counter-clockwise direction to the x-axis. 

Based on the first-order beam theory, the displacement 

field can be assumed as 

 

𝑢(𝑥, 𝑧, 𝑡)  =  𝑢0(𝑥, 𝑡) + 𝑧𝜃(𝑥, 𝑡), 
𝑣(𝑥, 𝑧, 𝑡)  =  𝑧𝜓(𝑥, 𝑡), 
𝑤(𝑥, 𝑧, 𝑡)  =  𝑤0(𝑥, 𝑡) 

(1) 

 

where u, v and w are the displacement components in the x-, 

y- and z-directions at any point of the beam, respectively. u0 

and w0 are the displacements in the x- and z-directions at a 

point on the midplane,  and  are the rotations of the 

normal to the midplane about the y- and x-axes, 

respectively, and t is time. The displacement field in Eq. (1) 

allows that the beam can stretch along the z-axis, bend in 

the x-z plane, and twist around x-axis. Note that there is no 

bending in the y-z plane. With the use of such displacement 

field, one can take into account the bending-stretching, 

bending-torsion and torsion-stretching couplings due to 

anisotropy in the formulation. The displacement field given 

by Eq. (1) has been previously used by Jun et al. (2008) and 

Jafari-Talookolaei et al. (2012) for the free vibration 

analysis of generally laminated composite beams, by 

Mohebpour et al. (2011) for the dynamic response analysis 

 

 

 

 

Fig. 1 Geometry and coordinate system for laminated 

composite beam with rectangular cross-section 
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Fig. 2 13-DOF beam finite element 

 

 

of laminated beams subjected to moving oscillators, and by 

Wang et al. (2015) for the buckling analysis of laminated 

composite beams with general lamina layup. For the present 

study, the displacement field given by Eq. (1) is used to 

develop a higher-order finite element for laminated 

composite beams shown in Fig. 2. 

From Eq. (1), the strain-displacement relationships can 

be written as follows 

 

𝜀𝑥  =  𝑢,𝑥 = 𝜀𝑥
0 + 𝑧𝜅𝑥, 

𝛾𝑥𝑧  = 𝑢,𝑧+𝑤,𝑥 = 𝑤0,𝑥 + 𝜃, 

𝛾𝑥𝑦 = 𝑢,𝑦 + 𝑣,𝑥 =  𝑧𝜅𝑥𝑦 

(2) 

 

where𝜀𝑥
0 = 𝑢0,𝑥, 𝜅𝑥 = 𝜃,𝑥 and 𝜅𝑥𝑦 = 𝜓,𝑥 are the midplane 

strain, bending and twisting curvatures, respectively, (,x) 

denotes the derivative with respect to x. 

The constitutive relations of the laminate can be given 

by (Reddy 1997) 
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{
𝑄𝑦𝑧
𝑄𝑥𝑧

} = [
𝐴44 𝐴45
𝐴45 𝐴55

] {
𝛾𝑦𝑧
𝛾𝑥𝑧
} (4) 

 

where Nx, Ny and Nxy are the in-plane forces, Mx, My and Mxy 

are the bending and twisting moments, Qyz and Qxz are the 

transverse shear forces per unit length, 𝜀𝑥
0, 𝜀𝑦

0, and xy are 

the normal and shear strains, x, y and xy are the bending 

and twisting curvatures, respectively. The laminate stiffness 

coefficients A, B and D are given by 

 

(𝐴𝑖𝑗 , 𝐵𝑖𝑗 , 𝐷𝑖𝑗) = ∑∫ �̄�𝑖𝑗
𝑘 (1, 𝑧, 𝑧2)𝑑𝑧

𝑧𝑘+1

𝑧𝑘

𝑛

𝑘=1

 (𝑖 = 𝑗

= 1,2,6), 

𝐴𝑖𝑗 =∑𝐾∫ �̄�𝑖𝑗
𝑘𝑑𝑧

𝑧𝑘+1

𝑧𝑘

𝑛

𝑘=1

 (𝑖 = 𝑗 = 4,5) 

(5) 

 

where K is the shear correction factor, n is the number of 

layers in the laminate, and �̄�𝑖𝑗
𝑘  are the transformed reduced 

stiffness constants for the kth layer obtained by considering 

the transverse normal stress 𝜎𝑧 be negligible. They can be 

found in the explicit form in Reddy (1997). 

To include the Poisson’s effect, the strain components 

𝜀𝑦
0 and yz, and the curvature y are assumed as non-zero 

while the in-plane forces Ny and Nxy, the bending moment 

My and the lateral shearing force Qyz are equal to zero. 

Therefore, Eqs. (3) and (4) can be rewritten as 

 

{

𝑁𝑥
𝑀𝑥

𝑀𝑥𝑦

} = [

�̄�11 �̄�11 �̄�16
�̄�11 �̄�11 �̄�16
�̄�16 �̄�16 �̄�66

] {
𝜀𝑥
0

𝜅𝑥
𝜅𝑥𝑦

} (6) 

 

𝑄𝑥𝑧 = �̄�55𝛾𝑥𝑧 (7) 
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(8) 

 

�̄�55 = 𝐴55 −
𝐴45
2

𝐴44
 (9) 

 

Eqs. (6) and (7) are the constitutive relations for a 

laminated composite beam including the Poisson’s effect. 

The coefficients �̄� ,�̄� and �̄� are replaced by A, B and D 

to ignore this effect. 

