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1. Introduction 
 

Axially functionally graded (AFG) beams, in which the 

variations of the geometrical and/or material parameters are 

along the length, constitute a subset of inhomogeneous 

structures which are made of functionally graded materials 

(FGM). FGM’s are advanced composites which due to 

thermal resistance and high stiffness are widely utilized in 

many aerospace, mechanical and civil engineering 

structures. In the two last decades, the free vibration of AFG 

and functionally graded (FG) beams with classical and non-

classical end restraints has been investigated extensively, 

and is still receiving attention in literatures. Accordingly, 

many researchers have studied the vibration characteristics 

of AFG and FG beams by using the analytical or semi-

analytical approaches. For instance, Elishakoff and Guede 

(2004) derived the analytical polynomial solutions for the 

vibrating axially graded (AG) beams with simply supported 

using the semi-inverse method. Also, the text book about 

the closed-form solutions in the vibration and buckling of 

inhomogeneous beams, columns and plates using the direct, 

semi-inverse and inverse methods was published by 

Elishakoff (2004). Furthermore, based on the semi-inverse 

method, Caliò and Elishakoff (2005) presented the closed-

form solutions for the natural frequencies of AG beam-

columns on elastic foundation. A new low-order analytical 

model for the free vibration analysis of non-uniform 

composite beams was developed by Singh et al. (2006). 

Aydogdu and Taskin (2007) investigated the free vibration 
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of simply supported FG beam using the Navier-type 

solution method. Analytical solutions for the vibration of a 

non-uniform beam for three different types of classical 

boundary conditions associated with simply supported, 

clamped and free ends were obtained by Ece et al. (2007). 

Aydogdu (2008) analyzed the vibration and buckling of 

AFG simply supported beams utilizing the semi-inverse 

method. By using the Adomian modified decomposition 

method, the free vibration of non-uniform beams with 

general elastic end constraints was studied by Hsu et al. 

(2008). In the same way, Lai et al. (2008) investigated the 

free vibration of elastically end restrained non-uniform 

beams with tip mass and resting on an elastic foundation 

and subjected to an axial load. An analytical method for the 

free vibration analysis of FG beams was proposed by Sina 

et al. (2009). Huang and Li (2010) presented a new 

approach for the free vibration of AFG beams with non-

uniform cross-section using the Fredholm integral 

equations. Analytical solutions for the free vibration of the 

sigmoid FGM beams with three different types of classical 

boundary conditions associated with simply supported, 

clamped and free ends were suggested by Atmane et al. 

(2011). Hein and Feklistova (2011) investigated the free 

vibrations of non-uniform and AFG beams with various 

boundary conditions using the Haar wavelets. Based on the 

modified wave approach, the natural frequencies and mode 

shapes of the arbitrary non-uniform beams were obtained by 

Nikkhah Bahrami et al. (2011). The dynamic behavior of an 

AFG beam with simply supported edges under action of a 

moving harmonic load using the Newmark method was 

investigated by Şimşek et al. (2012). Firouz-Abadi et al. 

(2013) obtained the exact solutions for the free vibrations 

and buckling of double tapered columns with elastic 
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foundation and tip mass using the Frobenius power series. 

New exact vibration solutions for a class of non-uniform 

beams utilizing the power function solutions were presented 

byWang and Wang (2013a). Moreover, one of the text book 

about the exact solutions for the free vibration of strings, 

membranes, beams, and plates was published by Wang and 

Wang (2013b). Guo and Yang (2014) obtained an exact 

solution for the free and steady state forced vibrations of 

arbitrary non-uniform beams using the series solution. The 

exact frequency equations of the free vibration of 

exponentially non-uniform FG Timoshenko beams for 

various boundary conditions were derived by Tang et al. 

(2014). Sarkar and Ganguli (2014) presented the closed-

form solutions for the free vibration of AFG Timoshenko 

beams having uniform cross-section and fixed-fixed 

boundary condition using the polynomial solutions. Based 

on the energy method, Kumar et al. (2015) studied the large 

amplitude free vibration problem of AFG slender non-

uniform beams with various taper profiles and material 

gradation. Galeban et al. (2016) obtained the natural 

frequencies of FG thin beams made of saturated porous 

materials using the principle of virtual work. Hashemi et al. 

(2016) presented a general analytical solution for the free 

vibration analysis of a non-uniform FGM beam. By using 

the piecewise exponential functions and power series 

method, Kukla and Rychlewska (2016) investigated the free 

vibration of AFG beams with different boundary conditions. 

Based on the energy method, the natural frequencies and 

mode shapes of exponential tapered AFG beams on elastic 

foundation were obtained by Lohar et al. (2016a). 

Moreover, by the similarly method, Lohar et al. (2016b) 

studied the nonlinear free vibration of AFG non-uniform 

beams supported on elastic foundation. An analytical 

method for the free vibration of double-beam systems made 

up of AFG beams with elastically restrained were presented 
by Rezaiee-Pajand and Hozhabrossadati (2016). Yuan et al. 

(2016) derived the exact solutions for the free vibrations of 

axially inhomogeneous Timoshenko beams with variable 

cross-section using the Bessel and Hypergeometric 

functions. In addition, they proposed an approximate 

analytical method to calculate the low-order natural 

frequencies of Timoshenko beams accurately and 

efficiently. The free vibrations of AFG cantilever beams 

with concentrated masses attached at different points using 

the Ritz method were investigated by Rossit et al. (2017). 

Based on the polynomial expansion and integral technique, 

Huang and Rong (2017) presented a simple approach for 

the free vibration of axially inhomogeneous beams that are 

made of FGM. The free vibration analysis of FG beams 

using an exact transfer matrix expression was performed by 

Lee and Lee (2017). Zhao et al. (2017) analyzed the free 

vibration of AFG Euler-Bernoulli and Timoshenko beams 

with non-uniform cross-sections utilizing the Chebyshev 

polynomials theory. Moreover, Ghayesh (2018d) obtained 

the nonlinear vibration characteristics of AFG shear 

deformable tapered beams subjected to external harmonic 

excitations utilizing the third-order shear deformation beam 

theory. Rezaiee-Pajand and Masoodi (2018) proposed the 

exact second-order stiffness matrix for a FGM beam with 

lateral bracing. Accordingly, they calculated the exact 

natural frequencies and buckling load of FGM tapered 

beam-columns with general connections using the proposed 

formulations. Avcar (2019) investigated the free vibration of 

imperfect sigmoid and power law FG beams utilizing the 

first order shear deformation beam theory. 

Alternatively, some researchers have used the numerical 

methods to analyze the free vibration of FG and AFG 

beams. For example, Alshorbagy et al. (2011) studied the 

free vibration characteristics of a FG beam with material 

graduation in axially or transversally through the thickness 

based on the power-law utilizing the finite element method. 

Shahba et al. (2011a) utilized the finite element method, for 

the free vibration and stability of AFG tapered beams. Also, 

the free vibration and stability analysis of AFG tapered 

Timoshenko beams with classical and non-classical 

boundary conditions were studied through the finite element 

approach by Shahba et al. (2011b). Shahba and Rajasekaran 

(2012) analyzed the free vibration and stability of tapered 

beams made of axially functionally graded materials 

(AFGM) based on the differential transform element 

method. Based on the dynamic stiffness approach and using 

the differential transformation method, the buckling and 

vibration of AFG non-uniform beams were analyzed by 

Rajasekaran (2013). By using the differential transform 

method, Ebrahimi and Dashti (2015) investigated the free 

vibration characteristics of a rotating double tapered FG 

beam. A numerical method for the free vibration of double-

beam systems made up of AFG beams with elastically 

restrained were presented by Rezaiee-Pajand and 

Hozhabrossadati (2016). The free vibrations analysis of 

non-uniform and/or AFG beams with elastically restrained 

ends using the method of initial parameters in differential 

form were performed by Shvartsman and Majak (2016). By 

using the dynamic stiffness method, the free vibration of FG 

beams and frameworks was investigated by Banerjee and 

Ananthapuvirajah (2018). Cao et al. (2018) studied the free 

vibration of AFG beams with different boundary conditions 

using the asymptotic development method. The free 

vibration analysis of FG beams with non-uniform cross-

section using the differential transform method was studied 

by Ghazaryan et al. (2018). Based on the symbolic-numeric 

method of initial parameters, the free vibration analysis of 

AFG tapered, stepped, and continuously segmented rods 

and beams with elastically restrained was investigated by 

Šalinić et al. (2018). The free vibration of tapered 

bidirectional FGM beams using an efficient shear 

deformable finite element model was performed by Nguyen 

and Tran (2018). 

In recent years, the application of uniform and FG 

members in microscale and nanoscale structures has 

attracted the attention of researchers. For instance, the 

dynamic linear and nonlinear behavior of microbeams and 

microplates have been investigated by many researchers 

such as Farokhi et al. (2013a, b), Ghayesh et al. (2013a, b, 

c, d, 2014), Farokhi and Ghayesh (2015a, b), Ghayesh and 

Farokhi (2015a, b), Gholipour et al. (2015), Farokhi et al. 

(2016), Ghayesh et al. (2016), Farokhi and Ghayesh (2018a, 

b). Moreover, based on the modified couple stress theory 

and utilizing the Rayleigh–Ritz method, Akgöz and Civalek 

(2013) studied the free vibration analysis of AFG tapered 
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cantilever microbeams. The vibration of AFGM nanobeams 

with elastic foundation and simply supported utilizing the 

strain gradient theory was analyzed by Zeighampour and 

Tadi Beni (2015). By utilizing the homotopy perturbation 

method in conjunction with the generalized differential 

quadrature method, Shafiei et al. (2016) analyzed the 

nonlinear vibration of AFG non-uniform nanobeams. The 

free longitudinal vibrations of FG nanorods with varying 

cross-section and elastic supports via a newly developed 

nonlocal surface energy-based integro-differential model 

were examined by Kiani (2016). Based on the modified 

couple stress theory and utilizing the Galerkin method, 

Farokhi et al. (2017) investigated the motion characteristics 

of bilayered extensible Timoshenko microbeams. The 

oscillations of FG microbeams were analyzed by Ghayesh 

et al. (2017a). By means of the backward differentiation 

formula, Ghayesh et al. (2017b) performed the vibration 

analysis of geometrically imperfect three-layered shear-

deformable microbeams. Ghayesh (2018a) studied the 

dynamic behavior of FG viscoelastic microbeams. The 

forced nonlinear dynamics of AFG microbeams based on a 

shear-deformable model and the modified couple stress 

theory were investigated by Ghayesh (2018b). Ghayesh 

(2018c) analyzed the coupled nonlinear mechanical 

behaviour of extensible FG microbeams, when both 

viscoelasticity and imperfection are present. The size-

dependent nonlinear oscillation characteristics of a FG 

microplate were investigated numerically by Ghayesh et al. 

(2018). Rahmani et al. (2018) studied the free vibration of 

deep curved FG nanobeam based on the modified couple 

stress theory. By utilizing the similar theory, the nonlinear 

free and forced vibration analysis of microbeams with 

different boundary conditions were analyzed by 

Ghorbanpour Arani and Kiani (2018). Farajpour et al. 

(2018) performed a review on the mechanics of nano-

structures. Also, Ghayesh and Farajpour (2019) presented a 

review on the mechanics of FG nanoscale and microscale 

structures. 

It should be noted that the tapered and/or non-prismatic 

beams can be considered as a special case of the AFG 

beams with constant material and variable geometry. So far, 

the free vibration of tapered and/or non-prismatic beams 

with classical and non-classical end restraints also has been 

investigated extensively by many researchers such as 

Conway and Dubil (1965), Mabie and Rogers (1968), Goel 

(1976), Downs (1977, 1978), Sato (1980), Banerjee and 

Williams (1985), Rao and Mirza (1989), Grossi and Bhat 

(1991), Lee and Kuo (1992), Lee and Lint (1992), Cortinez 

and Laura (1994), Naguleswaran (1994), Abrate (1995), 

Auciello (1995), De Rosa and Auciello (1996), Auciello and 

Ercolano (1997), Ho and Chen (1998), Li (2000), Auciello 

(2001), Kim and Kim (2001), Lee et al. (2002), Grossi and 

Albarracín (2003), Lee et al. (2003), Attarnejad et al. (2006, 

2011), Taha and Essam (2013), Abdelghany et al. (2015), 

Boiangiu et al. (2016), and Palacio-Betancur and 

Aristizabal-Ochoa (2019). 

Based on this brief review, it is obvious that relatively 

few literatures have presented an exact solution for the free 

vibration of the AFG Euler-Bernoulli beams with general 

elastic supports. Moreover, no comprehensive attempt has 

been made yet for the evaluation of the effects of the AFG 

parameters and elastic restrained supports in the free 

vibration analysis. Accordingly, the objective of this paper 

is to derive the exact expression for obtaining the exact 

natural frequencies of the AFG Euler-Bernoulli beams with 

elastic supports. In other words, for the first time, the exact 

solutions for the vibration characteristics of the uniform and 

AFG beams with elastic end restraints derived and 

compared. It should be noted that the material and/or 

geometrical properties of the AFG beam are assumed to 

change continuously and together along the longitudinal 

direction according to the power-law forms. In the 

following, the effects of the AFG parameters and elastic end 

restraints in the free vibration of the AFG and uniform 

beams will be investigated comprehensively. Comparing the 

responses of the numerical examples with the available 

solutions demonstrates the accuracy, efficiency and 

capability of the proposed formulations. Furthermore, the 

analytical solutions are presented in tabular and graphical 

forms and can be utilized as the benchmark solutions or 

design of inhomogeneous beams with various supporting 

conditions. 

