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1. Introduction 

 

Concrete filled steel tubular (CFST) column joints are 

being utilized in high-rise buildings and other structural 

systems due to advantages of high bearing capacity, 

earthquake-resistant property and easy construction (Han et 

al. 2019, Li et al. 2018a, Ma et al. 2019, Thai and Uy 

2015). They effectively transfer loadings from the beams to 

columns, such as axial force, shear force, bending moment 

and torsional moment. Generally, the predominant factor for 

failure is the bending moment compared with other loads in 

moment-resisting frames (McCrum et al. 2019, Thai and Uy 

2016, Wang et al. 2018). Accordingly, it is significantly 

important to investigate the nonlinear relationship between 

bending moment and rotation of the joint under lateral 

cyclic loading and to develop the phenomenological model 

to characterize the seismic performance of the joint. 

When the structural members are subjected to the 

seismic/cyclic loading, the corresponding loading-

deformation response becomes highly nonlinear with 

complicated hysteresis (Li et al. 2017a, 2018b, Wang et al. 

2019). In the meantime, the stiffness and strength 

degradations are intrinsic damage phenomenon that exists 

in the hysteresis behaviour of the structural member. To 

date, there are a large number of hysteresis models 
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proposed to incorporate the characteristics of strength and 

stiffness degradations, including elasto-plastic model 

(Veletsos et al. 1965), hysteretic shear model (Ozcebe and 

Saatcioglu 1989), bi-linear stiffness degradation model 

(Clough and Johnston 1966), energy-based hysteresis model 

(Ibarra et al. 2005), bi-axial hysteresis model (Chao and 

Loh 2009), enhanced smooth hysteresis model (Ray and 

Reinhorn 2014), degrading smooth model (Sofianos and 

Koumousis 2018, Wang et al. 2017), tri-linear stiffness 

degradation model (Otani and Sozen 1974), pivot hysteretic 

model (Dowell et al. 1998), neural networks-based model 

(Farrokh et al. 2015), Bouc-Wen-based hysteresis model 

(Baber and Noori 1985, Baber and Wen 1981, Wen 1976) 

and hysteresis model with the effect of shear and axial load 

failure (Sezen and Chowdhury 2009). Among these 

hysteresis models, the Bouc-Wen-based model is widely 

utilized in many engineering applications, because it is 

capable of portraying various hysteresis shapes of structural 

members and incorporating the characteristics of stiffness 

and strength deteriorations and pinching (Ning et al. 2016). 

The Bouc-Wen model was firstly designed by Bouc and 

then generalized by Wen, Baber and Noori (Baber and 

Noori 1985, Baber and Wen 1981, Wen 1976). Foliente 

developed a hysteresis model based on the modification of 

Bouc-Wen model for single and multiple degrees of 

freedom wood joints (Foliente 1995). The experimental 

results confirmed that this model is able to produce a 

smoothly changing hysteretic loop and capture the 

behaviours of nonlinear, inelastic, stiffness and strength 

degradations and pinching of the joints. Nithyadharan and 

Kalyanaraman employed the Bouc-Wen model to 

characterize the degrading phenomenon of the stiffness and 

strength with rigorous pinching for cold-formed steel shear 
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analysis, it is of great importance to investigate the dynamic behavior of the joint under cyclic loading. With this aim in mind, a 

novel phenomenal model has been put forward in this paper, in which a Bouc-Wen hysteresis component is employed to portray the 

strength and stiffness deterioration phenomenon caused by increment of loading cycle. Then, a modified chicken swarm 

optimization algorithm was used to estimate the optimal model parameters via solving a global minimum optimization problem. 