The strain energy U of the system is 

 

𝑈 =
1

2
∫ [𝑁𝑥𝜀𝑥

0 +𝑀𝑥𝜅𝑥 +𝑀𝑥𝑦𝜅𝑥𝑦 + 𝑄𝑥𝑧𝛾𝑥𝑧]𝑏𝑑𝑥
𝐿

0

 (10) 

 

Substituting Eqs. (2), (6) and (7) into Eq. (10) yields 

 

2

11 0, 11 0, , 16 0, ,
0

2 2 2

11 , 16 , , 66 , 55 0,

1
2 2

2

2 ( )

L

x x x x x

x x x x x

U A u B u B u

D D D A w bdx

 

    

= + +

+ + + + + 



 

(11) 

 

The kinetic energy T of system is 

 

𝑇 =
1

2
∫ ∫ 𝜌(�̈�2 + �̈�2 + �̈�2)𝑏𝑑𝑧

ℎ/2

−ℎ/2

𝑑𝑥
𝐿

0

 (12) 

 

where 𝜌 is the mass density, and dot denotes the derivative 

with respect to time. Substituting Eqs. (1) into Eq. (12) and 

performing integration with respect to z yields 

 

𝑇 =
1

2
∫ [𝐼0(�̇�0

2 + �̇�0
2) + 2𝐼1�̇�0�̇� + 𝐼2(�̇�

2 + �̇�2)]𝑏𝑑𝑥
𝐿

0

 (13) 

 

where 
 

(𝐼0, 𝐼1, 𝐼2) = ∑∫ 𝜌(1, 𝑧, 𝑧2)𝑑𝑧
𝑧𝑘+1

𝑧𝑘

𝑛

𝑘=1

 (14) 
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By using the Lagrange’s principle given by 
 

𝑑

𝑑𝑡
[
𝜕𝐿

𝜕�̇�𝑖
] −

𝜕𝐿

𝜕𝑞𝑖
= 0 (15) 

 

where L = T – U is the Lagrangian functional and q denotes 

the unknown variables u0, w0,  and , the governing 

equations of motion for the laminated composite beam can 

be derived. 

 

 

3. Finite element model 
 

The present finite element has five nodes and thirteen 

DOFs as shown in Fig. 2. The element can be capable of 

taking into account the shear deformation, rotary inertia, 

Poisson’s effect and elastic couplings due to anisotropy. The 

additional DOFs at the inner nodes provides to better 

represent the complex behaviour of the generally layered 

composite beams. 

The solutions are assumed to be 
 

𝑢0 =∑𝛷𝑖

3

𝑖=1

(𝑥) 𝑢𝑖(𝑡),  𝑤0 =∑𝛹𝑖

4

𝑖=1

(𝑥) 𝑤𝑖(𝑡), 

𝜃 =∑𝛷𝑖

3

𝑖=1

(𝑥) 𝜃𝑖(𝑡),  𝜓 =∑𝛷𝑖

3

𝑖=1

(𝑥) 𝜓𝑖(𝑡) 

(16) 

 

where 𝛷𝑖(𝑥) and 𝛹𝑖(𝑥) are, respectively, quadratic and 

cubic Langrange polynomials. According to Eq. (2), the 

axial deformation is dependent on first spatial derivatives of 

u0 and . Thus, the degree of polynomials of u0 and  must 

be same. Also, the shear strain xz is a linear function of w0,x 

and , thus the degree of polynomial used for w0 must be 

one order higher than those used for u0 and  to ensure 

compatibility. Therefore, the cubic polynomial used for w0 

requires that quadratic functions for both u0 and  for 

consistency. Such choice also prevents the shear locking. In 

addition, the quadratic polynomial for  is appropriate since 

the twisting DOFs are located at the same nodes with 

extensional and rotational DOFs. Explicit expressions of the 

shape functions are given in Appendix. 

 

 

The solutions given by Eq. (16) are substituted into the 

energy expressions given by Eqs. (11) and (13), the result is 

substituted into Eq. (15), after some arrangements, the 

following expression can be obtained 
 

𝑴𝑒�̈�𝑒 +𝑲𝑒𝒖𝑒 = 𝟎 (17) 
 

where Me and Ke are the element mass and stiffness 

matrices and ue is a vector including the nodal 

displacements, respectively, which are given in Appendix. 

The element matrices are assembled into the global ones 

such as 𝑴(9𝑚+4)×(9𝑚+4) and 𝑲(9𝑚+4)×(9𝑚+4), where m is 

the number of elements. Thus, the total number of nodal 

displacements in the discretized finite element model of the 

beam is (9m + 4). The global matrix equation of motion for 

free vibrations of the whole system becomes 
 

𝑴�̈� + 𝑲𝑼 = 𝟎 (18) 

 

where M and K are the global mass and stiffness matrices, 

and U is the nodal displacements of the entire system. 

Assuming the solution of Eq. (18) to be in the form 𝑼 =
𝑼0𝑒

𝑖𝜔𝑡 yields 
 

(𝑲 − 𝜔2𝑴)𝑼0 = 𝟎 (19) 
 

where 𝜔 is the natural frequency, U0 is the mode shapes 

vector. The nontrivial solution of Eq. (19) requires solving 

the standard eigenvalue problem as 𝑑𝑒𝑡(𝑲 − 𝜔2𝑴) = 0 

for the natural frequencies. The corresponding mode shapes 

can then be obtained by Eq. (19) with back-substituting. 