 

 

2. Free vibration formulation 
 

In this study, the analytical solutions to obtain the exact 

natural frequencies of the AFG Euler-Bernoulli beam with 

general boundary conditions are presented. 

 

2.1 AFG material and geometrical properties 
 

In the present work, the material and/or geometrical 

properties, i.e., mass per unit length and flexural rigidity of 

the AFG beam, shown in Fig. 1, are assumed to vary 

continuously and together in the axial direction according to 

the power-law forms and defined as 

 

𝐺(𝑥) = 𝜌(𝑥)𝐴(𝑥) = 𝜌0𝐴0 (1 + 𝑐
𝑥

𝐿
)

𝑛

 

           = 𝜌𝐿𝐴𝐿 (
1 + 𝑐

𝑥

𝐿

1 + 𝑐
)

𝑛

 

(1a) 

 

𝐷(𝑥) = 𝐸(𝑥)𝐼(𝑥) = 𝐸0𝐼0 (1 + 𝑐
𝑥

𝐿
)

𝑛+2

 

           = 𝐸𝐿𝐼𝐿 (
1 + 𝑐

𝑥

𝐿

1 + 𝑐
)

𝑛+2

 

(1b) 

 

 

 

Fig. 1 Schematic of the axially functionally graded beam 
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where x is the axial coordinate, L is the length of the beam, 

G(x) = ρ(x)A(x) is the mass of the beam per unit length 

which is depends upon the AFG variations of the mass 

density of the beam material ρ(x), and/or cross-section area 

of the beam A(x), and D(x) = E(x)I(x) is the flexural rigidity 

of the beam which depends upon the AFG variations of the 

modulus of elasticity of the beam material E(x), aznd/or 

moment of inertia of the beam cross-section I(x). Also, ρ0, 

A0, E0, and Io are the mass density, cross-section area, 

modulus of elasticity and moment of inertia at x = 0, 

respectively. Similarly, ρL, AL, EL, and IL are the mass 

density, cross-section area, modulus of elasticity and 

moment of inertia at x = L, respectively. Moreover, n and c 

are the AFG parameters that n is a nonnegative quantity and 

represents the gradient index and c represents the gradient 

coefficient. It should be noted that the mass per unit length 

and flexural rigidity of the AFG beam are positive values 

and therefor c > -1. In addition, it is evident that when c = 

0.0, i.e., the material and geometrical properties are kept 

constant, the beam is uniform. 

It is reminded that changing the mass per unit length 

G(x) and flexural rigidity D(x) can be expressed based on 

the variations of the material properties or geometrical 

properties or both of them. Accordingly, the tapered and/or 

non-prismatic beams can be considered as the special case 

of the AFG beams with constant material and variable 

geometry. For better understanding, the variations of G(x) 

and D(x) of the AFG beam, which are defined by Eq. (1), 

are plotted in Fig. 2 for various values of the gradient index 

(n) and gradient coefficient (c). 

 

 

 

2.2 Governing differential equation 
 

The free vibration differential equation of an AFG 

Euler-Bernoulli beam of length L with general elastic end 

restraints, as shown in Fig. 3, is given by (Huang and Li 

2010, Singh et al. 2006) 

 

𝜕2

𝜕𝑥2
[𝐷(𝑥)

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
] + 𝐺(𝑥)

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2
= 0, 

0 < 𝑥 < 𝐿 

(2) 

 

where x is the axial coordinate, t is the time, w(x,t) is the 

lateral displacement, D(x) is the flexural rigidity of the 

beam and G(x) is the mass per unit length. 

Following the separation of variable analogy, the 

solution of Eq. (2) can be expressed as 

 

𝑤𝑖(𝑥, 𝑡) = 𝑊𝑖(𝑥)𝑒𝑗𝜔𝑖𝑡 (𝑗2 = −1) (3) 

 

where ωi is the circular frequency and Wi(x) is the shape 

function of the lateral motion of the ith vibration mode. 

Substituting the Eq. (3) into Eq. (2), one can get (Huang 

and Li 2010) 

 

𝑑2

𝑑𝑥2
[𝐷(𝑥)

𝑑2𝑊𝑖(𝑥)

𝑑𝑥2
] − 𝐺(𝑥)𝜔𝑖

2𝑊𝑖(𝑥) = 0 (4) 

 

If Eqs. (1a) and (1b) are inserted into Eq. (4), it can be 

rewritten as 

 

  
 

  

(a) for various values of gradient index (n) in which c = 0.5 (b) for various values of gradient coefficient (c) in which n = 2 

Fig. 2 Variations of mass per unit length G(x) and flexural rigidity D(x) of the AFG beam defined by Eq. (1) 
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(1 + 𝑐
𝑥

𝐿
)

𝑛+2 𝑑4𝑊𝑖(𝑥)

𝑑𝑥4
 

+2
𝑐

𝐿
(𝑛 + 2) (1 + 𝑐

𝑥

𝐿
)

𝑛+1 𝑑3𝑊𝑖(𝑥)

𝑑𝑥3
 

+
𝑐2

𝐿2
(𝑛 + 1)(𝑛 + 2) (1 + 𝑐

𝑥

𝐿
)

𝑛 𝑑2𝑊𝑖(𝑥)

𝑑𝑥2
 

−
𝜌0𝐴0𝜔𝑖

2

𝐸0𝐼0
(1 + 𝑐

𝑥

𝐿
)

𝑛

𝑊𝑖(𝑥) = 0 

(5) 

 

Introducing the following quantity 

 

𝑋 = (1 + 𝑐
𝑥

𝐿
) (6) 

 

which is equal to 1 at x = 0 and to 1 + c at x = L, and 

considering 

in mind that 

 

𝑑𝑥 = (
𝐿

𝑐
) 𝑑𝑋 (7) 

 

Eq. (5) simplifies as follows (Attarnejad et al. 2006, 

Banerjee and Williams 1985) 

 

𝑋2
𝑑4𝑊𝑖(𝑋)

𝑑𝑋4
+ 2(𝑛 + 2)𝑋

𝑑3𝑊𝑖(𝑋)

𝑑𝑋3
 

+(𝑛 + 1)(𝑛 + 2)
𝑑2𝑊𝑖(𝑋)

𝑑𝑋2
− 𝜇𝑖

4𝑊𝑖(𝑋) = 0 

(8) 

 

where 𝜇𝑖 = 𝐿 √
𝜌0𝐴0𝜔𝑖

2

𝐸0𝐼0

4
 is the dimensionless natural 

frequency coefficient. 

The general solution of this equation is (Attarnejad et 

al. 2006, Auciello and Ercolano 1997, Banerjee and 

Williams 1985) 

 

𝑊𝑖(𝑋) = 𝑋−
𝑛

2 [𝐶1𝐽𝑛 (
2𝜇𝑖√𝑋

𝑐
) + 𝐶2𝑌𝑛 (

2𝜇𝑖√𝑋

𝑐
) 

                 +𝐶3𝐼𝑛 (
2𝜇𝑖√𝑋

𝑐
) + 𝐶4𝐾𝑛 (

2𝜇𝑖√𝑋

𝑐
)] 

(9) 

 

where C1, C2, C3, C4 are unknown constants and Jn, Yn, In, 

Kn are the nth-order Bessel functions. 

 

 

 

 

Fig. 3 Schematic of the AFG beam with elastic supports 

2.3 Boundary conditions 
 

The boundary conditions, in the presence of constraints 

with the rotational elastic stiffnesses kR0, kRL and lateral 

translational elastic stiffnesses kT0, kTL are expressed as (Hsu 

et al. 2008) 
 

𝐷(𝑥)
𝑑2𝑊(𝑥)

𝑑𝑥2
− 𝑘𝑅0

𝑑𝑊(𝑥)

𝑑𝑥
= 0 (10) 

 

𝑑

𝑑𝑥
[𝐷(𝑥)

𝑑2𝑊(𝑥)

𝑑𝑥2
] + 𝑘𝑇0𝑊(𝑥) = 0 (11) 

 

at x = 0, and 
 

𝐷(𝑥)
𝑑2𝑊(𝑥)

𝑑𝑥2
+ 𝑘𝑅𝐿

𝑑𝑊(𝑥)

𝑑𝑥
= 0 (12) 

 

𝑑

𝑑𝑥
[𝐷(𝑥)

𝑑2𝑊(𝑥)

𝑑𝑥2
] − 𝑘𝑇𝐿𝑊(𝑥) = 0 (13) 

 

at x = L. 

Substituting Eq. (1b) and utilizing Eqs. (6)-(7), the 

boundary conditions become 
 

𝑋𝑛+2
𝑑2𝑊𝑖(𝑋)

𝑑𝑋2
−

𝑘𝑅0𝐿

𝐸0𝐼0𝑐

𝑑𝑊𝑖(𝑋)

𝑑𝑋
= 0 (14) 

 

𝑋𝑛+2
𝑑3𝑊𝑖(𝑋)

𝑑𝑋3
+ (𝑛 + 2)𝑋𝑛+1

𝑑2𝑊𝑖(𝑋)

𝑑𝑋2
 

+
𝑘𝑇0𝐿3

𝐸0𝐼0𝑐3
𝑊𝑖(𝑋) = 0 

(15) 

 

at X = 1 (x = 0), and 
 

𝑋𝑛+2
𝑑2𝑊𝑖(𝑋)

𝑑𝑋2
+

𝑘𝑅𝐿𝐿

𝐸0𝐼0𝑐

𝑑𝑊𝑖(𝑋)

𝑑𝑋
= 0 (16) 

 

𝑋𝑛+2
𝑑3𝑊𝑖(𝑋)

𝑑𝑋3
+ (𝑛 + 2)𝑋𝑛+1

𝑑2𝑊𝑖(𝑋)

𝑑𝑋2
 

−
𝑘𝑇𝐿𝐿3

𝐸0𝐼0𝑐3
𝑊𝑖(𝑋) = 0 

(17) 

 

at X = 1 + c (x = L). 

It is convenient to define the following dimensionless 

stiffness coefficients (De Rosa and Auciello 1996) 
 

𝑅0 =
𝑘𝑅0𝐿

𝐸0𝐼0
,          𝑅𝐿 =

𝑘𝑅𝐿𝐿

𝐸𝐿𝐼𝐿
, 

𝑇0 =
𝑘𝑇0𝐿3

𝐸0𝐼0
,          𝑇𝐿 =

𝑘𝑇𝐿𝐿3

𝐸𝐿𝐼𝐿
 

(18) 

 

the boundary conditions of Eqs. (14)-(17) can be expressed 

by the following non-dimensional forms 
 

𝑊𝑖
″ (1) −

𝑅0

𝑐
𝑊𝑖

′ (1) = 0 (19) 

 

𝑊𝑖
‴ (1) + (𝑛 + 2)𝑊𝑖

″(1) +
𝑇0

𝑐3
𝑊𝑖(1) = 0 (20) 

 

𝑊𝑖
″ (1 + 𝑐) +

𝑅𝐿

𝑐
𝑊𝑖

′ (1 + 𝑐) = 0 (21) 
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𝑊𝑖
‴ (1 + 𝑐) +

(𝑛 + 2)

1 + 𝑐
𝑊𝑖

″ (1 + 𝑐) 

−
𝑇𝐿

𝑐3
𝑊𝑖(1 + 𝑐) = 0 

(22) 

 

where 𝑊𝑖
′(𝑋) =

𝑑𝑊𝑖(𝑋)

𝑑𝑋
,   𝑊𝑖

″(𝑋) =
𝑑2𝑊𝑖(𝑋)

𝑑2𝑋
, 

𝑊𝑖
‴(𝑋) =

𝑑3𝑊𝑖(𝑋)

𝑑3𝑋
. 

 

2.4 Determination of the natural frequency 
 

By substituting the general solution (9) into the non-

dimensional boundary conditions given in Eqs. (19)-(21), a 

homogeneous system of four equations, for the four 

integration constant, can be expressed as 

 

 

 

[

𝐹11 𝐹12 𝐹13 𝐹14

𝐹21 𝐹22 𝐹23 𝐹24

𝐹31 𝐹32 𝐹33 𝐹34

𝐹41 𝐹42 𝐹43 𝐹44

] [

𝐶1

𝐶2

𝐶3

𝐶4

] = [

0
0
0
0

] (23) 

 

or in compact matrix form as follows 
 

FC = 0 (24) 
 

where the constant coefficients matrix F for the AFG beams 

and/or uniform beam (c = 0.0) are given explicitly in the 

Appendix A. In order to have a non-trivial solution, the 

determinant of this system must be zero 
 

𝑑𝑒𝑡 𝐅 = 0 (25) 
 

 
 

Table 1 First square three dimensionless natural frequency coefficients μi
2, i = 1, 2, 3 of the AFG beam (n = 2, c = var.) 

with different boundary conditions in Example 1 

Boundary 

conditions 
c μi

2 Present 

Ghazaryan 

et al. 