Finally, the experimental data tested from five specimens subjected to cyclic loadings were used to validate the performance of the 

proposed model. The results effectively demonstrate that the proposed model is an easy and more realistic tool that can be used for 

the pre-design of CFST column joints with reduced beam section (RBS) composite beams. 
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wall panel under cyclic loading (Nithyadharan and 

Kalyanaraman 2013). Sengupta and Li proposed an 

analytical model based on improved Bouc-Wen model to 

forecast the hysteretic response of reinforced concrete (RC) 

beam-column joints with limited transverse reinforcement 

and this model can portray the characteristics of non-

seismic detailed beam-column joints such as strength and 

stiffness deteriorations and pinching (Sengupta and Li 

2013). Similarly, they utilized this hysteretic model to 

depict the characteristics of requisite degradation and 

pinching of RC walls (Sengupta and Li 2014). Yu et al. 

adopted the Bouc-Wen model to predict the inelastic 

restoring force of shear-critical columns, and Newton-

Raphson and backward Euler strategies were used to 

determine the value of the force via tackling the differential 

equations (Yu et al. 2016). Furthermore, the Bouc-Wen 

model has been employed to investigate inherent 

nonlinearities for the design and analysis of base-isolated 

steel buildings (Varnava and Komodromos 2013). 

Although the Bouc-Wen model has been proved to be 

effective in characterizing the hysteresis with degradation 

and pinching phenomenon, it belongs to the numerical 

model family and the model parameters should be identified 

using the data collected from experimental tests. 

Nevertheless, because of a large number of model 

parameters and complicated nonlinear differential equation 

in model expression, the studies on parameter identification 

of the Bouc-Wen model for CFST column-to-beam joints 

are rarely reported. Evolutionary computation algorithms, 

such as genetic algorithm (GA), can be used to identify 

such complex models. However, because the gradient 

information of the model formula cannot be directly 

expressed using explicit equation, it is unrealistic to identify 

the model parameters using commonly used gradient-based 

algorithms. Although the trust-region algorithm and 

simulated annealing method are capable of solving such a 

problem, the identification accuracy is dependent on the 

initial values of parameters to be identified, and the final 

solution may fall into the local optimum if the initial values 

are poorly selected. 

A novel bio-inspired meta-heuristic algorithm, chicken 

swarm optimization (CSO), has been proposed recently as a 

new branch of swarm intelligence (Meng et al. 2014). This 

new optimization algorithm is based on the imitation of 

hierarchy and food search behaviour of the chicken. In 

CSO, the swarm is usually divided into cocks, hens and 

chicks. The cocks are the chickens with the highest fitness 

values while the chicks are the chickens with the lowest 

fitness values. Except the cocks and chicks, the rest of the 

chickens are regarded as the hens. When the CSO is 

employed to deal with optimization problems, each chicken 

is a possible solution and different search methods are 

utilized for different chicken categories. Compared with 

other homogeneous swarm-based algorithms such as 

particle swarm optimization (PSO) and fruit fly algorithm 

(FFA), the CSO has better performances in both 

convergence rate and searching accuracy, and thus has been 

widely utilized in various engineering fields, such as 

wireless sensor networks localization (Al Shayokh and Shin 

2017), water quality evaluation (Liu et al. 2018) and 

nonlinear system identification (Chen et al. 2016). The 

searching strategy and parameter setting of the CSO can be 

found in (Meng et al. 2014, Wu et al. 2016), where the 

problem on algorithm convergence rate is also discussed. 

In this study, the Bouc-Wen model is firstly applied in 

characterizing the nonlinear bending moment-rotation 

responses of CFST column-to-composite beam joints under 

cyclic loading and a novel rotational hysteresis model is 

proposed accordingly, which incorporates damage-related 

factors to indicate strength degradation and stiffness 

deterioration induced by the increment of loading 

displacement and cycle number. Then, the CSO algorithm is 

employed to identify the parameters of the proposed 

rotational hysteresis model. The model identification 

procedure can be regarded as solving a global minimization 

optimization problem, in which the optimization object is 

the root mean square (RMS) error between experimental 

results and model outputs. To enhance the solution accuracy 

and algorithm convergence, the CSO is modified by 

improving the search ability of the chicks in the swarm, the 

performance of which is verified via the comparison with 

original CSO and other algorithms. Finally, based on 

bending moment-rotation data tested from five composite 

cruciform joints, the parameters of the proposed rotational 

hysteresis model are identified using the modified CSO (M-

CSO). The results demonstrate that the proposed model can 

not only capture the cyclic responses of the composite 

joints, but is also able to accurately predict the structural 

strength degradation, stiffness deterioration and energy 

dissipation. 
 