 

 

4. Results and discussion 
 
Results for natural frequencies and mode shapes of the 

laminated composite beams with various configurations 

including boundary conditions and lay-ups are presented in 

this section. Comparisons with the experimental study, 

available literature and the finite element analyses in 

ANSYS®  are made to show the accuracy, reliability and 

feasibility of the present element. Further, some new results, 

which may be used as reference data for future, are 
 

 

Table 1 Convergence study of the present element for a clamped-clamped laminated beam with 

[30/50]2 lay-up 

Number of 

elements (m) 

Natural frequencies (Hz) 

1st mode 2nd mode 3rd mode 4th mode 5th mode 

2 647.416 2059.921 3927.237 5104.989 5385.672 

4 638.749 1660.087 3052.057 3913.302 5061.198 

8 638.036 1648.654 3005.153 3911.176 4605.382 

12 637.997 1647.981 3001.087 3911.058 4591.068 

16 637.991 1647.866 3000.383 3911.038 4588.517 

20 637.989 1647.835 3000.188 3911.032 4587.807 

24 637.988 1647.824 3000.118 3911.030 4587.550 

30 637.988 1647.817 3000.079 3911.029 4587.408 

Jun et al. (2008) 637.9 1647.8 3000.0 3911.0 4587.3 
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presented. In numerical examples, the shear correction 

factor K is taken to be 5/6, and all layers within the laminate 

is assumed to have equal thickness. Five boundary 

conditions are considered such as clamped-clamped (C-C), 

simply supported (S-S), clamped-free (C-F), clamped-

simply supported (C-S) and free-free (F-F) at its both ends 

of laminated composite beams. 

 

4.1 Convergence study 
 

A convergence study is performed to determine the 

number of elements that will be sufficient in the numerical 

examples. To this aim, an unsymmetric [30/50]2 laminated 

composite beam with clamped-clamped end conditions is 

considered. Geometry and material properties of the beam 

are E1 = 144.8 GPa, E2 = 9.65 GPa, G12 = G13 = 4.14 GPa, 

G23 = 3.45 GPa,  = 0.3,  = 1389.23 kg/m3, L = 0.381 m, b 

= h = 25.4 mm. The first five natural frequencies (in Hz) for 

bending vibrations of the laminated composite beam are 

presented in Table 1 with various number of elements along 

with the analytical results given by Jun et al. (2008). As can 

be seen, a rapid convergence is obtained, and m = 20 

elements are sufficient to guarantee the numerical 

 

 

 

Fig. 3 The laboratory model of the cantilever composite 

beam for experimental measurements 

 

 

convergence. Besides, an excellent agreement with the 

analytical results given by Jun et al. (2008) can be observed. 
 

4.2 Verification with experimental result 
 

In this study, the ambient vibration test of a cantilever 

composite beam with the lamination scheme of [90/±45/0/ 

90/±45/0/±45/90] is carried out. The test beam has the 

length L = 1 m, width b = 80 mm, thickness h = 8 mm. The 

material properties are given by E1 = 30.6 GPa, E2 = 8.5 

GPa, G12 = G13 = G23 = 3.26 GPa, 12 = 0.34,  = 1920 

kg/m3. 

B&K3560 data acquisition system with 17 channels, 

B&K8340-type uniaxial accelerometers and uniaxial signal 

cables are used in measurements. Recording data is 

processed in PULSE (2006) and OMA (2006) software for 

extracting the dynamic characteristics. Ten sensitive 

accelerometers are located on the beam in vertical direction 

shown in Fig. 3, and measurements are performed during 10 

minutes. Frequency span, FFT analysers and multi-buffer 

are 0-128 Hz, 800 lines and 100 averages, 50 size and 500 

m update, respectively. Enhanced Frequency Domain 

Decomposition (EFDD) method and Stochastic Subspace 

Identification (SSI) method are used to obtain the modal 

characteristics. Singular values of spectral density matrices 

(SVSDM) and the average of auto spectral densities 

(AASD) of data set obtained by EFDD method, 

stabilization diagram of estimated state space models and 

select-link modes across data sets obtained by SSI method 

are shown in Fig. 4 for undamaged beam. The peaks of the 

curves in the figures indicate the natural frequencies. 

Experimental results are compared with those calculated 

by the present model and ANSYS®  in Table 2. In the 

ANSYS®  modelling, SHELL181 element which allows for 

layered shell definition is used. SHELL181 is a four-node 

element with six DOFs at each node: translations in the x-, 

y-, and z-directions, and rotations about the x-, y-, and z-

axes (see Fig. 5), and is capable of specifying the thickness, 

 

 

  
 

  

Fig. 4 EFDD and SSI results for undamaged beam 
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Fig. 5 SHELL181 element geometry 
 

 

material, fibre orientation and the number of integration 

points through the thickness of layers. In FE discretization, 

150 elements in the length direction and 10 elements in the 

width direction are used. Fig. 6 shows the representative 

finite element model for a laminated composite beam in 

ANSYS® . As seen in Table 2, the present element shows a 

good agreement with both the experimental and ANSYS®  

results. The table also shows that the Poisson’s effect is 
 

 

 

 

 

Fig. 6 Representative FE model of a laminated composite 

beam in ANSYS®  

 

 
more noticeable on the results when it is taken into account. 

As previously explained, to ignore this effect the barred 

stiffness coefficients in Eqs. (8) and (9) are replaced by 

ones in Eq. (5). 
 