(2018) 

Shafiei 

et al. 

(2016) 

Kukla and 

Rychlewska 

(2016) 

Huang 

and Li 

(2010) 

Abrate 

(1995) 

Cortinez 

and Laura 

(1994) 

C
-P

 

(T
0
 =

 R
0
 =

 ∞
, 

T
L
 =

 ∞
, 

R
L
 =

 0
) 

-0.1 

i = 1 14.848896 14.848896 14.848890 14.844562 14.848896 14.848896 14.85 

i = 2 47.637037 47.637037 47.636961 47.647237 47.637037 47.637037 - 

i = 3 99.171635 99.171635 - 99.206918 99.171653 99.171635 - 

0.0 

i = 1 15.418206 15.418206 15.418198 15.418206 15.418206 15.418206 15.41 

i = 2 49.964862  49.964862  49.964773  49.964862  49.964862  49.964862 - 

i = 3 104.247696 104.247696 - 104.247696 104.247702 104.24770 - 

0.1 

i = 1 15.968710 15.9687099 15.968701 15.950015 15.9687099 15.9687099 15.96 

i = 2 52.237227 52.237227 52.237123 52.198883 52.237227 52.237227 ̶ 

i = 3 109.202353 109.20235 ̶ 109.134912 109.202354 109.20235 ̶ 

0.2 

i = 1 16.502899 16.502899 16.502889 16.445277 16.502899 16.502899 16.50 

i = 2 54.461463 54.4614625 54.461344 54.360368 54.4614625 54.4614625 ̶ 

i = 3 114.051623 114.051623 ̶ 113.888586 114.051631 114.051623 ̶ 

1.0 

i = 1 20.366601 20.3666 ̶ ̶ ̶ ̶ ̶ 

i = 2 71.047974 71.04797 ̶ ̶ ̶ ̶ ̶ 

i = 3 150.200858 150.20086 ̶ ̶ ̶ ̶ ̶ 

2.0 

i = 1 24.582600 24.5826 ̶ ̶ ̶ ̶ ̶ 

i = 2 89.983683 89.98368 ̶ ̶ ̶ ̶ ̶ 

i = 3 191.448135 191.44814 ̶ ̶ ̶ ̶ ̶ 

C
-C

 

(T
0
 =

 R
0
 =

 ∞
, 

T
L
 =

 R
L
 =

 ∞
) 

-0.1 

i = 1 21.240978 21.240978 21.240968 21.242905 21.240978 ̶ ̶ 

i = 2 58.550054 58.550055 58.549953 58.567526 58.550055 ̶ ̶ 

i = 3 114.780242 114.780242 ̶ 114.824704 114.780278 ̶ ̶ 

0.0 

i = 1 22.373285 22.373285 22.373274 22.373285 22.373285 22.3732854 22.375 

i = 2 61.672823 61.672823 61.672704 61.672823 61.672823 61.672823 ̶ 

i = 3 120.903392 120.903392 ̶ 120.903392 120.903400 120.903392 ̶ 

0.1 

i = 1 23.479607 23.479607 23.479594 23.460013 23.479607 23.479607 23.61 

i = 2 64.721068 64.721068 64.720931 64.678046 64.721068 64.721068 ̶ 

i = 3 126.878017 126.87802 ̶ 126.802905 126.878051 126.87804 ̶ 

0.2 

i = 1 24.563418 24.563418 24.563402 24.508817 24.563418 24.563418 25.13 

i = 2 67.704755 67.704755 67.704599 67.596273 67.704755 67.704755 ̶ 

i = 3 132.723977 132.72398 ̶ 132.546612 132.724068 132.72398 ̶ 
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Now, having the values of n, c, T0, TL, R0 and RL, 

positive real roots of this equation are the natural frequency 

coefficients μi of the AFG and/or uniform beams with the 

elastic end restraints, shown in Fig. 2. It should be added, 

these were calculated numerically. 

 

 

3. Numerical results and discussion 
 

In order to illustrate the accuracy, effectiveness and 

application of the presented formulations, four numerical 

examples are analyzed in this part. The results are compared 

with those obtained by other researchers. It should be noted, 

by using the proposed formulations, one can found the exact 

natural frequencies of the uniform and AFG beams with 

classical and non-classical boundary conditions at both 

ends. Accordingly, if the dimensionless stiffness 

coefficients are allowed to become infinity or zero, then the 

classical restraints can be easily recovered. For example, if 

R0 = T0 = ∞ and RL = TL = 0, then the beam is considered as 

the cantilevered beam. If R0 = RL = 0 and T0 = TL = ∞, then 

the frequency equation of the simply supported beam is 

obtained. If R0 = RL = ∞ and T0 = TL = ∞, then the beam is 

considered as the clamped-clamped beam. 

 

 

In the following, several cases with the classical and 

non-classical boundary conditions will be considered and 

the effects of the elastic supports and AFG parameters on 

the first three natural frequencies of them will be studied. 
 

3.1 Verification 
 

Example 1. In this example, the first square three 

dimensionless natural frequency coefficients μi
2 (i = 1, 2, 3) 

are obtained for the clamped-pinned and clamped-clamped 

AFG beams (n = 2, c = var.). Comparison of the results with 

the other approaches are listed in Table 1. Based on the 

Table 1, it is observed that the proposed formulation for 

calculating the natural frequencies has a high accuracy and 

efficiency. 

Example 2. In this case, the numerical values of μi (i = 

1, 2, 3) for the AFG beam (n = 1, c = 0.5) with T0 = TL = ∞ 

and various values of R0 and RL are computed and arranged 

in Table 2. Table 2 shows the results of present study, as 

well as those of other methods. According to the findings, 

the predictions of the proposed technique agree well with 

those of other approaches. 

Example 3. In this example, the first three dimensionless 

natural frequency coefficients of the AFG beam (n = 2, 

Table 2 First three dimensionless natural frequency coefficients μi, i = 1, 2, 3 of the AFG beam 

(n = 1, c = 0.5) for T0 = TL = ∞ and various values of R0 and RL in Example 2 

R0 RL μi Present 
Hsu et al. 

(2008) 

De Rosa and 

Auciello (1996) 

Auciello 

(1995) 
Goel (1976) 

0 0 

i = 1 3.488810 3.48881 ̶ 3.4888 3.488 

i = 2 6.997232 6.99720 ̶ 6.9972 6.997 

i = 3 10.491234 10.49113 ̶ 10.4011 ̶ 

0 0.01 

i = 1 3.491358 3.49136 3.49136 3.4913 3.491 

i = 2 6.998324 6.99829 6.99832 6.9983 6.998 

i = 3 10.491935 10.49183 10.49194 10.4918 ̶ 

0 0.1 

i = 1 3.513690 3.51369 3.51369 3.5136 3.513 

i = 2 7.008049 7.00802 7.00805 6.9808 7.008 

i = 3 10.498203 10.49810 10.49820 10.4981 ̶ 

0 1 

i = 1 3.690754 3.69075 3.69075 3.6907 3.691 

i = 2 7.096086 7.09605 7.09609 7.0894 7.096 

i = 3 10.557026 10.55692 10.55703 10.5569 ̶ 

0 10 

i = 1 4.202763 4.20276 4.20276 4.2027 4.203 

i = 2 7.514394 7.51435 7.51439 7.5143 7.514 

i = 3 10.902774 10.90264 10.90277 10.9020 ̶ 

1 0 

i = 1 3.591244 3.59124 3.59124 3.5912 3.633 

i = 2 7.061073 7.06104 7.06107 7.0610 7.090 

i = 3 10.537028 10.53692 10.53703 10.5369 ̶ 

1 0.1 

i = 1 3.615164 3.61516 3.61516 3.5936 3.656 

i = 2 7.071702 7.07167 7.07170 7.0621 7.100 

i = 3 10.543939 10.54383 10.54394 10.5377 ̶ 

1 1 

i = 1 3.786550 3.78655 3.78654 3.7865 3.826 

i = 2 7.158314 7.15828 7.15831 7.1583 7.186 

i = 3 10.602291 10.60218 10.60229 10.6022 ̶ 
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Table 3 First three dimensionless natural frequency coefficients μi, i = 1, 2, 3 of the AFG beam (n = 2, c = 1) 

for T0 = TL = ∞ and various values of R0 and RL in Example 3 

R0 RL μi Present 
Attarnejad 

et al. (2011) 

Hsu et al. 

(2008) 

De Rosa and 

Auciello (1996) 

Auciello 

(1995) 

Grossi and 

Bhat (1991) 

0 0 

i = 1 3.730038 3.7300 3.73003 3.7300 3.73002 3.7300 

i = 2 7.630248 7.6302 7.63020 7.6302 7.63025 7.4750 

i = 3 11.421711 11.4217 11.42157 11.4217 11.42171 11.4201 

0 0.01 

i = 1 3.734549 3.7345 3.73454 3.7345 ̶ 3.7345 

i = 2 7.631715 7.6317 7.63167 7.6317 ̶ 7.4696 

i = 3 11.422607 11.4226 11.42247 11.4226 ̶ 11.4219 

0 0.1 

i = 1 3.773716 3.7737 3.77371 3.7737 3.77372 3.8643 

i = 2 7.644772 7.6448 7.64473 7.6447 7.64477 7.3921 

i = 3 11.430612 11.4306 11.43047 11.4306 11.43061 11.4306 

0 1 

i = 1 4.063575 4.0636 4.06357 4.0635 ̶ 4.0635 

i = 2 7.761934 7.7619 7.76189 7.7619 ̶ 7.7619 

i = 3 11.505381 11.5054 11.50523 11.5054 ̶ 11.5038 

0 10 

i = 1 4.754892 4.7549 4.75488 4.7549 4.75489 4.7625 

i = 2 8.284662 8.2847 8.28460 8.2846 8.28466 8.2846 

i = 3 11.927749 11.9277 11.92757 11.9277 11.92775 11.9277 

1 0 

i = 1 3.798407 3.7984 3.79840 3.7984 ̶ 3.7984 

i = 2 7.680343 7.6803 7.68029 7.6803 ̶ 7.6803 

i = 3 11.460457 11.4605 11.46031 11.4604 ̶ 11.4597 

1 0.1 

i = 1 3.840923 3.8409 3.84091 3.8409 3.84092 3.8409 

i = 2 7.694692 7.6947 7.69464 7.6946 7.69469 7.6946 

i = 3 11.469301 11.4693 11.46915 11.4693 11.46930 11.4694 

1 1 

i = 1 4.124910 4.1249 4.12490 4.1249 4.12491 4.1249 

i = 2 7.810550 7.8105 7.81050 7.8105 7.81055 7.8105 

i = 3 11.543621 11.5436 11.54347 11.5436 11.543621 11.5435 
 

Table 4 First three dimensionless natural frequency coefficients μi, i = 1, 2, 3 of the AFG beam 

(n = 2, c = 0.4) for R0 = RL = 0 and various values of T0 and TL in Example 4 

T0 TL μi Present 
Hein and 

Feklistova (2011) 

Hsu et al. 

(2008) 

De Rosa and 

Auciello (1996) 

0 0 

i = 1 0.000000 ̶ 0.00000 ̶ 

i = 2 0.000000 ̶ 0.00000 ̶ 

i = 3 5.191757 ̶ 5.19176 ̶ 

0.001 0.001 

i = 1 0.216565 0.2166 0.21656 ̶ 

i = 2 0.318023 0.3180 0.31795 ̶ 

i = 3 5.191778 5.1918 5.191778 ̶ 

0.01 0.01 

i = 1 0.385095 0.3851 0.38510 ̶ 

i = 2 0.565390 0.5654 0.56539 ̶ 

i = 3 5.191962 5.1920 5.19196 ̶ 

0.1 0.1 

i = 1 0.684617 0.6846 0.68462 ̶ 

i = 2 1.005276 1.0053 1.00528 ̶ 

i = 3 5.193807 5.1939 5.19381 ̶ 

1 1 

i = 1 1.214042 1.2140 1.21404 1.2140 

i = 2 1.785087 1.7851 1.78509 1.7851 

i = 3 5.212235 5.2123 5.21223 5.2122 
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Table 4 Continued 

T0 TL μi Present 
Hein and 

Feklistova (2011) 

Hsu et al. 