 

2. Experimental program 
 

2.1 Specimen design 
 

In this study, five composite cruciform joint specimens 

are designed and constructed in accordance with the 

provisions of AS 2327.1 (2003), EC 3 (2005) and EC 4 

(2006). Among five specimens, the specimen S-1 is 

designed as the reference without any slab or beam cut, 

while RC slabs and RBS beams are employed for the 

remaining specimens, i.e., S-2, S-3, S-4 and S-5. Fig. 1 

illustrates the design information of the specimens S-2, S-3, 

S-4 and S-5, in which different cut depths and lengths are 

considered for the beam design. Expect no slab and beam 

cut, the S-1 has the same design as other four specimens. 

The detailed information of five joint specimens are given 

in Table 1, where ‘’ denotes the circular section, n denotes 

the axial loading level, km denotes the ratio of the column 

flexural capacity to the beam flexural capacity considering 

the effect of RC slab, 𝑘𝑚
′  denotes the ratio of the column 

flexural capacity to the beam flexural capacity without the 

effect of RC slab, km,RBS denotes the ratio of the column 

flexural capacity to the beam flexural capacity considering 

the effect of RBS, kE denote the ratio of the column flexural 

stiffness to the beam flexural stiffness considering the effect 

of RC slab, 𝑘𝐸
′  denotes the ratio of the column flexural 

stiffness to the beam flexural stiffness without the effect of 

RC slab, kE,RBS denotes the ratio of the column flexural 
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stiffness to the beam flexural stiffness considering the effect 

of RBS, hb denotes the depth of the beam, bf denotes the 

width of the beam flange, tw denotes the thickness of the 

beam web and tf denotes the thickness of the beam flange. 
 

 

 

 

 

 

 

It can be observed from Fig. 1 that the composite joint is 

designed half the full-scale. The cylindrical steel tube is 

designed with the diameter of 250 mm and wall thickness of 

6 mm. The beam is designed to be 1500 mm long from 
 

 

 

 

 

 

 
 

Table 1 Details of composite joint specimens 

No. 
Column 

Dts 

Beam 

hbbftwtf (mm) 

Cut depth of RBS 

(mm) 
n km 𝑘𝑚

′  km,RBS kE 𝑘𝐸
′  kE,RBS Slab 

S-1 -2506 24812458 0 0.4 − 1.81 − − 1.26 − No 

S-2 -2506 2031335.87.8 26 (0.2bf) 0.4 1.22 − 1.38 1.47 − 1.67 Yes 

S-3 -2506 2031335.87.8 34 (0.25bf) 0.4 1.22 − 1.41 1.47 − 1.73 Yes 

S-4 -2506 24812458 25 (0.2bf) 0.4 1.03 − 1.16 1.06 − 1.20 Yes 

S-5 -2506 24812458 31 (0.25bf) 0.4 1.03 − 1.19 1.06 − 1.24 Yes 
 

Table 2 Steel element material properties 

Parameter 
Steel element 

Shear stud Reinforcement UB web UB flange Steel tube Through diaphragm 

σf (MPa) 487.5 639.6 468.9 455.6 480.4 440.7 

σy (MPa) 402.3 609.7 344.6 299.9 386.6 289.7 

εy (με) 1,841 3,197 1,537 1,418 2,315 3,217 

Em (MPa) 200,713 203,238 204,120 201,516 199,433 201,745 

t or d (mm) Φ12 Φ10 8.6 14.2 6.0 10.1 

δ 34.1 24.5 34.3 37.6 27.9 38.3 
 

  

(a) Top view (b) Through diaphragm 
 

  

(c) Elevation (d) A-A section (refer to (a)) 

Fig. 1 Specimen configuration 

279



 

Yang Yu, Bijan Samali, Chunwei Zhang and Mohsen Askari 

 

 

column center to beam inflection point. The depth and 

width of the RC slab is designed to be 60 mm and 800 mm. 

To connect the beam to the column, the through diagrams 

with the thickness of 10 mm are employed in this design, 

the inner diameter, out diameter and diameter of vent hole 

of which are 120 mm, 300 mm and 20 mm. 42 pieces of 

rebar with the diameter of 10 mm, including 8 longitudinal 

bars and 34 distributing bars, are put in the slab, which are 

transversely and longitudinally distributed along the slab 

with the space of 100 mm. The CFST columns are same for 

five composite joint specimens. The detail description about 

specimen design can also be found in (Li et al. 2017b). 