 

 

Table 2 Comparison of natural frequencies (in Hz) for in-plane bending vibrations of a cantilever 

laminated beam with experiment 

Mode Experimental ANSYS®  
Present model 

Poisson’s effect excluded Poisson’s effect included 

1 5.37 5.1664 5.1075 5.1933 

2 32.52 32.5517 31.9799 32.5158 

3 96.64 90.5035 89.4149 90.9090 
 

Table 3 Non-dimensional fundamental frequencies (Ω1 = 𝜔√𝜌𝐿
4/𝐸2ℎ

2) for bending vibrations of 

laminated composite beams with different boundary conditions 

Beam 

L/h = 10 L/h = 20 L/h = 100 

FEMa 
Present 

FEM 
Present 

FEM 
Present 

(-) (+) (-) (+) (-) (+) 

C-F beam 

0 4.560 4.564 4.560 4.931 4.936 4.931 5.070 5.075 5.070 

90 1.002 1.002 1.002 1.012 1.012 1.012 1.015 1.016 1.015 

[0/90]S 4.178 4.179 4.178 4.597 4.598 4.597 4.758 4.759 4.758 

[45/-45]S 1.332 1.962 1.324 1.337 2.004 1.337 1.341 2.018 1.341 

C-C beam 

0 17.215 17.218 17.212 25.336 25.346 25.327 31.916 31.938 31.899 

90 5.764 5.767 5.761 6.264 6.267 6.260 6.453 6.458 6.450 

[0/90]S 14.839 14.838 14.837 22.679 22.677 22.672 29.873 29.867 29.857 

[45/-45]S 7.623 10.240 7.616 8.280 12.014 8.280 8.531 12.811 8.526 

S-S beam 

0 11.636 11.645 11.635 13.431 13.444 13.430 14.211 14.227 14.210 

90 2.771 2.774 2.771 2.829 2.832 2.829 2.849 2.852 2.848 

[0/90]S 10.488 10.489 10.488 12.435 12.438 12.434 13.335 13.338 13.333 

[45/-45]S 3.752 6.522 3.752 3.834 6.934 3.834 3.861 7.084 3.861 
 

(-) Poisson’s effect excluded, (+) Poisson’s effect included 
a Goyal and Kapania (2007) 
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4.3 Verification with previous results 
 

The first example is taken from Goyal and Kapania 

(2007) for a laminated composite beam with the geometry 

and material properties as E1/E2 = 25, G12/E2 = G13/E2 = 0.5, 

G23/E2 = 0.2, E2 = 1.9584×108 psf, 12 = 0.3,  = 0.250387 

slugs/ft3, h/b = 0.5, b = 0.1 ft. Three slenderness ratios of 

L/h = 10, 20, and 100 are considered. The natural 

frequencies of bending vibrations of the beam for different 

end conditions and lay-ups are presented in Table 3 with the 

non-dimensional form of Ω1 = 𝜔√𝜌𝐿
4/𝐸2ℎ

2 . It can be 

seen that the present solutions agree well those of Goyan 

and Kapania (2007) when the Poisson’s effect is included. It 

should be noted that the Poisson’s effect is more noticeable 

for angle-ply lay-up even though the slenderness ratio 

increases. 

As a second example, the fundamental frequencies with 

the non-dimensional form of Ω2 = √12Ω1 for bending 

vibrations of different symmetric and anti-symmetric 

laminated beams with and without the Poisson’s effect are 

calculated and tabulated in Table 4. Geometry and material 

properties are taken from Goyal and Kapania (2007) as: 

E1/E2 = 13.7088, G12/E2 = 0.5471, G13/E2 = 0.45679, G23/E2 

 

 

 

 

= 0.269641, E2 = 9.42512 GPa, 12 = 0.3,  = 1550.0666 

kg/m3, h/b = 0.3175, b = 0.01 m, L/h = 60. As can be seen, 

the present element is in good agreement with that of Goyal 

and Kapania (2007). As the fibre angle increases, the 

differences between the present results with and without the 

Poisson’s effect decrease for the symmetric angle-ply 

laminates and increase for the anti-symmetric ones. 

Third example considers the laminated composite beams 

with different boundary condition and different angle-ply 

lamina sequences. Geometry and material properties are the 

same with those used in the convergence study. Natural 

frequencies are presented in a non-dimensional form as 

Ω3 = 𝜔√𝜌𝐿
4/𝐸1ℎ

2 in Tables 5 and 6. 

In Table 5, non-dimensional fundamental frequencies 

for bending vibrations of symmetric angle ply [𝜃/−𝜃]𝑆 

laminates obtained by the present method are compared 

with those of the series load solution in conjunction with 

Lagrange multipliers given by Jafari-Talookolaei et al. 

(2012). As seen, the results are in excellent agreement. 

Table 6 gives the non-dimensional natural frequencies of 

the laminated beams with anti-symmetric angle-ply [±45]2 

lamina stacking and different boundary conditions. Present 

results are compared with the analytical solution by Jafari 

Table 4 Non-dimensional fundamental frequencies (Ω2 = √12Ω1) for bending vibrations of 

laminated composite beams with different boundary conditions 

Lamina 

stacking 

C-F beam C-C beam S-S beam 

FEMa 
Present 

FEM 
Present 

FEM 
Present 

(-) (+) (-) (+) (-) (+) 

[0/30/0] 12.858 12.921 12.858 80.354 80.682 80.310 36.051 36.227 36.042 

[0/45/0] 12.792 12.858 12.792 79.902 80.244 79.860 35.840 36.031 35.835 

[0/60/0] 12.769 12.821 12.769 79.703 79.972 79.662 35.760 35.909 35.757 

[0/90/0] 12.778 12.808 12.777 79.692 79.853 79.651 35.780 35.865 35.777 

[0/90]2 8.853 8.861 8.853 55.753 55.776 55.724 26.352 24.839 24.816 

[0/30/0] 12.403 12.709 12.403 77.580 79.387 77.542 34.745 35.595 34.741 

[0/45/0] 12.270 12.457 12.270 76.703 77.852 76.663 34.373 34.917 34.366 
 

(-) Poisson’s effect excluded, (+) Poisson’s effect included 
a Goyal and Kapania (2007) 