(2008) 

De Rosa and 

Auciello (1996) 

10 10 

i = 1 2.100958 2.1009 2.10096 2.1010 

i = 2 3.130230 3.1303 3.13023 3.1302 

i = 3 5.393758 5.3938 5.39376 5.3938 

100 100 

i = 1 3.072413 3.0723 3.07241 3.0724 

i = 2 5.066695 5.0668 5.06670 5.0667 

i = 3 6.711520 6.7116 6.71152 6.7115 

1000 1000 

i = 1 3.375525 3.3754 3.37553 3.3755 

i = 2 6.569634 6.5697 6.56963 6.5696 

i = 3 9.288757 9.2888 9.28876 9.2888 
 

  

(a) Uniform beam (b) AFG beam (n = 2, c = 0.5) 

Fig. 4 Plot first three dimensionless natural frequency coefficients μi, i = 1, 2, 3 for R0 = RL = 0 and various values 

of T0 and TL 
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c = 1) for T0 = TL = ∞ and various values of R0 and RL are 

calculated and presented in Table 3. From Table 3, it is 

observed that the results of the presented method are very 

close to the values obtained by other techniques. 

Example 4. In this case, the first three dimensionless 

natural frequency coefficients μi (i = 1, 2, 3) are obtained 

for the AFG beam (n = 2, c = 0.4) with R0 = RL = 0 and 

various values of T0 and TL. Comparison of the responses 

with those computed by other available approaches are 

arranged in Table 4. According to the results, the proposed 

method gives a high-accuracy prediction. 

 

3.2 Effects of elastic supports 
 

In this section, the influences of the elastic supports on 

the natural frequencies of the uniform and AFG beams are 

investigated comprehensively. It is reminded that the 

stiffness of elastic supports are modeled with linear 

rotational and translational springs. In addition, for instance 

the behavior of the AFG beam with n = 2 and c = 0.5 is 

 

 

studied. Moreover, It should be noticed that four cases of 

the elastic end conditions, namely, R0 = RL = 0 and T0, TL = 

var.; T0 = TL = ∞ and R0, RL = var.; T0 = R0 = ∞ and TL, RL = 

var.; and also TL = RL = 0 and T0, R0 = var. are considered. 

Here, var. denotes variable. 

In Figs. 4 through 7, variations of the first three 

dimensionless natural frequency coefficients μi (i = 1, 2, 3) 

of the uniform beam and AFG beam (n = 2, c = 0.5) with 

respect to various quantities of the rotational and 

translational stiffness coefficients (i.e., T0, R0, TL and RL) 

from 0.1 (corresponding to low stiffness) up to 105 

(corresponding to high stiffness) in the foregoing cases are 

plotted. Moreover, the corresponding numerical values of 

the first three dimensionless natural frequency coefficients 

of the uniform beam are presented with different elastic 

supports in Tables 5, 7, 9 and 11. Similarly, Tables 6, 8, 10 

and 12 indicate the corresponding numerical quantities of μi 

(i = 1, 2, 3) for the AFG beam (n = 2, c = 0.5) with various 

elastic supports. 

According to Fig. 4(a) and Table 5, for the free supported 

Table 5 First three dimensionless natural frequency coefficients μi, i = 1, 2, 3 of the uniform beam for R0 = RL = 0 

and various values of T0 and TL 

T0 μi 
TL 

0.1 0.5 1 5 10 50 100 500 105 

0.1 

i = 1 0.6685 0.7293 0.7348 0.7388 0.7393 0.7396 0.7397 0.7397 0.7397 

i = 2 0.8801 1.2050 1.4206 2.0927 2.4570 3.3401 3.6077 3.8635 3.9279 

i = 3 4.7319 4.7357 4.7405 4.7789 4.8280 5.2232 5.6291 6.6708 7.0671 

0.5 

i = 1 0.7293 0.9979 1.0585 1.0967 1.1005 1.1033 1.1037 1.1040 1.1040 

i = 2 1.2050 1.3157 1.4733 2.1062 2.4660 3.3463 3.6141 3.8701 3.9346 

i = 3 4.7357 4.7395 4.7442 4.7825 4.8313 5.2253 5.6305 6.6719 7.0682 

1 

i = 1 0.7348 1.0585 1.1843 1.2912 1.3010 1.3081 1.3090 1.3096 1.3098 

i = 2 1.4206 1.4733 1.5642 2.1250 2.4780 3.3543 3.6222 3.8784 3.9429 

i = 3 4.7405 4.7442 4.7489 4.7869 4.8355 5.2279 5.6323 6.6733 7.0697 

5 

i = 1 0.7388 1.0967 1.2912 1.7424 1.8418 1.9080 1.9149 1.9202 1.9215 

i = 2 2.0927 2.1062 2.1250 2.3334 2.5952 3.4201 3.6881 3.9456 4.0101 

i = 3 4.7789 4.7825 4.7869 4.8232 4.8696 5.2490 5.6468 6.6844 7.0811 

10 

i = 1 0.7393 1.1005 1.3010 1.8418 2.0323 2.1981 2.2153 2.2282 2.2313 

i = 2 2.4570 2.4660 2.4780 2.5952 2.7666 3.5057 3.7723 4.0308 4.0951 

i = 3 4.8280 4.8313 4.8355 4.8696 4.9134 5.2764 5.6656 6.6985 7.0956 

50 

i = 1 0.7396 1.1033 1.3081 1.9080 2.1981 2.6844 2.7677 2.8331 2.8488 

i = 2 3.3401 3.3463 3.3543 3.4201 3.5057 4.0392 4.3219 4.6160 4.6845 

i = 3 5.2232 5.2253 5.2279 5.2490 5.2764 5.5242 5.8375 6.8201 7.2188 

100 

i = 1 0.7397 1.1037 1.3090 1.9149 2.2153 2.7677 2.8768 2.9665 2.9885 

i = 2 3.6077 3.6141 3.6222 3.6881 3.7723 4.3219 4.6638 5.0596 5.1478 

i = 3 5.6291 5.6305 5.6323 5.6468 5.6656 5.8375 6.0762 6.9861 7.3855 

500 

i = 1 0.7397 1.1040 1.3096 1.9202 2.2282 2.8331 2.9665 3.0815 3.1104 

i = 2 3.8635 3.8701 3.8784 3.9456 4.0308 4.6160 5.0596 5.8053 6.0114 

i = 3 6.6708 6.6719 6.6733 6.6844 6.6985 6.8201 6.9861 7.8900 8.4376 

105 

i = 1 0.7397 1.1040 1.3098 1.9215 2.2313 2.8488 2.9885 3.1104 3.1413 

i = 2 3.9279 3.9346 3.9429 4.0101 4.0951 4.6845 5.1478 6.0114 6.2807 

i = 3 7.0671 7.0682 7.0697 7.0811 7.0956 7.2188 7.3855 8.4376 9.4164 
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beam with two translational springs (corresponding to R0 = 

RL = 0 and T0, TL = var.), increase of T0 and TL from the low 

translational stiffnesses (T0 = TL = 0.1) to the high 

translational stiffnesses (T0 = TL = 105), the first three 

dimensionless natural frequency coefficients of the uniform 

beam increase from 0.6685, 0.8801 and 4.7319, and 

approach 3.1413, 6.2807 and 9.4164 (close to the behavior 

of pinned-pinned beam), respectively. Correspon-dingly, 

Fig. 4(b) and Table 6 show that when the elastic 

translational stiffnesses rise from 0.1 to 105, μi (i = 1, 2, 3) 

of the AFG beam (n = 2, c = 0.5) increase from 0.6808, 

1.0411 and 5.3058, and tend to 3.4743, 7.0006 and 10.4877, 

respectively. 

From Fig. 4 and Tables 5 and 6, it is observed that 

increasing T0 and TL form 0.1 to 105, can increase the first 

dimensionless natural frequency coefficient μ1 of the 

uniform and AFG beams to a maximum of 4.70 and 5.10 

times, respectively. Moreover, in this case and with the 

same situations, the natural frequency coefficients of the 

 

 

AFG beam (n = 2, c = 0.5) are always greater than μi (i = 1, 

2, 3) of the uniform beam. Also, irrespective of type of the 

beam, by increase of the stiffness of the translational 

springs, the first three dimensionless natural frequency 

coefficients always increase. 

Based on the Fig. 5(a) and Table 7, for the simply 

supported beam with two rotational springs (corresponding 

to T0 = TL = ∞ and R0, RL = var.), as R0 and RL increasing 

from low rotational stiffnesses (R0 = RL = 0.1) to high 

rotational stiffnesses (R0 = RL = 105), μi (i = 1, 2, 3) of the 

uniform beam increase from 3.1727, 6.2989 and 9.4353, 

and approach limit value 4.7300, 7.8532 and 10.9956 (close 

to the behavior of clamped-clamped beam), respectively. 

Similarly, according to Fig. 5(b) and Table 8, when the 

elastic rotational stiffnesses R0 and RL increase from 0.1 up 

to 105, the first three dimensionless natural frequency 

coefficients of the AFG beam (n = 2, c = 0.5) rise from 

3.5136, 7.0216 and 10.5100, to 5.2714, 8.7436 and 

12.2373, respectively. 

Table 6 First three dimensionless natural frequency coefficients μi, i = 1, 2, 3 of the AFG beam (n = 2, c = 0.5) 

for R0 = RL = 0 and various values of T0 and TL 

T0 μi 
TL 

0.1 0.5 1 5 10 50 100 500 105 

0.1 

i = 1 0.6808 0.6936 0.6949 0.6960 0.6961 0.6962 0.6963 0.6963 0.6963 

i = 2 1.0411 1.5262 1.8086 2.6667 3.1195 4.1032 4.3344 4.5227 4.5669 

i = 3 5.3058 5.3112 5.3180 5.3743 5.4482 6.0596 6.6220 7.6871 7.9824 

0.5 

i = 1 0.8871 1.0168 1.0293 1.0380 1.0390 1.0398 1.0399 1.0400 1.0400 

i = 2 1.1939 1.5556 1.8247 2.6721 3.1237 4.1071 4.3387 4.5271 4.5713 

i = 3 5.3087 5.3141 5.3209 5.3770 5.4507 6.0609 6.6229 7.6879 7.9833 

1 

i = 1 0.9199 1.1721 1.2075 1.2302 1.2327 1.2346 1.2348 1.2350 1.2351 

i = 2 1.3680 1.6036 1.8482 2.6792 3.1289 4.1121 4.3439 4.5326 4.5769 

i = 3 5.3123 5.3177 5.3245 5.3803 5.4538 6.0625 6.6240 7.6890 7.9844 

5 

i = 1 0.9405 1.3710 1.5660 1.7857 1.8075 1.8228 1.8246 1.8260 1.8264 

i = 2 1.9877 2.0366 2.1173 2.7433 3.1730 4.1517 4.3862 4.5766 4.6211 

i = 3 5.3417 5.3469 5.3535 5.4075 5.4788 6.0754 6.6329 7.6973 7.9930 

10 

i = 1 0.9427 1.3914 1.6237 2.0365 2.0948 2.1338 2.1381 2.1415 2.1423 

i = 2 2.3389 2.3670 2.4087 2.8387 3.2328 4.2011 4.4388 4.6314 4.6761 

i = 3 5.3785 5.3835 5.3898 5.4418 5.5103 6.0919 6.6442 7.7079 8.0038 

50 

i = 1 0.9444 1.4054 1.6608 2.3496 2.6020 2.8485 2.8766 2.8981 2.9032 

i = 2 3.2760 3.2892 3.3065 3.4649 3.6790 4.5520 4.8187 5.0328 5.0803 

i = 3 5.6681 5.6717 5.6763 5.7144 5.7652 6.2342 6.7410 7.7952 8.0933 

100 

i = 1 0.9446 1.4070 1.6648 2.3857 2.6870 3.0521 3.0997 3.1362 3.1450 

i = 2 3.6339 3.6460 3.6615 3.7957 3.9737 4.8377 5.1547 5.4123 5.4665 

i = 3 5.9879 5.9907 5.9941 6.0224 6.0601 6.4254 6.8731 7.9099 8.2103 

500 

i = 1 0.9448 1.4082 1.6679 2.4119 2.7501 3.2480 3.3257 3.3871 3.4021 

i = 2 4.0690 4.0807 4.0954 4.2191 4.3793 5.3150 5.8278 6.3924 6.5124 

i = 3 7.1186 7.1204 7.1225 7.1401 7.1629 7.3717 7.6641 8.7123 9.0705 

105 

i = 1 0.9448 1.4085 1.6686 2.4180 2.7647 3.2992 3.3870 3.4571 3.4743 

i = 2 4.1972 4.2087 4.2233 4.3446 4.5009 5.4513 6.0326 6.8118 7.0006 

i = 3 7.7888 7.7905 7.7927 7.8104 7.8330 8.0334 8.3124 9.7003 10.4877 
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(a) Uniform beam (b) AFG beam (n = 2, c = 0.5) 