 

2.2 Properties of materials 
 

The grade of concrete is C32, i.e., compressive strength 

of 32 MPa. The tests for the material properties of concrete 

are conducted in accordance with AS 1012.9 (2014) and AS 

1012.10 (2014). The corresponding results are given as 

follows: the tensile strength and compressive strength of the 

cylinder specimen are 4.7 MPa and 36.5 MPa, respectively; 

the elastic modulus is 37,740 MPa. For the steel material, 

the material properties are evaluated using tensile coupon 

tests, and six steel elements are considered including steel 

tube, UB web, UB flange, through diaphragm, steel 

reinforcement and shear stud. Table 2 lists the testing results 

of steel material properties, in which σf represents the 

ultimate strength, σy represents the yielding stress, εy 

represents the yielding point strain, Em represents the elastic 

modulus, t is steel element thickens, d is the diameter of the 

steel reinforcement or shear stud, and δ represents the 

elongation factor. 

 

 

2.3 Experimental setup and loading scheme 
 

The experimental setup is described in Fig. 2, in which 

the quasi-static cyclic loading is applied to five specimens 

via a hydraulic jack, with the constant axial compressive 

load of 1,116 kN. Two hinges are installed at both bottom 

and top ends of the column, so the column is able to freely 

rotate in plane. The distances between the ends and their 

closest hinge centres are 230 mm. Two actuators, with the 

loading capacity of 500 kN, are connected with both ends of 

the beam to provide the cyclic loading. The distances 

between two loading points and the centre of the column are 

1.5 m. Two actuators are set to provide the excitations with 

the same amplitudes but in opposite directions, 

simultaneously. The loading protocol of cyclic excitation 

amplitude is shown in Fig. 3. It can be seen from the figure 

that the loading is controlled by the inter-storey drift angle 

defined as inter-storey displacement divided by storey 

height. In this experimental study, this angle is defined as 

the ratio of beam deflection to beam span. 

The whole loading history can be separated into 

different stages and the peak rotation of each loading level 

is a predefined value of the inter-storey drift angle. The 

beam deflection is to be used to control the rotation history, 

and the corresponding predefined rotations are given in 

Table 3. It can be seen from the table that the first three 

loading levels begin with six cycles at each loading level of 

0.004 rad, 0.0053 rad and 0.0073 rad rotations, respectively. 

The next four cycles at 4th load step are at 0.01 rad rotation, 

followed by two cycles in 5th load step of 0.015 rad 

rotation. Then, the loading peak is gradually increased from 

0.02 rad with the increment of 0.01 rad rotation and two 

 

Fig. 2 Schematic of experimental setup 

280



 

Hysteresis modeling for cyclic behavior of concrete-steel composite joints using modified CSO 

 

 

Table 3 Loading protocol 

Loading 

level 

Rotation 

(rad) 

Cycle number 

of each loading 

level 

Corresponding 

displacement 

(mm) 

1 0.004 6 6 

2 0.0053 6 8 

3 0.0073 6 11 

4 0.01 4 15 

5 0.0153 2 23 

6 0.02 2 30 

7 0.03 2 45 

8 0.04 2 60 

9 0.05 2 75 

10 0.06 2 90 
 

* Continue with the increment of 0.01 rad and perform two cycles 

ateach level 

 

 

 

 

cycles at each rotation level until the failure of the 

connection. The loading velocities of the actuators are 

controlled at 8 mm/min. 

Different types of sensors are utilized to quantify the 

horizontal and vertical displacements of columns and beams 

of the joints, the deployment schematic of which is shown 

in Fig. 4. It can be seen from the figure that two LVDTs 

installed on the surface of the column in the horizontal 

direction are used to measure the displacement of the 

column, which can be used to calculate the rotation of the 

column. Four LVDTs deployed on the surface of the beam 

in the vertical direction together with four inclinometers are 

employed to measure the displacement of the beam, which 

can be used to calculate the rotation of the beam. In 

addition, the linear potentiometers are installed at two ends 

of the beam to estimate the interface slip between steel 

beam and RC slab. 
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Fig. 4 Sensor deployment 
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2.4 Experimental results 
 