Table 5 Non-dimensional fundamental frequencies (Ω3 = 𝜔√𝜌𝐿
4/𝐸1ℎ

2) for bending vibrations of 

symmetric angle ply [𝜃/−𝜃]𝑆 laminated beams with different boundary conditions 

Beam Method 
 

0 15 30 45 60 75 90 

C-C 
Present 4.841 3.958 2.852 1.929 1.628 1.605 1.615 

Analyticala 4.841 3.959 2.853 1.929 1.628 1.605 1.615 

C-S 
Present 3.723 3.009 2.082 1.359 1.137 1.121 1.128 

Analytical 3.723 3.011 2.084 1.359 1.137 1.121 1.128 

C-F 
Present 0.979 0.729 0.485 0.314 0.263 0.259 0.261 

Analytical 0.979 0.729 0.485 0.314 0.263 0.259 0.261 

S-S 
Present 2.649 2.307 1.505 0.902 0.736 0.725 0.730 

Analytical 2.649 2.310 1.508 0.902 0.736 0.725 0.730 
 

a Jafari-Talookolaei et al. (2012) 
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Table 6 The first three non-dimensional fundamental 

frequencies (Ω3 = 𝜔√𝜌𝐿
4/𝐸1ℎ

2) for bending 

vibrations of the anti-symmetric angle-ply [±45]2 

laminated beams with different boundary conditions 

Beam Method 1st mode 2nd mode 3rd mode 

C-C 

Present 1.977 5.185 9.587 

Analyticala 1.977 5.184 9.585 

IGAb 1.976 5.184 9.584 

DQMc 1.844 4.987 9.539 

HSDTd 1.980 5.216 9.691 

S-S 

Present 0.901 3.502 7.537 

Analytical 0.901 3.501 7.535 

IGA 0.901 3.500 7.535 

HSDT 0.827 3.233 7.014 

C-F 
Present 0.323 1.967 5.285 

Analytical 0.323 1.967 5.283 
 

a Series solution with Lagrange multipliers 

by Jafari-Talookolaei et al. (2012) 
b Isogeometric FEM by Wang et al. (2015); 
c State-space-based differential quadrature method 

by Chen et al. (2004); 
d Higher-order shear deformation theory by 

Chandrashekhara and Bangera (1992) 

 

 

 

Talookolaei et al. (2012), isogeometric finite element 

method by Wang et al. (2015), state-space-based differential 

quadrature method by Chen et al. (2004) and the finite 

element based on a higher-order shear deformation theory 

by Chandrashekhara and Bangera (1992) for testing the 

validity of the present method. According to the table, the 

present element very close results to the analytical ones 

compared to other methods. 

 

4.4 Parametric study 
 

In this section, the non-dimensional natural frequencies 

and corresponding mode shapes of laminated composite 

beams with various configurations are presented. The 

beams have the slenderness L/h = 10, and cross-sectional 

dimensions are assumed to be unity. The Poisson’s effect is 

considered. All frequencies are given in the dimensionless 

form as Ω3 = 𝜔(𝐿
2/ℎ)√𝜌/𝐸1 . Some new results which 

can be used a referencing data for future studies are 

presented. Unless otherwise stated, the material properties 

of the beam are E1/ E2 = Open, G12 / E2 = G13/E2 = 0.5, 

G23/E2 = 0.2,  = 0.3,  = 1550 kg/m3. 

Tables 7-9 show the results of laminated composite 

beams with different lay-ups and boundary conditions (C-C, 

S-S and F-F) for various orthotropy ratio such as E1/E2 = 

10, 20, and 40. As seen, for both cross-ply and angle-ply 

laminates, when the orthotropy ratio increases, the non- 
 

 

 
 

Table 7 Non-dimensional frequencies (Ω3 = 𝜔√𝜌𝐿
4/𝐸1ℎ

2) of cross-ply laminated beams with various end conditions for 

different orthotropy ratio E1/E2 (L/h = 10) 

Lay-up Mode 
E 1 /E 2  =  10  E 1 /E 2  =  20  E 1 /E 2  =  40  

F-F C-C S-S F-F C-C S-S F-F C-C S-S 

[0/90] 

1 3.1513 2.8588 1.4258 2.6551 2.3087 1.2050 2.3097 1.8773 1.0532 

2 7.0248 6.7679 5.0825 4.9673 4.9672 4.1531 3.5124 3.5124 3.4432 

3 7.7034 7.0248 7.0248 6.2672 5.2777 4.9673 5.1553 4.1100 3.5124 

4 13.1008 11.5098 9.5761 9.9347 8.7945 7.7719 7.0249 6.7067 6.2278 

5 14.0497 14.0497 11.2529 10.3416 9.9346 9.8739 8.1703 7.0248 7.0249 

[0/90/0] 