Fig. 5 Plot first three dimensionless natural frequency coefficients μi, i = 1, 2, 3 for T0 = TL = ∞ and various values 

of R0 and RL 

Table 7 First three dimensionless natural frequency coefficients μi, i = 1, 2, 3 of the uniform beam for T0 = TL = ∞ 

and various values of R0 and RL 

R0 μi 
RL 

0.1 0.5 1 5 10 50 100 500 105 

0.1 

i = 1 3.1727 3.2287 3.2881 3.5478 3.6781 3.8684 3.9024 3.9321 3.9398 

i = 2 6.2989 6.3290 6.3637 6.5600 6.6946 6.9542 7.0102 7.0617 7.0756 

i = 3 9.4353 9.4558 9.4801 9.6331 9.7566 10.0493 10.1234 10.1951 10.2150 

0.5 

i = 1 3.2287 3.2836 3.3417 3.5980 3.7274 3.9172 3.9512 3.9809 3.9887 

i = 2 6.3290 6.3588 6.3932 6.5881 6.7221 6.9812 7.0371 7.0886 7.1025 

i = 3 9.4558 9.4762 9.5004 9.6529 9.7760 10.0683 10.1424 10.2140 10.2340 

1 

i = 1 3.2881 3.3417 3.3988 3.6520 3.7806 3.9702 4.0043 4.0340 4.0418 

i = 2 6.3637 6.3932 6.4273 6.6207 6.7541 7.0125 7.0685 7.1199 7.1338 

i = 3 9.4801 9.5004 9.5245 9.6764 9.7991 10.0910 10.1650 10.2367 10.2566 
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Table 7 Continued 

R0 μi 
RL 

0.1 0.5 1 5 10 50 100 500 105 

5 

i = 1 3.5478 3.5980 3.6520 3.8974 4.0257 4.2188 4.2540 4.2848 4.2929 

i = 2 6.5600 6.5881 6.6207 6.8077 6.9384 7.1953 7.2516 7.3034 7.3175 

i = 3 9.6331 9.6529 9.6764 9.8250 9.9459 10.2357 10.3097 10.3815 10.4016 

10 

i = 1 3.6781 3.7274 3.7806 4.0257 4.1557 4.3537 4.3900 4.4219 4.4303 

i = 2 6.6946 6.7221 6.7541 6.9384 7.0682 7.3262 7.3831 7.4356 7.4499 

i = 3 9.7566 9.7760 9.7991 9.9459 10.0657 10.3551 10.4294 10.5016 10.5218 

50 

i = 1 3.8684 3.9172 3.9702 4.2188 4.3537 4.5629 4.6018 4.6361 4.6451 

i = 2 6.9542 6.9812 7.0125 7.1953 7.3262 7.5911 7.6503 7.7053 7.7203 

i = 3 10.0493 10.0683 10.0910 10.2357 10.3551 10.6480 10.7242 10.7987 10.8196 

100 

i = 1 3.9024 3.9512 4.0043 4.2540 4.3900 4.6018 4.6413 4.6761 4.6852 

i = 2 7.0102 7.0371 7.0685 7.2516 7.3831 7.6503 7.7103 7.7660 7.7811 

i = 3 10.1234 10.1424 10.1650 10.3097 10.4294 10.7242 10.8013 10.8765 10.8975 

500 

i = 1 3.9321 3.9809 4.0340 4.2848 4.4219 4.6361 4.6761 4.7114 4.7206 

i = 2 7.0617 7.0886 7.1199 7.3034 7.4356 7.7053 7.7660 7.8224 7.8377 

i = 3 10.1951 10.2140 10.2367 10.3815 10.5016 10.7987 10.8765 10.9527 10.9740 

105 

i = 1 3.9398 3.9887 4.0418 4.2929 4.4303 4.6451 4.6852 4.7206 4.7300 

i = 2 7.0756 7.1025 7.1338 7.3175 7.4499 7.7203 7.7811 7.8377 7.8532 

i = 3 10.2150 10.2340 10.2566 10.4016 10.5218 10.8196 10.8975 10.9740 10.9956 
 

Table 8 First three dimensionless natural frequency coefficients μi, i = 1, 2, 3 of the AFG beam (n = 2, c = 0.5) 

for T0 = TL = ∞ and various values of R0 and RL 

R0 μi 
RL 

0.1 0.5 1 5 10 50 100 500 105 

0.1 

i = 1 3.5136 3.6134 3.7135 4.0984 4.2648 4.4818 4.5177 4.5482 4.5561 

i = 2 7.0216 7.0650 7.1145 7.3814 7.5511 7.8479 7.9071 7.9601 7.9741 

i = 3 10.5100 10.5380 10.5710 10.7730 10.9278 11.2647 11.3435 11.4175 11.4377 

0.5 

i = 1 3.5512 3.6497 3.7487 4.1312 4.2973 4.5145 4.5505 4.5811 4.5890 

i = 2 7.0461 7.0891 7.1383 7.4040 7.5732 7.8698 7.9290 7.9820 7.9960 

i = 3 10.5277 10.5556 10.5885 10.7901 10.9446 11.2812 11.3600 11.4340 11.4541 

1 

i = 1 3.5927 3.6899 3.7877 4.1678 4.3337 4.5514 4.5875 4.6183 4.6262 

i = 2 7.0746 7.1174 7.1662 7.4305 7.5992 7.8955 7.9547 8.0078 8.0218 

i = 3 10.5490 10.5768 10.6096 10.8105 10.9647 11.3009 11.3797 11.4538 11.4739 

5 

i = 1 3.7988 3.8904 3.9838 4.3561 4.5228 4.7451 4.7823 4.8141 4.8223 

i = 2 7.2445 7.2857 7.3328 7.5905 7.7569 8.0528 8.1124 8.1659 8.1801 

i = 3 10.6870 10.7142 10.7463 10.9438 11.0962 11.4310 11.5099 11.5841 11.6044 

10 

i = 1 3.9192 4.0086 4.1002 4.4711 4.6398 4.8669 4.9051 4.9379 4.9464 

i = 2 7.3710 7.4114 7.4576 7.7119 7.8776 8.1747 8.2350 8.2891 8.3035 

i = 3 10.8044 10.8312 10.8629 11.0582 11.2095 11.5440 11.6233 11.6979 11.7183 

50 

i = 1 4.1214 4.2084 4.2985 4.6718 4.8462 5.0856 5.1264 5.1615 5.1705 

i = 2 7.6446 7.6839 7.7291 7.9806 8.1473 8.4521 8.5147 8.5712 8.5862 

i = 3 11.1119 11.1381 11.1691 11.3614 11.5121 11.8505 11.9317 12.0086 12.0296 

100 

i = 1 4.1614 4.2481 4.3381 4.7126 4.8885 5.1310 5.1724 5.2081 5.2173 

i = 2 7.7098 7.7490 7.7941 8.0456 8.2132 8.5207 8.5842 8.6414 8.6567 

i = 3 11.1975 11.2236 11.2545 11.4466 11.5977 11.9384 12.0204 12.0981 12.1194 
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From Fig. 5 and Tables 7 and 8, it is concluded that 

increase of R0 and RL form 0.1 to 105, can increase μ1 of the 

uniform and AFG beams up to 1.49 and 1.50 times, respecti- 
 

 

 

 

vely. Furthermore, in this case and with the same 

conditions, the natural frequencies of the AFG beam (n = 2, 

c = 0.5) are always larger than the uniform ones. Moreover, 
 

 

 

Table 8 Continued 

R0 μi 
RL 

0.1 0.5 1 5 10 50 100 500 105 

500 

i = 1 4.1974 4.2839 4.3737 4.7495 4.9269 5.1723 5.2144 5.2506 5.2599 

i = 2 7.7717 7.8109 7.8559 8.1079 8.2763 8.5869 8.6512 8.7093 8.7248 

i = 3 11.2835 11.3095 11.3404 11.5327 11.6843 12.0277 12.1108 12.1895 12.2111 

105 

i = 1 4.2070 4.2934 4.3832 4.7593 4.9371 5.1834 5.2256 5.2620 5.2714 

i = 2 7.7888 7.8279 7.8729 8.1250 8.2937 8.6052 8.6697 8.7281 8.7436 

i = 3 11.3079 11.3340 11.3648 11.5572 11.7090 12.0533 12.1366 12.2157 12.2373 
 

  

(a) Uniform beam (b) AFG beam (n = 2, c = 0.5) 

Fig. 6 Plot first three dimensionless natural frequency coefficients μi, i = 1, 2, 3 for T0 = R0 = ∞ and various values 

of TL and RL 
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Table 9 First three dimensionless natural frequency coefficients μi, i = 1, 2, 3 of the uniform beam for T0 = R0 = ∞ 

and various values of TL and RL 

TL μi 
RL 

0.1 0.5 1 5 10 50 100 500 105 

0.1 

i = 1 1.9163 1.9970 2.0641 2.2437 2.2970 2.3531 2.3613 2.3681 2.3698 

i = 2 4.7166 4.7925 4.8694 5.1649 5.2892 5.4459 5.4712 5.4926 5.4981 

i = 3 7.8675 7.9142 7.9659 8.2161 8.3532 8.5608 8.5983 8.6309 8.6394 

0.5 

i = 1 1.9697 2.0422 2.1033 2.2696 2.3197 2.3727 2.3804 2.3868 2.3885 

i = 2 4.7204 4.7961 4.8727 5.1671 5.2910 5.4473 5.4725 5.4938 5.4993 

i = 3 7.8683 7.9150 7.9666 8.2168 8.3537 8.5612 8.5986 8.6312 8.6397 

1 

i = 1 2.0304 2.0943 2.1491 2.3007 2.3470 2.3965 2.4037 2.4097 2.4112 

i = 2 4.7251 4.8005 4.8768 5.1700 5.2933 5.4489 5.4740 5.4953 5.5008 

i = 3 7.8693 7.9160 7.9676 8.2175 8.3544 8.5616 8.5991 8.6316 8.6401 

5 

i = 1 2.3756 2.4043 2.4301 2.5084 2.5342 2.5627 2.5670 2.5705 2.5714 

i = 2 4.7638 4.8365 4.9099 5.1925 5.3117 5.4624 5.4868 5.5074 5.5128 

i = 3 7.8776 7.9241 7.9754 8.2237 8.3596 8.5653 8.6025 8.6348 8.6432 

10 

i = 1 2.6426 2.6549 2.6662 2.7022 2.7147 2.7288 2.7310 2.7327 2.7332 

i = 2 4.8133 4.8822 4.9520 5.2210 5.3349 5.4795 5.5029 5.5228 5.5279 

i = 3 7.8880 7.9342 7.9852 8.2315 8.3661 8.5699 8.6067 8.6388 8.6471 

50 

i = 1 3.4021 3.4064 3.4106 3.4259 3.4321 3.4397 3.4409 3.4419 3.4422 

i = 2 5.2120 5.2506 5.2905 5.4524 5.5252 5.6218 5.6379 5.6517 5.6553 

i = 3 7.9758 8.0192 8.0669 8.2954 8.4195 8.6076 8.6416 8.6713 8.6791 

100 

i = 1 3.6456 3.6635 3.6818 3.7557 3.7888 3.8329 3.8403 3.8467 3.8483 

i = 2 5.6202 5.6355 5.6517 5.7219 5.7562 5.8046 5.8130 5.8203 5.8222 

i = 3 8.0946 8.1334 8.1760 8.3788 8.4889 8.6565 8.6871 8.7138 8.7207 

500 

i = 1 3.8801 3.9216 3.9664 4.1725 4.2819 4.4502 4.4815 4.5091 4.5164 

i = 2 6.6700 6.6764 6.6836 6.7218 6.7459 6.7893 6.7983 6.8065 6.8088 

i = 3 8.9982 9.0033 9.0090 9.0381 9.0559 9.0868 9.0931 9.0988 9.1003 

105 

i = 1 3.9395 3.9884 4.0415 4.2923 4.4295 4.6442 4.6843 4.7197 4.7290 

i = 2 7.0738 7.1006 7.1318 7.3146 7.4465 7.7158 7.7765 7.8329 7.8483 

i = 3 10.2096 10.2284 10.2507 10.3939 10.5127 10.8073 10.8848 10.9608 10.9821 
 

Table 10 First three dimensionless natural frequency coefficients μi, i = 1, 2, 3 of the AFG beam (n = 2, c = 0.5) 

for T0 = R0 = ∞ and various values of TL and RL 

TL μi 
RL 

0.1 0.5 1 5 10 50 100 500 105 

0.1 

i = 1 1.8268 1.9883 2.0974 2.3198 2.3721 2.4222 2.4290 2.4347 2.4361 

i = 2 4.9720 5.1064 5.2340 5.6570 5.8083 5.9809 6.0070 6.0288 6.0343 

i = 3 8.6022 8.6712 8.7458 9.0824 9.2488 9.4787 9.5176 9.5509 9.5595 

0.5 

i = 1 1.9640 2.0909 2.1810 2.3728 2.4192 2.4640 2.4702 2.4753 2.4766 

i = 2 4.9790 5.1127 5.2397 5.6605 5.8111 5.9829 6.0090 6.0307 6.0362 

i = 3 8.6035 8.6725 8.7470 9.0833 9.2496 9.4793 9.5181 9.5514 9.5600 

1 

i = 1 2.1011 2.1997 2.2726 2.4340 2.4742 2.5134 2.5188 2.5233 2.5244 

i = 2 4.9878 5.1207 5.2468 5.6650 5.8146 5.9855 6.0114 6.0330 6.0385 

i = 3 8.6052 8.6740 8.7486 9.0845 9.2506 9.4799 9.5188 9.5520 9.5606 

5 

i = 1 2.7060 2.7298 2.7492 2.7983 2.8119 2.8257 2.8277 2.8293 2.8297 

i = 2 5.0608 5.1862 5.3052 5.7008 5.8432 6.0065 6.0313 6.0520 6.0573 

i = 3 8.6184 8.6868 8.7609 9.0940 9.2584 9.4854 9.5239 9.5568 9.5653 
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regardless of type of the beam, μi (i = 1, 2, 3) always 

increase by increasing the stiffness of the rotational springs. 