The testing results of five joint specimens are shown in 

Figs. 5-9. The left figures (a) show the photos of ultimate 

joints’ appearances, indicating that the failure modes of all 

specimens are beam failure. The right figures (b) provide 

nonlinear relationships between joint moments and 

rotations, which are of great significance to portray the 

capacity of the composite joints. Here, the joint moment is 

 

 

 

 

 

 

defined as the product of the beam span and loading applied 

at the tip of the beam, while the joint rotation is defined as 

the difference between the beam rotation and column 

rotation. It can be observed from the figures that all joints 

have exhibited good deformation performances and the 

corresponding hysteresis loops are chubby. Because of the 

existence of RC slabs, the hogging flexural resistance is 

lower than the sagging flexural resistance, which is capable 

of effectively improving the strength deterioration. 
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Fig. 5 Testing results of specimen S-1 
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Fig. 6 Testing results of specimen S-2 
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Fig. 7 Testing results of specimen S-3 
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However, the strength deterioration under hogging moment 

is little evident due to quick local yielding of bottom beam 

flanges. 

 

 

3. Hysteresis modelling of composite joints under 
cyclic loading 
 

Different from traditional finite element modelling, a 

novel phenomenological model is developed in this study, 

which is based on the curve fitting technology. According to 

the experimental phenomena and results of the joints in 

Section 2, the Bouc-Wen component with strength and 

stiffness degradation characteristics is employed to build up 

the model for characterizing the cyclic behaviour of the 

composite joints. The experimental data is then used to 

identify the model parameters via fitting the model 

predictions into the experimental hysteresis curve as close 

as possible. The details on model design and parameter 

identification will be given in the following subsections. 

 

3.1 Description of the proposed rotational 
hysteresis model 

 

In this part, a novel analytical model, based on the 

Bouc-Wen hysteresis model, is proposed to portray the 

nonlinear bending moment-rotation relationship of cyclic 

 

 

 

 

responses of the composite joints. Suppose the rotation 

movement of a single degree-of-freedom system is given by 

the following equation 
 

𝑇(𝜃, 𝜃̇, 𝑦) = 𝛼 ⋅ 𝑘0 ⋅ 𝜃 + 𝑐0 ⋅ 𝜃̇ 

                        +(1 − 𝛼) ⋅ 𝑘0 ⋅ 𝑦 + 𝑇0 
(1) 

 

where T denotes the bending moment; α denotes the ratio of 

post-yield stiffness to initial stiffness; k0 denotes the initial 

rotational stiffness factor; c0 denotes the rotational damping 

factor; θ and 𝜃̇ denote angular displacement and angular 

velocity, respectively; T0 is the initial moment, which 

denotes the offset in this study; y is an intermediate variable 

and its value can be obtained from the following equation 

 

𝑦̇ = ℎ(𝑦) ⋅
𝐴 ⋅ 𝜃̇ − 𝑣 ⋅ (𝛽 ⋅ |𝜃̇| ⋅ |𝑦|𝑛−1 ⋅ 𝑦 + 𝛾 ⋅ 𝜃̇ ⋅ |𝑦|𝑛)

𝜂
 (2) 

 

where A denotes the tangent stiffness; β, γ and n are 

parameters to regulate the hysteresis shape; v and η are 

parameters to designate strength and stiffness degradations, 

respectively; h(y) is a function for the pinching 

phenomenon. 

For the system without degradation and pinching, the 

continuous function can be used to designate the hysteresis 

phenomenon and hysteresis stiffness is 0 at local optimum 
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Fig. 8 Testing results of specimen S-4 
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Fig. 9 Testing results of specimen S-5 
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(minimum or maximum), where the sign of the velocity is 

changed. Consequently, at an infinitely small range dy away 

from ymax, where the velocity approximates to 0 and 

𝑦̇max ≈ 𝑦̇1 

 

𝑦̇max ≈ 𝐴 ⋅ 𝜃̇ − 𝑣 ⋅ (
𝛽 ⋅ |𝜃̇| ⋅ |𝑦|𝑛−1 ⋅ 𝑦

+𝛾 ⋅ 𝜃̇ ⋅ |𝑦|𝑛          
) = 0 (3) 

 

𝑦max = ±[
𝐴

𝑣 ∙ (𝛽 + 𝛾)
]
1

𝑛 (4) 

 

In above equations, A is redundant because hysteresis 

force and stiffness can be adjusted by stiffness ratio α and 

shape parameters β, γ and n. Hence, in this work the value 

of A is set to 1 as a matter of convenience. 