1 5.5086 4.2676 2.5124 4.9672 3.4257 2.3004 3.5124 2.6178 2.0009 

2 7.0248 7.0248 7.0248 4.9789 4.9672 4.9672 4.2547 3.5124 3.5124 

3 11.8530 9.1669 7.9853 9.6189 7.0397 6.5576 7.0248 5.2563 5.1012 

4 14.0497 14.0497 13.1808 9.9346 9.9346 9.9346 7.4024 7.0248 7.0248 

5 18.4587 14.8303 14.0497 14.2652 11.1671 10.9433 10.5375 8.2073 8.1386 

[0/90]2 

1 4.0823 3.4478 1.8506 3.7095 2.8545 1.6942 3.2974 2.2684 1.5244 

2 7.0248 7.0248 6.3106 4.9672 4.9672 4.9672 3.5124 3.5124 3.5124 

3 9.4589 7.7700 7.0248 7.9265 6.1053 5.3393 6.3666 4.6586 4.3388 

4 14.0497 12.8514 11.3007 9.9346 9.8602 9.4070 7.0248 7.0248 7.0248 

5 15.4342 14.0497 12.0456 12.2819 9.9346 9.9346 9.4320 7.3888 7.2368 

[0/90]S 

1 5.2541 4.0368 2.3982 4.7225 3.2246 2.1841 3.5124 2.4569 1.8912 

2 7.0248 7.0248 7.0248 4.9672 4.9672 4.9672 4.0169 3.5124 3.5124 

3 11.2221 8.6373 7.5666 9.0593 6.6126 6.1807 6.9497 4.9294 4.7919 

4 14.0497 13.9501 11.6847 9.9346 9.9346 9.9346 7.0248 7.0248 7.0248 

5 17.4050 14.0497 13.3565 13.4017 10.4782 10.2794 9.9865 7.6902 7.6291 
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Table 8 Non-dimensional frequencies (Ω3 = 𝜔√𝜌𝐿
4/𝐸1ℎ

2) of angle-ply laminated beams with various end conditions for 

different orthotropy ratio E1/E2 (L/h = 10) 

Lay-up Mode 
E 1 /E 2 =10 E 1 /E 2 =20 E 1 /E 2 =40 

F-F C-C S-S F-F C-C S-S F-F C-C S-S 

[𝜃/−𝜃]2 

30 

1 3.7253 3.3092 1.6817 3.0561 2.6098 1.3832 2.4081 1.9867 1.0926 

2 9.0202 7.7588 5.9974 7.1584 5.9361 4.7769 5.4759 4.4164 3.6663 

3 13.0994 13.0994 9.9093 11.7953 9.8646 8.2946 8.8273 7.2557 6.6264 

4 15.2823 13.1164 11.6825 12.3513 12.3513 9.0295 11.5680 10.2584 6.7645 

5 20.6728 18.9228 13.5814 16.4769 14.0623 12.9268 12.1405 11.5680 9.9685 

45 

1 2.5212 2.3668 1.1345 1.8473 1.7249 0.8315 1.3356 1.2428 0.6013 

2 6.3869 5.8434 4.2263 4.6596 4.2352 3.0847 3.3594 3.0405 2.2246 

3 11.3103 10.2354 6.4763 8.2141 7.3871 4.7454 5.9046 5.2892 3.4279 

4 12.5565 12.5565 8.6292 9.3848 9.3848 6.2680 6.8212 6.8212 4.5062 

5 15.5570 15.1513 13.7758 12.1270 10.9001 9.9617 8.6939 7.7889 7.1412 

60 

1 2.0593 1.9548 0.9262 1.4571 1.3830 0.6553 1.0308 0.9784 0.4636 

2 5.2634 4.8840 3.4798 3.7240 3.4551 2.4620 2.6344 2.4440 1.7417 

3 9.4112 8.6360 5.2317 6.6581 6.1091 3.7005 4.7098 4.3211 2.6172 

4 10.4324 10.4324 7.1778 7.3933 7.3933 5.0781 5.2321 5.2321 3.5921 

5 13.5095 12.8782 11.5705 9.9609 9.1094 8.1851 7.0458 6.4430 5.7897 

[𝜃/−𝜃]𝑆 

30 

1 3.3756 3.0834 1.6927 2.7598 2.4356 1.3876 2.2200 1.8856 1.0935 

2 8.2827 7.3303 5.4603 6.5997 5.6366 4.3723 5.1576 4.2560 3.4364 

3 12.7622 12.5013 10.0553 10.8015 9.4573 8.3856 8.3996 7.0452 6.5065 

4 14.5338 12.9390 10.9676 12.0766 11.7095 8.5393 10.7922 10.0050 6.6703 

5 20.1106 18.1635 12.3728 15.6287 13.5923 10.9907 11.7395 10.7284 9.4333 

45 

1 2.4421 2.3052 1.1368 1.7989 1.6874 0.8322 1.3121 1.2246 0.6014 

2 6.2039 5.7143 4.1001 4.5506 4.1587 3.0102 3.3073 3.0041 2.1892 

3 10.9950 10.0404 6.4921 8.0412 7.2745 4.7531 5.8249 5.2365 3.4311 

4 12.9841 12.9841 8.4342 9.5061 9.5061 6.1545 6.8622 6.8622 4.4527 

5 13.2656 13.2187 12.7314 11.9114 10.7559 9.7438 8.5954 7.7228 7.0549 

60 

1 2.0509 1.9480 0.9264 1.4528 1.3796 0.6554 1.0290 0.9769 0.4636 

2 5.2436 4.8695 3.4662 3.7141 3.4478 2.4553 2.6301 2.4408 1.7388 

3 9.3768 8.6137 5.2332 6.6420 6.0979 3.7011 4.7030 4.3163 2.6175 

4 10.4664 10.4664 7.1562 7.4022 7.4022 5.0674 5.2349 5.2349 3.5876 

5 11.5043 11.4998 11.3466 9.9399 9.0949 8.1647 7.0369 6.4368 5.7820 
 

Table 9 Non-dimensional frequencies (Ω3 = 𝜔√𝜌𝐿
4/𝐸1ℎ

2) of unsymmetric laminated beams with various end conditions for 

different orthotropy ratio E1/E2 (L/h = 10) 