As seen in Fig. 6(a) and Table 9, for the clamped-free 

supported beam with the translational and rotational springs 

at x = L (corresponding to T0 = R0 = ∞ and TL, RL = var.), 

increasing TL and RL from 0.1 up to 105, the first three 

dimensionless natural frequency coefficients of uniform 

beam increase from 1.9163, 4.7166 and 7.8675, and tend to 

4.7290, 7.8483 and 10.9821 (close to the behavior of 

clamped-clamped beam), respectively. Similarly, Fig. 6(b) 

and Table 10 show that whenever the translational and 

rotational elastic stiffnesses (i.e., TL and RL) rise from 0.1 to 

105, the first three dimensionless natural frequency 

coefficients of the AFG beam (n = 2, c = 0.5) increase from 

1.8268, 4.9720 and 8.6022, and approach 5.2715, 8.7401 

and 12.2272, respectively. 

From Fig. 6 and Tables 9 and 10, as the stiffnesses of TL 

and RL increase form 0.1 up to 105, the first dimensionless 

natural frequency coefficient μ1 of the uniform and AFG 

beams can increase up to 2.47 and 2.89 times, respectively. 

Moreover, in this case and for the low values of TL and RL, 

the natural frequency coefficients of the AFG beam (n = 2, c 

= 0.5) are smaller than the corresponding μi (i = 1, 2, 3) of 

the uniform beam. Also, irrespective of type of the beam, by 

increase of the stiffness of the elastic supports, the first 

three dimensionless natural frequency coefficients always 

increase. 

Based on the Fig. 7(a) and Table 11, for the free 

supported beam with the translational and rotational springs 

at x = 0 (corresponding to TL = RL = 0 and T0, R0 = var.), by 

increase of T0 and R0 from 0.1 to 105, the first three 

dimensionless natural frequency coefficients of the uniform 

beam rise from 0.5294, 1.1015 and 4.7509, to 1.8751, 

4.6930 and 7.8498 (close to the behavior of clamped-free 

beam), respectively. Correspondingly, Fig. 7(b) and Table 

 

 

12 indicate that as the translational and rotational elastic 

stiffnesses (i.e., T0 and R0) increase from 0.1 up to 105, μi (i 

= 1, 2, 3) of the AFG beam (n = 2, c = 0.5) increase from 

0.4654, 1.0089 and 5.3185, and tend to 1.7182, 4.9285 and 

8.5748, respectively. 

In Fig. 7 and Tables 11 and 12, it is founded that 

increasing T0 and R0 form 0.1 to 105, can raise the first 

dimensionless natural frequency coefficient μ1 of the 

uniform and AFG beams up to 3.54 and 3.69 times, 

respectively. Furthermore, in this case and with the same 

situations, the natural frequency coefficients of the AFG 

beam (n = 2, c = 0.5) are not always greater than μi (i = 1, 2, 

3) of the uniform beam. In other words, for the low values 

of T0 and R0, the first natural frequency coefficient of the 

uniform beam is higher than μ1 of the AFG beam. Moreover, 

regardless of type of the beam, μi (i = 1, 2, 3) always 

increase by increasing the stiffness of the elastic supports. 

According to the Figs. 4-7 and Tables 5-12, regardless 

of type of the beam, the effects of the elastic supports 

should be considered in the problem of free vibration. 

Moreover, it is evident that by increase of the stiffness of 

the elastic supports, the natural frequency always increases. 

It should be added that depending on the values of 

stiffnesses of end restraints, the increase of μi (i = 1, 2, 3) of 

the uniform and/or AFG beams can be insignificant or more 

considerable. Nevertheless, in the most cases, the rise of the 

first natural frequency coefficient of the beam is more 

significant when the stiffnesses of end restraints increase. 

Furthermore, irrespective of type of the beam, the influence 

of the translational stiffness on the values of μi (i = 1, 2, 3) 

is more considerable than the rotational stiffness. 

Accordingly and based on the studied cases, increasing 

stiffness of translational springs from 0.1 to 105, can raise 

the first dimensionless natural frequency coefficient μ1 of 

the uniform beam (c = 0.0) and AFG beam (n = 2, c = 0.5) 

Table 10 Continued 

TL μi 
RL 

0.1 0.5 1 5 10 50 100 500 105 

10 

i = 1 3.0784 3.0823 3.0857 3.0946 3.0972 3.0999 3.1003 3.1007 3.1007 

i = 2 5.1562 5.2710 5.3803 5.7465 5.8796 6.0333 6.0568 6.0764 6.0814 

i = 3 8.6352 8.7031 8.7765 9.1059 9.2682 9.4924 9.5303 9.5628 9.5712 

50 

i = 1 3.8642 3.8926 3.9194 4.0072 4.0385 4.0745 4.0800 4.0846 4.0857 

i = 2 5.8807 5.9217 5.9630 6.1193 6.1836 6.2639 6.2767 6.2876 6.2904 

i = 3 8.7811 8.8433 8.9101 9.2053 9.3497 9.5496 9.5837 9.6129 9.6204 

100 

i = 1 4.0340 4.0873 4.1402 4.3351 4.4146 4.5142 4.5303 4.5439 4.5474 

i = 2 6.4712 6.4792 6.4875 6.5222 6.5382 6.5600 6.5637 6.5669 6.5677 

i = 3 8.9856 9.0375 9.0929 9.3373 9.4574 9.6256 9.6546 9.6795 9.6860 

500 

i = 1 4.1732 4.2527 4.3348 4.6723 4.8292 5.0459 5.0832 5.1154 5.1237 

i = 2 7.5052 7.5232 7.5434 7.6487 7.7135 7.8262 7.8490 7.8696 7.8751 

i = 3 10.2865 10.2872 10.2880 10.2921 10.2946 10.2988 10.2997 10.3004 10.3006 

105 

i = 1 4.2069 4.2932 4.3830 4.7589 4.9367 5.1828 5.2250 5.2613 5.2707 

i = 2 7.7876 7.8266 7.8715 8.1229 8.2912 8.6019 8.6663 8.7246 8.7401 

i = 3 11.3041 11.3299 11.3605 11.5513 11.7018 12.0439 12.1268 12.2056 12.2272 
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(a) Uniform beam (b) AFG beam (n = 2, c = 0.5) 

Fig. 7 Plot first three dimensionless natural frequency coefficients μi, i = 1, 2, 3 for TL = RL = 0 and various values 

of T0 and R0 

Table 11 First three dimensionless natural frequency coefficients μi, i = 1, 2, 3 of the uniform beam for TL = RL =0 

and various values of T0 and R0 

T0 μi 
R0 

0.1 0.5 1 5 10 50 100 500 105 

0.1 

i = 1 0.5294 0.5547 0.5582 0.5609 0.5613 0.5616 0.5616 0.5616 0.5616 

i = 2 1.1015 1.5198 1.7314 2.1384 2.2389 2.3391 2.3532 2.3649 2.3678 

i = 3 4.7509 4.8215 4.8936 5.1749 5.2948 5.4472 5.4718 5.4927 5.4981 

0.5 

i = 1 0.6664 0.7879 0.8107 0.8305 0.8331 0.8351 0.8354 0.8356 0.8356 

i = 2 1.3073 1.5986 1.7811 2.1587 2.2547 2.3513 2.3650 2.3762 2.3790 

i = 3 4.7546 4.8250 4.8968 5.1772 5.2967 5.4485 5.4731 5.4939 5.4993 

1 

i = 1 0.6982 0.8857 0.9316 0.9755 0.9815 0.9863 0.9869 0.9874 0.9875 

i = 2 1.4819 1.6894 1.8414 2.1840 2.2746 2.3666 2.3797 2.3905 2.3932 

i = 3 4.7593 4.8294 4.9009 5.1800 5.2990 5.4502 5.4747 5.4955 5.5008 
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Table 11 Continued 

T0 μi 
R0 

0.1 0.5 1 5 10 50 100 500 105 

5 

i = 1 0.7278 1.0261 1.1494 1.3327 1.3669 1.3969 1.4009 1.4041 1.4049 

i = 2 2.1059 2.1615 2.2138 2.3773 2.4314 2.4907 2.4995 2.5068 2.5086 

i = 3 4.7971 4.8647 4.9336 5.2026 5.3176 5.4640 5.4878 5.5079 5.5131 

10 

i = 1 0.7318 1.0503 1.1957 1.4508 1.5078 1.5621 1.5695 1.5755 1.5771 

i = 2 2.4612 2.4835 2.5051 2.5790 2.6064 2.6382 2.6431 2.6472 2.6482 

i = 3 4.8453 4.9096 4.9751 5.2312 5.3411 5.4814 5.5042 5.5236 5.5286 

50 

i = 1 0.7350 1.0709 1.2370 1.5796 1.6738 1.7744 1.7892 1.8016 1.8047 

i = 2 3.3391 3.3414 3.3436 3.3523 3.3559 3.3607 3.3615 3.3622 3.3624 

i = 3 5.2330 5.2696 5.3075 5.4624 5.5324 5.6257 5.6413 5.6547 5.6581 

100 

i = 1 0.7354 1.0735 1.2424 1.5978 1.6980 1.8066 1.8227 1.8362 1.8396 

i = 2 3.6100 3.6240 3.6386 3.6998 3.7285 3.7678 3.7745 3.7803 3.7818 

i = 3 5.6328 5.6475 5.6630 5.7304 5.7632 5.8097 5.8178 5.8248 5.8266 

500 

i = 1 0.7357 1.0757 1.2468 1.6127 1.7178 1.8327 1.8500 1.8643 1.8680 

i = 2 3.8718 3.9086 3.9488 4.1393 4.2434 4.4062 4.4367 4.4637 4.4709 

i = 3 6.6723 6.6788 6.6861 6.7248 6.7492 6.7930 6.8022 6.8105 6.8127 

105 

i = 1 0.7358 1.0762 1.2479 1.6164 1.7227 1.8393 1.8568 1.8713 1.8750 

i = 2 3.9381 3.9822 4.0307 4.2664 4.3987 4.6090 4.6487 4.6837 4.6930 

i = 3 7.0738 7.1007 7.1321 7.3155 7.4477 7.7173 7.7780 7.8345 7.8498 
 

Table 12 First three dimensionless natural frequency coefficients μi, i = 1, 2, 3 of the AFG beam (n = 2, c = 0.5) 

for TL = RL = 0 and various values of T0 and R0 

T0 μi 
Ro 

0.1 0.5 1 5 10 50 100 500 105 

0.1 

i = 1 0.4654 0.4929 0.4967 0.4999 0.5003 0.5006 0.5006 0.5007 0.5007 

i = 2 1.0089 1.3898 1.5948 2.0321 2.1550 2.2873 2.3069 2.3233 2.3274 

i = 3 5.3185 5.3698 5.4244 5.6636 5.7815 5.9490 5.9782 6.0035 6.0101 

0.5 

i = 1 0.5747 0.6929 0.7171 0.7390 0.7419 0.7443 0.7445 0.7448 0.7448 

i = 2 1.2209 1.4774 1.6508 2.0545 2.1721 2.2999 2.3190 2.3348 2.3389 

i = 3 5.3214 5.3726 5.4270 5.6655 5.7831 5.9502 5.9794 6.0046 6.0112 

1 

i = 1 0.5990 0.7729 0.8195 0.8667 0.8733 0.8788 0.8795 0.8800 0.8801 

i = 2 1.3918 1.5738 1.7167 2.0822 2.1934 2.3157 2.3340 2.3493 2.3532 

i = 3 5.3250 5.3760 5.4302 5.6679 5.7851 5.9517 5.9808 6.0059 6.0125 

5 

i = 1 0.6215 0.8835 0.9966 1.1764 1.2123 1.2446 1.2489 1.2524 1.2533 

i = 2 1.9930 2.0462 2.0988 2.2841 2.3546 2.4388 2.4520 2.4630 2.4659 

i = 3 5.3540 5.4035 5.4561 5.6871 5.8012 5.9636 5.9920 6.0166 6.0230 

10 

i = 1 0.6245 0.9024 1.0336 1.2784 1.3372 1.3949 1.4030 1.4096 1.4113 

i = 2 2.3395 2.3642 2.3893 2.4864 2.5274 2.5795 2.5880 2.5952 2.5971 

i = 3 5.3904 5.4380 5.4886 5.7111 5.8213 5.9786 6.0062 6.0301 6.0363 

50 

i = 1 0.6270 0.9185 1.0669 1.3934 1.4917 1.6032 1.6204 1.6348 1.6385 

i = 2 3.2727 3.2727 3.2727 3.2728 3.2728 3.2728 3.2728 3.2728 3.2728 

i = 3 5.6761 5.7088 5.7438 5.9014 5.9817 6.0995 6.1206 6.1390 6.1438 

100 

i = 1 0.6273 0.9206 1.0713 1.4104 1.5157 1.6379 1.6570 1.6731 1.6773 

i = 2 3.6322 3.6370 3.6420 3.6647 3.6764 3.6939 3.6970 3.6998 3.7005 

i = 3 5.9923 6.0108 6.0308 6.1242 6.1740 6.2499 6.2638 6.2761 6.2793 
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to a maximum of 4.70 and 5.10 times, respectively. In 

addition, with the same conditions and in the most cases,the 

natural frequencies of the AFG beam are greater than those 

of the uniform beam. 

 

 

 

 

3.3 Effects of the AFG parameters 
 
In this part, the influences of the AFG parameters, 

namely, the gradient index n and gradient coefficient c on 

Table 12 Continued 

T0 μi 
Ro 

0.1 0.5 1 5 10 50 100 500 105 

500 

i = 1 0.6275 0.9222 1.0749 1.4244 1.5357 1.6670 1.6878 1.7054 1.7099 

i = 2 4.0727 4.0976 4.1253 4.2659 4.3502 4.4952 4.5244 4.5508 4.5579 

i = 3 7.1186 7.1200 7.1216 7.1300 7.1355 7.1458 7.1480 7.1500 7.1506 

105 

i = 1 0.6276 0.9227 1.0758 1.4280 1.5407 1.6744 1.6956 1.7136 1.7182 

i = 2 4.2033 4.2372 4.2753 4.4760 4.6020 4.8277 4.8745 4.9171 4.9285 

i = 3 7.7942 7.8170 7.8437 8.0068 8.1325 8.4176 8.4881 8.5560 8.5748 
 

  

(a) with respect to various values of gradient index (n) (b) with respect to various values of gradient coefficient (c) 

Fig. 8 Plot first three dimensionless natural frequency coefficients μi, i = 1, 2, 3 of the AFG beam with symmetric 

elastic boundary conditions (R0 = T0 = RL = TL = 1) 

421



 

Mohsen Bambaeechee 

 

 

the natural frequencies of the AFG beams with the non-

classical and classical boundary conditions are studied 

comprehensively. It is reminded that the foregoing 

parameters were previously introduced by Eq. (1) at section 

2.1. Moreover, it is clear that when c = 0.0, the beam is 

uniform. Accordingly, three cases of the symmetric non-

classical end conditions, i.e., R0 = T0 = RL = TL = 1, 5, 10 

(corresponding to moderate stiffnesses) and six types of the 

classical boundary conditions, namely, C-C, P-C, C-P, P-P, 

F-C and C-F are considered. Here, C means clamped, P 

denotes pinned, and F means free. 

In Figs. 8, 9 and 10, changing of the first three 

dimensionless natural frequency coefficients μi (i = 1, 2, 3) 

of the AFG beam with respect to increase of the values of n 

and c, in three cases of the non-classical symmetric elastic 

supports, i.e., R0 = T0 = RL = TL = 1, 5, 10 are drawn, 

respectively. Furthermore, Tables 13, 14 and 15 show the 

 

 

corresponding numerical quantities of μi (i = 1, 2, 3) for 

different values of the gradient index n and gradient 

coefficient c. 

From Fig. 8 and Table 13, it is observed that for the 

AFG beam with R0 = T0 = RL = TL = 1, as the AFG parameters 

n and c increase to 4 and 1.00, respectively, the first three 

dimensionless natural frequency coefficients of the AFG 

beam can raise by about 48%, 51%, and 28% versus the 

corresponding μi (i = 1, 2, 3) of the uniform beam, 

respectively. Also, by increase of the AFG parameters the 

first three dimensionless natural frequency coefficients 

always increase. 

According to Fig. 9 and Table 14, it is concluded that 

whereas R0 = T0 = RL = TL = 5, the rise of the gradient index 

n and gradient coefficient c up to 4 and 1.00, respectively, 

can increase the values of μi (i = 1, 2, 3) of the AFG beam 

by about 47%, 38%, and 27% with respect to those of the 

  

(a) with respect to various values of gradient index (n) (b) with respect to various values of gradient coefficient (c) 

Fig. 9 Plot first three dimensionless natural frequency coefficients μi, i = 1, 2, 3 of the AFG beam with symmetric 

elastic boundary conditions (R0 = T0 = RL = TL = 5) 
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(a) with respect to various values of gradient index (n) (b) with respect to various values of gradient coefficient (c) 

Fig. 10 Plot first three dimensionless natural frequency coefficients μi, i = 1, 2, 3 of the AFG beam with symmetric 

elastic boundary conditions (R0 = T0 = RL = TL = 10) 

Table 13 First three dimensionless natural frequency coefficients μi, i = 1, 2, 3 of the uniform and AFG 

beam (n = var., c = var.) with symmetric elastic boundary conditions (R0 = T0 = RL = TL = 1) 

μi 
Uniform 

beam 

AFG beam 

n 
c 

0.00 0.25 0.50 0.75 1.00 

i = 1 1.1856 

0 

1.1856 1.2582 1.3280 1.3954 1.4606 

i = 2 2.2333 2.2333 2.3719 2.5074 2.6391 2.7667 

i = 3 5.0631 5.0631 5.3651 5.6431 5.9023 6.1463 

i = 1 1.1856 

1 

1.1856 1.2637 1.3468 1.4325 1.5190 

i = 2 2.2333 2.2333 2.3816 2.5401 2.7019 2.8632 

i = 3 5.0631 5.0631 5.3697 5.6589 5.9336 6.1960 

i = 1 1.1856 

2 

1.1856 1.2710 1.3719 1.4807 1.5920 

i = 2 2.2333 2.2333 2.3957 2.5870 2.7905 2.9974 

i = 3 5.0631 5.0631 5.3762 5.6814 5.9782 6.2668 
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Table 13 Continued 

μi 
Uniform 

beam 

AFG beam 

n 
c 

0.00 0.25 0.50 0.75 1.00 

i = 1 1.1856 

3 

1.1856 1.2803 1.4026 1.5368 1.6725 

i = 2 2.2333 2.2333 2.4142 2.6473 2.9025 3.1650 

i = 3 5.0631 5.0631 5.3847 5.7107 6.0362 6.3586 

i = 1 1.1856 

4 

1.1856 1.2913 1.4377 1.5971 1.7542 

i = 2 2.2333 2.2333 2.4369 2.7200 3.0358 3.3617 

i = 3 5.0631 5.0631 5.3951 5.7467 6.1072 6.4710 
 

Table 14 First three dimensionless natural frequency coefficients μi, i = 1, 2, 3 of the uniform and AFG 

beam (n = var., c = var.) with symmetric elastic boundary conditions (R0 = T0 = RL = TL = 5) 

μi 
Uniform 

beam 

AFG beam 

n 
c 

0.00 0.25 0.50 0.75 1.00 

i = 1 1.7635 

0 

1.7635 1.8701 1.9706 2.0660 2.1571 

i = 2 2.9729 2.9729 3.1529 3.3229 3.4843 3.6382 

i = 3 5.6393 5.6393 5.9740 6.2797 6.5631 6.8287 

i = 1 1.7635 

1 

1.7635 1.8775 1.9960 2.1159 2.2356 

i = 2 2.9729 2.9729 3.1595 3.3454 3.5282 3.7071 

i = 3 5.6393 5.6393 5.9783 6.2946 6.5927 6.8757 

i = 1 1.7635 

2 

1.7635 1.8876 2.0304 2.1823 2.3374 

i = 2 2.9729 2.9729 3.1695 3.3794 3.5944 3.8102 

i = 3 5.6393 5.6393 5.9849 6.3171 6.6372 6.9464 

i = 1 1.7635 

3 

1.7635 1.9005 2.0730 2.2616 2.4543 

i = 2 2.9729 2.9729 3.1830 3.4250 3.6824 3.9467 

i = 3 5.6393 5.6393 5.9936 6.3472 6.6965 7.0399 

i = 1 1.7635 

4 

1.7635 1.9159 2.1224 2.3495 2.5777 

i = 2 2.9729 2.9729 3.1999 3.4818 3.7919 4.1158 

i = 3 5.6393 5.6393 6.0045 6.3847 6.7700 7.1555 
 

Table 15 First three dimensionless natural frequency coefficients μi, i = 1, 2, 3 of the uniform and AFG 

beam (n = var., c = var.) with symmetric elastic boundary conditions (R0 = T0 = RL = TL = 10) 

μi 
Uniform 

beam 

AFG beam 

n 
c 

0.00 0.25 0.50 0.75 1.00 

i = 1 2.0883 

0 

2.0883 2.2123 2.3259 2.4316 2.5313 

i = 2 3.2709 3.2709 3.4694 3.6572 3.8358 4.0062 

i = 3 5.9069 5.9069 6.2569 6.5756 6.8702 7.1458 

i = 1 2.0883 

1 

2.0883 2.2197 2.3514 2.4822 2.6116 

i = 2 3.2709 3.2709 3.4750 3.6763 3.8731 4.0646 

i = 3 5.9069 5.9069 6.2607 6.5885 6.8960 7.1869 

i = 1 2.0883 

2 

2.0883 2.2300 2.3870 2.5522 2.7210 

i = 2 3.2709 3.2709 3.4834 3.7049 3.9287 4.1511 

i = 3 5.9069 5.9069 6.2665 6.6089 6.9364 7.2512 
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Table 15 Continued 

μi 
Uniform 

beam 

AFG beam 

n 
c 

0.00 0.25 0.50 0.75 1.00 

i = 1 2.0883 

3 

2.0883 2.2433 2.4322 2.6389 2.8528 

i = 2 3.2709 3.2709 3.4946 3.7429 4.0022 4.2654 

i = 3 5.9069 5.9069 6.2746 6.6366 6.9912 7.3380 

i = 1 2.0883 

4 

2.0883 2.2595 2.4861 2.7387 2.9980 

i = 2 3.2709 3.2709 3.5087 3.7903 4.0938 4.4080 

i = 3 5.9069 5.9069 6.2847 6.6715 7.0601 7.4468 
 

  

(a) with respect to various values of gradient index (n) 

in which c = 0.5 
(b) with respect to various values of gradient coefficient (c) 

in which n = 2 

Fig. 11 Plot first three dimensionless natural frequency coefficients μi, i = 1, 2, 3 of the AFG beam with classical 

boundary conditions 
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uniform beam, respectively. 

As seen in Fig. 10 and Table 15, It is founded that for 

the AFG beam with R0 = T0 = RL = TL = 10, when the 

parameters n and c increase to 4 and 1.00, respectively, the 

first three dimensionless natural frequency coefficients of 

the AFG beam can raise by about 44%, 35%, and 26% 

versus the uniform ones, respectively. Moreover, the values 

of μi (i = 1, 2, 3) always increase by increasing the AFG 

parameters. 

Based on the Figs. 8-10 and Tables 13-15, it is 

concluded that with the symmetric elastic boundary 

conditions, as the gradient index and gradient coefficient 

increase, μi (i = 1, 2, 3) of the AFG beam always increase 

linearly. This effect is more pronounced when the gradient 

coefficient c increases. In other words, for the symmetric 

elastic supports, the influence of the coefficient c on the 

natural frequency of the AFG beam is more significant than 

the gradient index n. Moreover, regardless of the values of 

gradient index and gradient coefficient, by increasing the 

stiffness of the symmetric elastic boundary conditions, μi (i 

= 1, 2, 3) always increase. 

In the following, variations of the first t hree 

dimensionless natural frequency coefficients μi (i = 1, 2, 3) 

of the AFG beam with the classical boundary conditions 

versus different values of the gradient index n in which c = 

0.5 and various quantities of the gradient coefficient c in 

which n = 2 are depicted in Figs. 11(a) and (b), respectively. 

Moreover, the corresponding numerical values of the first 

three dimensionless natural frequency coefficients μi (i = 1, 

2, 3) of the AFG beam in the aforementioned cases, namely, 
 

 

n = var. whereas c = 0.5 and c = var. whereas n = 2, with the 

classical boundary conditions are reported in Tables 16 and 

17, respectively. It should be added, for the sake comparing 

the results of Xing and Wang (2013) for the uniform beams 

(c = 0.0) and with the classical boundary conditions are 

inserted in the mentioned tables, too. 

According to the Fig. 11 and Tables 16 and 17, it is 

observed that as the gradient index and gradient coefficient 

increase, in the most cases, μi (I = 1, 2, 3) of the AFG beam 

increase linearly. Nevertheless, by increase of n, the first 

three dimensionless natural frequency coefficients decrease 

in the C-P and C-F beams. Also, μ1 of the C-F beam reduces 

when the parameter c increases. In fact, in the latter case, 

the first natural frequency coefficient of the uniform beam 

(c = 0.0) is greater than the corresponding μ1 of the AFG 

beam. In addition, irrespective of type of the classical 

boundary conditions, the effect of the gradient coefficient c 

on the natural frequency of the AFG beam is more 

considerable than parameter n. Accordingly and based on 

the investigated cases, as the parameters n and c increase, 

the first dimensionless natural frequency coefficient μ1 of 

the F-C beam can increase by about 49% (corresponding to 

n = 4 and c = 0.5) and 62% (corresponding to n = 2 and c = 

1.0) versus the uniform ones, respectively. In other words, 

the F-C case is more sensitive than the other classical 

boundary conditions. Furthermore, it is concluded that for 

the specified quantities of the AFG parameters n and c, the 

C-C and C-F boundary conditions have the maximum and 

minimum values of μi (i = 1, 2, 3), respectively. 
 