Lay-up Mode 
E 1 /E 2 =10 E 1 /E 2 =20 E 1 /E 2 =40 

F-F C-C S-S F-F C-C S-S F-F C-C S-S 

[𝜃/−𝜃]2 

30 

1 3.7884 3.4203 1.8578 3.0803 2.6935 1.5497 2.5562 2.1228 1.2961 

2 9.0361 7.8864 5.8893 7.1505 6.0149 4.6317 5.7027 4.5874 3.7123 

3 9.0840 8.9985 8.9643 7.1601 7.0978 7.0435 5.7067 5.6539 5.5696 

4 15.3445 13.2944 11.3589 11.8260 9.9750 8.9260 9.1575 7.4914 6.9546 

5 17.7096 17.6819 12.5303 13.7819 13.7906 11.0756 10.8193 10.5570 9.6712 
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dimensional natural frequencies decrease. F-F beam has the 

greatest natural frequencies compared to the others. 

According to Tables 8 and 9, for angle-ply laminates, the 

non-dimensional frequencies decrease with increasing the 

fibre angle. 

In Figs. 7-9, the first five mode shapes of vibration for 

unsymmetric cross-ply, antisymmetric and unsymmetric 

angle-ply laminated composite beams with C-C, S-S and F-

F boundary conditions and the orthotropy ratio E1/E2 = 40 

are presented to show the effect of material coupling among 

the displacement components of motion. As seen in Fig. 7, 

for [0/90] unsymmetric cross-ply laminated beams, bending 

and torsional vibration components are dominant in the 

lowest modes. For the lower modes considered, bending-

torsion coupling does not appear; however, a small amount 

of extension-bending coupling is observed. According to 

Fig. 8, for [45/-45] antisymmetric angle-ply laminated 

beams, bending modes of vibration are generally observed, 

and there is no coupling between the bending and torsional 

components. In some modes, e.g., 3rd mode of S-S beam, 4th 

 

 

mode of F-F and C-C beams, the extensional and torsional 

components are greatly coupled. For [0/45] unsymmetric 

angle-ply laminated beams, as can be seen in Fig. 9, the 

mode shapes show great complexity and involve various 

couplings among the extensional, bending and torsional 

components of the motion. 

 

 