 

 
 

Table 16 First three dimensionless natural frequency coefficients μi, i = 1, 2, 3 of the uniform and AFG beam 

(n = var., c = 0.5) with classical boundary conditions 

Boundary 

condistions 
μi 

Uniform beam AFG beam (c = 0.5) 

Present 
Xing and 

Wang (2013) 

n 

0 1 2 3 4 

C-C 

(T0 = R0 = ∞, 

TL = RL = ∞) 

i = 1 4.7300 4.730039 5.2609 5.2635 5.2715 5.2848 5.3037 

i = 2 7.8532 7.853195 8.7351 8.7373 8.7438 8.7547 8.7699 

i = 3 10.9956 10.995581 12.2308 12.2325 12.2376 12.2461 12.2580 

P-C 

(T0 = ∞, R0 = 0, 

TL = RL = ∞) 

i = 1 3.9266 ̶ 4.4293 4.4879 4.5474 4.6085 4.6716 

i = 2 7.0686 ̶ 7.8962 7.9307 7.9686 8.0097 8.0541 

i = 3 10.2102 ̶ 11.3809 11.4057 11.4335 11.4643 11.4980 

C-P 

(T0 = R0 = ∞, 

TL = ∞, RL = 0) 

i = 1 3.9266 3.926601 4.3082 4.2457 4.1829 4.1195 4.0550 

i = 2 7.0686 7.068577 7.8325 7.8038 7.7786 7.7572 7.7396 

i = 3 10.2102 10.210160 11.3366 11.3174 11.3014 11.2885 11.2789 

P-P 

(T0 = ∞, R0 = 0, 

TL = ∞, RL = 0) 

i = 1 3.1416 3.141593 3.4972 3.4888 3.4748 3.4552 3.4301 

i = 2 6.2832 6.283185 6.9933 6.9972 7.0039 7.0132 7.0254 

i = 3 9.4248 9.424778 10.4871 10.4912 10.4982 10.5079 10.5205 

F-C 

(T0 = R0 = 0, 

TL = RL = ∞) 

i = 1 1.8751 ̶ 2.2155 2.3522 2.4937 2.6398 2.7903 

i = 2 4.6941 ̶ 5.3241 5.4261 5.5300 5.6361 5.7445 

i = 3 7.8548 ̶ 8.7982 8.8610 8.9272 8.9967 9.0697 

C-F 

(T0 = R0 = ∞, 

TL = RL = 0) 

i = 1 1.8751 1.875104 1.9567 1.8349 1.7183 1.6069 1.5007 

i = 2 4.6941 4.694090 5.1249 5.0272 4.9305 4.8343 4.7385 

i = 3 7.8548 7.854753 8.6834 8.6314 8.5832 8.5388 8.4984 
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4. Conclusions 
 
In this paper, the analytical solutions for obtaining the 

exact natural frequencies of the AFG and uniform beams 

restrained with two rotational and two translational elastic 

springs were presented. In this way, based on the Euler-

Bernoulli beam theory and general boundary conditions, the 

governing differential equation of motion was solved 

accurately by using the Bessel functions. Accordingly, the 

constant coefficients matrix of the AFG beams and/or 

uniform beam (c = 0.0) was derived with the general elastic 

supports. Then, by taking the constant coefficients matrix 

determinant equal to zero and finding the positive real roots, 

the natural frequencies were obtained. The mass per unit 

length and the flexural rigidity of the AFG beams were 

assumed to vary continuously and together along the length 

direction according to the power-law forms. In the 

following, after the proposed formulation was verified, the 

effects of the AFG parameters and flexible ends on the first 

three natural frequencies of the AFG and uniform beams 

were investigated comprehensively. The analytical solutions 

were presented in tabular and graphical forms and could be 

utilized as either the benchmark problems or design of 

composite beams with various supporting conditions. 

According to the results of this study, the following 

important points are concluded: 
 

● Depending on the values of stiffnesses of end 

restraints, the effects of the flexibility of supports 

would be more significant or less considerable in the 

 

 

free vibration problem of the beam structures. 

● As the stiffness of end restraints increases, the 

natural frequencies of the beam always increase. 

● The effect of the translational stiffness on the natural 

frequencies of the AFG and/or uniform beam with 

the general boundary conditions is more 

considerable than the rotational stiffness. For 

example, in the free supported beam with two 

translational springs, increasing stiffness of the 

translational springs from 0.1 to 105, can raise the 

first dimensionless natural frequency coefficient μ1 

of the uniform beam (c = 0.0) and AFG beam (n = 2, 

c = 0.5) to a maximum of 4.70 and 5.10 times, 

respectively. 

● In most cases, the natural frequencies of the AFG 

beam are greater than those of the uniform beam 

with the same supports. 

● For the composite beam with the symmetric elastic 

boundary conditions, as the AFG parameters n and c 

increase, the natural frequencies of the beam always 

increase. 

● The effect of the gradient coefficient c on the natural 

frequencies of the AFG beam with the classical or 

non-classical boundary conditions is more 

significant than the gradient index n. For example, as 

the parameters n and c rise, the first dimensionless 

natural frequency coefficient of the F-C beam can 

increase by about 49% (corresponding to n = 4 and c 

= 0.5) and 62% (corresponding to n = 2 and c = 1.0) 

versus the uniform ones, respectively. 

Table 17 First three dimensionless natural frequency coefficients μi, i = 1, 2, 3 of the uniform and AFG beam 

(n = 2, c = var.) with classical boundary conditions 

Boundary 

condistions 
μi 

Uniform beam AFG beam (n = 2) 

Present 
Xing and 

Wang (2013) 

c 

0.00 0.25 0.50 0.75 1.00 

C-C 

(T0 = R0 = ∞, 

TL = RL = ∞) 

i = 1 4.7300 4.730039 4.7300 5.0121 5.2715 5.5133 5.7409 

i = 2 7.8532 7.853195 7.8532 8.3190 8.7438 9.1372 9.5054 

i = 3 10.9956 10.995581 10.9956 11.6464 12.2376 12.7834 13.2931 

P-C 

(T0 = ∞, R0 = 0, 

TL = RL = ∞) 

i = 1 3.9266 ̶ 3.9266 4.2530 4.5474 4.8179 5.0696 

i = 2 7.0686 ̶ 7.0686 7.5388 7.9686 8.3671 8.7406 

i = 3 10.2102 ̶ 10.2102 10.8503 11.4335 11.9732 12.4781 

C-P 

(T0 = R0 = ∞, 

TL = ∞, RL = 0) 

i = 1 3.9266 3.926601 3.9266 4.0621 4.1829 4.2925 4.3931 

i = 2 7.0686 7.068577 7.0686 7.4389 7.7786 8.0948 8.3919 

i = 3 10.2102 10.210160 10.2102 10.7809 11.3014 11.7832 12.2341 

P-P 

(T0 = ∞, R0 = 0, 

TL = ∞, RL = 0) 

i = 1 3.1416 3.141593 3.1416 3.3213 3.4748 3.6095 3.7300 

i = 2 6.2832 6.283185 6.2832 6.6582 7.0039 7.3264 7.6302 

i = 3 9.4248 9.424778 9.4248 9.9851 10.4982 10.9746 11.4217 

F-C 

(T0 = R0 = 0, 

TL = RL = ∞) 

i = 1 1.8751 ̶ 1.8751 2.1952 2.4937 2.7749 3.0414 

i = 2 4.6941 ̶ 4.6941 5.1304 5.5300 5.9021 6.2526 

i = 3 7.8548 ̶ 7.8548 8.4136 8.9272 9.4060 9.8569 

C-F 

(T0 = R0 = ∞, 

TL = RL = 0) 

i = 1 1.8751 1.875104 1.8751 1.7881 1.7183 1.6605 1.6113 

i = 2 4.6941 4.694090 4.6941 4.8168 4.9305 5.0362 5.1351 

i = 3 7.8548 7.854753 7.8548 8.2333 8.5832 8.9104 9.2189 
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● For the specified quantities of the AFG parameters n 

and c, the C-C and C-F beams have the maximum 

and minimum values of the first three dimensionless 

natural frequency coefficients, respectively. 
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Mohsen Bambaeechee 

Appendix A 
 

For the AFG beams and/or uniform beam (c → 0.0) the 

terms of the constant coefficients matrix, F are as follows 

 

𝐹11 = −𝜇𝐽𝑛 (
2𝜇

𝑐
) + [𝑅0 + 𝑐(𝑛 + 1)]𝐽𝑛+1 (

2𝜇

𝑐
) (A1) 

 

𝐹12 = −𝜇𝑌𝑛 (
2𝜇

𝑐
) + [𝑅0 + 𝑐(𝑛 + 1)]𝑌𝑛+1 (

2𝜇

𝑐
) (A2) 

 

𝐹13 = 𝜇𝐼𝑛 (
2𝜇

𝑐
) − [𝑅0 + 𝑐(𝑛 + 1)]𝐼𝑛+1 (

2𝜇

𝑐
) (A3) 

 

𝐹14 = 𝜇𝐾𝑛 (
2𝜇

𝑐
) + [𝑅0 + 𝑐(𝑛 + 1)]𝐾𝑛+1 (

2𝜇

𝑐
) (A4) 

 

𝐹21 = 𝑇0𝐽𝑛 (
2𝜇

𝑐
) + 𝜇3𝐽𝑛+1 (

2𝜇

𝑐
) (A5) 

 

𝐹22 = 𝑇0𝑌𝑛 (
2𝜇

𝑐
) + 𝜇3𝑌𝑛+1 (

2𝜇

𝑐
) (A6) 

 

𝐹23 = 𝑇0𝐼𝑛 (
2𝜇

𝑐
) + 𝜇3𝐼𝑛+1 (

2𝜇

𝑐
) (A7) 

 

𝐹24 = 𝑇0𝐾𝑛 (
2𝜇

𝑐
) − 𝜇3𝐾𝑛+1 (

2𝜇

𝑐
) (A8) 

 

𝐹31 = −√1 + 𝑐𝜇𝐽𝑛 (
2𝜇√1 + 𝑐

𝑐
) 

            −[𝑅𝐿(1 + 𝑐) − 𝑐(𝑛 + 1)]𝐽𝑛+1 (
2𝜇√1 + 𝑐

𝑐
) 

(A9) 

 

𝐹32 = −√1 + 𝑐𝜇𝑌𝑛 (
2𝜇√1 + 𝑐

𝑐
) 

            −[𝑅𝐿(1 + 𝑐) − 𝑐(𝑛 + 1)]𝑌𝑛+1 (
2𝜇√1 + 𝑐

𝑐
) 

(A10) 

 

𝐹33 = √1 + 𝑐𝜇𝐼𝑛 (
2𝜇√1 + 𝑐

𝑐
) 

            +[𝑅𝐿(1 + 𝑐) − 𝑐(𝑛 + 1)]𝐼𝑛+1 (
2𝜇√1 + 𝑐

𝑐
) 

(A11) 

 

𝐹34 = √1 + 𝑐𝜇𝐾𝑛 (
2𝜇√1 + 𝑐

𝑐
) 

            −[𝑅𝐿(1 + 𝑐) − 𝑐(𝑛 + 1)]𝐾𝑛+1 (
2𝜇√1 + 𝑐

𝑐
) 

(A12) 

 

𝐹41 = −𝑇𝐿(1 + 𝑐)2𝐽𝑛 (
2𝜇√1 + 𝑐

𝑐
) 

            +𝜇3√1 + 𝑐𝐽𝑛+1 (
2𝜇√1 + 𝑐

𝑐
) 

(A13) 

 

 

 

 

 

𝐹42 = −𝑇𝐿(1 + 𝑐)2𝑌𝑛 (
2𝜇√1 + 𝑐

𝑐
) 

            +𝜇3√1 + 𝑐𝑌𝑛+1 (
2𝜇√1 + 𝑐

𝑐
) 

(A14) 

 

𝐹43 = −𝑇𝐿(1 + 𝑐)2𝐼𝑛 (
2𝜇√1 + 𝑐

𝑐
) 

           +𝜇3√1 + 𝑐𝐼𝑛+1 (
2𝜇√1 + 𝑐

𝑐
) 

(A15) 

 

𝐹44 = −𝑇𝐿(1 + 𝑐)2𝐾𝑛 (
2𝜇√1 + 𝑐

𝑐
) 

           −𝜇3√1 + 𝑐𝐾𝑛+1 (
2𝜇√1 + 𝑐

𝑐
) 

(A16) 
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