5. Conclusions 
 

This study presents a finite element model with five 

nodes and 13 DOFs for free vibration analysis of laminated 

composite beams with arbitrary lay-ups using the first-order 

shear deformation theory. The model considers simul-

taneously the material couplings among extensional, 

bending and torsional deformations due to anisotropy and 

the Poisson’s effect. Applying Lagrange’s principle gives 

the equations of motion and thus element matrices of the 

laminated composite beam. The free vibration problem is 

solved as a standard eigenvalue problem to obtain the 

Table 9 Continued 

Lay-up Mode 
E 1 /E 2 =10 E 1 /E 2 =20 E 1 /E 2 =40 

F-F C-C S-S F-F C-C S-S F-F C-C S-S 

[𝜃/−𝜃]2 

45 

1 3.3755 3.0726 1.5703 2.7997 2.4558 1.3078 2.3986 1.9812 1.1203 

2 8.2389 7.2573 5.4104 6.6225 5.6145 4.3599 5.1581 4.3507 3.5804 

3 8.8447 8.8304 8.7937 6.7681 6.7550 6.7329 5.4027 5.1477 5.1350 

4 14.0380 12.3351 10.2446 10.9832 9.3686 8.2449 8.6388 7.1224 6.5699 

5 17.5443 17.5700 11.7685 13.3933 13.3970 10.3045 10.1981 10.0463 9.0011 

60 

1 3.2071 2.9200 1.4558 2.6913 2.3540 1.2247 2.3355 1.9146 1.0667 

2 7.8581 6.9297 5.1793 5.8948 5.3988 4.2206 4.2990 4.2020 3.4970 

3 8.0350 8.0335 8.0312 6.3789 5.8945 5.8944 5.2475 4.3045 4.3008 

4 13.3980 11.8056 9.7589 10.5644 9.0166 7.9253 8.3548 6.8814 6.3608 

5 16.0572 16.0573 11.4032 11.7803 11.7791 9.9943 8.5914 8.5902 8.5863 

[𝜃/−𝜃]𝑆 

30 

1 3.1936 2.9300 1.4390 2.5567 2.2868 1.1537 2.0523 1.7786 0.9280 

2 7.9414 7.0704 5.2652 6.2261 5.3931 4.1371 4.8674 4.0891 3.2436 

3 9.5108 9.5108 8.6637 7.9852 7.9852 7.1855 7.0409 6.8347 5.9821 

4 13.7969 12.1784 10.5345 10.6033 9.1499 8.1036 8.1010 7.0409 6.1983 

5 19.0217 17.8039 11.6387 15.1942 13.2335 9.9392 11.4008 9.7827 8.4868 

45 

1 2.3844 2.2558 1.0726 1.7527 1.6494 0.7886 1.2843 1.2023 0.5780 

2 6.0782 5.6156 4.0195 4.4488 4.0827 2.9433 3.2463 2.9600 2.1486 

3 10.0238 9.9003 6.3632 7.8948 7.1655 4.6768 5.7352 5.1733 3.3949 

4 10.8360 10.0238 8.2653 8.0375 8.0375 6.0228 6.2886 6.2886 4.3761 

5 14.6862 14.6862 11.2906 11.6768 10.6233 9.6350 8.4845 7.6451 6.9698 

60 

1 2.0444 1.9424 0.9194 1.4486 1.3760 0.6515 1.0267 0.9750 0.4617 

2 5.2293 4.8580 3.4569 3.7044 3.4403 2.4489 2.6250 2.4369 1.7354 

3 9.3576 8.5971 5.2214 6.6274 6.0868 3.6952 4.6950 4.3104 2.6149 

4 9.7018 9.7018 7.1367 7.2457 7.2457 5.0546 5.1925 5.1925 3.5808 

5 11.0895 11.0895 10.2595 8.9759 8.9759 8.1526 7.0266 6.4293 5.7740 
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natural frequencies and corresponding mode shapes. The 

current element is verified by comparing with experimental 

study, the results reported in the literature as well as those 

 

 

 

obtained by ANSYS®  finite element analysis software to 

show its accuracy. Some parametric results can be used for 

benchmarking for the future studies. 
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Fig. 7 The lowest five mode shapes of [0/90] unsymmetric cross-ply laminated composite beams with L /h=10 and 

E 1 /E 2=40 
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The present element can capture vibration modes of the 

laminated composite beams in a good accuracy. According 

 

 

 

 
 

to the study, for unsymmetric angle-ply laminated beams, 

the material coupling greatly affects the vibration modes. 
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Fig. 8 The lowest five mode shapes of [45/-45] antisymmetric angle-ply laminated composite beams with L/h = 10 

and E1/E2 = 40 
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Fig. 9 The lowest five mode shapes of [0/45] unsymmetric angle-ply laminated composite beams with L/h = 10 and 
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Appendix 
 

The shape functions for the present finite element model 

are 

𝛷1 = (1 − 𝜉)(1 − 2𝜉), 
 

𝛷2 = 4𝜉(1 − 𝜉), 
 

𝛷3 = −𝜉(1 − 2𝜉), 
 

𝛹1 =
1

2
(1 − 𝜉)(1 − 3𝜉)(2 − 3𝜉), 

 

𝛹2 =
9

2
𝜉(1 − 𝜉)(2 − 3𝜉), 

 

𝛹3 = −
9

2
𝜉(1 − 𝜉)(1 − 3𝜉), 

 

𝛹4 =
1

2
𝜉(1 − 3𝜉)(2 − 3𝜉) 

(A1) 

 

where 𝜉 = 𝑥/𝑙 and l is the element length. 

The element mass and stiffness matrices are in the form 

 

𝑴𝑒 = [

𝒎11 𝟎 𝒎13 𝟎
𝟎 𝒎22 𝟎 𝟎

𝒎13
𝑇 𝟎 𝒎33 𝟎
𝟎 𝟎 𝟎 𝒎44

]

13×13

, 

 

𝑲𝑒 =

[
 
 
 
𝒌11 𝟎 𝒌13 𝒌14
𝟎 𝒌22 𝒌23 𝟎

𝒌13
𝑇 𝒌23

𝑇 𝒌33 𝒌34
𝒌14
𝑇 𝟎 𝒌34

𝑇 𝒌44]
 
 
 

13×13

 

(A2) 

 

where 
 

𝒎11 =
𝐼0𝑙

15
[
4 2 −1

16 2
Sym. 4

] , 

 

𝒎13 =
𝐼1𝑙

15
[
4 2 −1

16 2
Sym. 4

] , 

 

𝒎22 = 𝐼0𝑙

[
 
 
 
 
 
 
 
16

105

33

280
−
3

70

19

840
27

35
−
27

280
−
3

70
27

35

33

280

Sym.
16

105 ]
 
 
 
 
 
 
 

, 

 

𝒎33 =
𝐼2𝑙

15
[
4 2 −1

16 2
Sym. 4

] , 

 

𝒎44 =
𝐼2𝑙

15
[
4 2 −1

16 2
Sym. 4

] 

(A3) 

 

 

 

 

 

 

 

𝒌11 =
�̄�11
3𝑙
[
14 −16 2

32 −16
Sym. 14

] , 

 

𝒌13 =
�̄�11
3𝑙
[
14 −16 2

32 −16
Sym. 14

] , 

 

𝒌14 =
�̄�16
3𝑙
[
14 −16 2

32 −16
Sym. 14

] , 

 

𝒌22 =
�̄�55
5𝑙

[
 
 
 
 
 
 37 −

189

4

27

2
−
13

4

108 −
297

4

27

2

108 −
189

4
Sym. 37 ]

 
 
 
 
 
 

, 

 

𝒌23 = �̄�55

[
 
 
 
 
 
 
 −
83

60
−
11

15

7

60
33

20
−
9

5

3

20

−
3

20

9

5
−
33

20

−
7

60

11

15

83

60 ]
 
 
 
 
 
 
 

, 

 

𝒌33 =
�̄�11
3𝑙
[
14 −16 2

32 −16
Sym. 14

] 

           +
�̄�55𝑙

15
[
4 2 −1

16 2
Sym. 4

] , 

 

𝒌34 =
�̄�16
3𝑙
[
14 −16 2

32 −16
Sym. 14

] , 

 

𝒌44 =
�̄�66
3𝑙
[
14 −16 2

32 −16
Sym. 14

] 

(A4) 

 

where the stiffness and inertia coefficients are given by Eqs. 

(5), (8) and (9), respectively. 
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