The stiffness and strength degradation parameters η and 

v can be expressed as the functions of accumulated 

hysteresis energy, as shown in Eqs. (5) and (6) 

 

𝜂(𝜀) = 1 + 𝛿𝜂 ∙ 𝜀 (5) 

 

𝑣(𝜀) = 1 + 𝛿𝑣 ∙ 𝜀 (6) 

 

where δv and δη denote the degradation coefficients for 

strength and stiffness, respectively; ε denotes the energy 

obtained by hysteresis component which can be calculated 

by continuously integrating the hysteresis moment T over 

the rotation θ 

 

𝜀(𝑡) = ∫ 𝑇 ⋅ 𝑑𝜃
𝜃(𝑡)

𝜃(0)

 

         = (1 − 𝛼) ⋅ 𝑘0 ⋅ ∫ 𝑦(𝜃, 𝑡) ⋅ 𝑑𝑡 ⋅
𝑑𝜃

𝑑𝑡

𝜃(𝑡)

𝜃(0)

 

         = (1 − 𝛼) ⋅ 𝑘0 ⋅ ∫ 𝑦(𝜃, 𝑡) ⋅ 𝜃̇(𝑡) ⋅ 𝑑𝑡
𝑡

0

 

(7) 

 

If the value of δη or δv is equal to 0, there is no stiffness 

or strength degradation in the system. With the increase of 

δη, both hysteresis moment and rotational stiffness will be 

decreased. Different from the effect of δη, the increment of 

δv will induce the reducing hysteresis moment, but the 

rotational stiffness is unchanged. 

In Eq. (2), h(y) denotes the pinching function and its 

mathematical expression is given in Eq. (8). 

 

ℎ(𝑦) = 1 − 𝜁1 ⋅ exp {
−[𝑦 ⋅ sgn(𝜃̇) − 𝑞 ⋅ 𝑦𝑢]2

𝜁2
2 } (8) 

 

where ζ1 affects the pinching severity and its value ranges 

between 0 and 1; ζ2 is a parameter to regulate the area 

where the pinching phenomenon will extend; q is used to 

adjust the pinching level which is a constant. Both ζ1 and ζ2 

are the functions of hysteresis energy ε, as shown in Eqs. 

(9) and (10). 

 

𝜁1(𝜀) = 𝜉10 ⋅ [1 − exp(−𝑝 ⋅ 𝜀) (9) 

 

𝜁2(𝜀) = (𝜓0 + 𝛿𝜓 ⋅ 𝜀) ⋅ (𝜆 + 𝜁1) (10) 
 

Table 4 Geometric description of model parameters 

No. Parameter Geometric description 

1 α 
Ratio of post-yield to 

initial rotational stiffness 

2 k0 Initial rotational stiffness 

3 c0 Initial rotational damping 

4 β Hysteresis shape regulation 

5 γ Hysteresis shape regulation 

6 n Hysteresis shape regulation 

7 ξ10 Whole slip 

8 q Pinching level 

9 p Pinching slope 

10 ψ0 Pinching amount 

11 δψ Pinching extension rate 

12 λ Pinching severity interaction 

13 δv Strength degradation 

14 δη Stiffness deterioration 

15 T0 Bending moment offset 
 

 

 
where ξ10 denotes the whole slip; p controls the rate of the 

initial drop in the slope; ψ0 designates the pinching amount; 

δψ denotes the rate of the pinching extension; λ is a 

parameter to regulate the variation rate of ζ2 with the change 

of ζ1. 

Table 4 gives the geometric description of each 

parameter of the proposed rotational model that is used to 

characterize the cyclic behaviour of the composite joint. 

 

3.2 Model parameter identification 
 

In the proposed rotational hysteresis model, there are 15 

parameters to be identified, i.e. k0, c0, α, β, γ, n, ξ10, q, p, ψ0, 

δψ, λ, δv, δη and T0. The process of parameter identification 

can be regarded as solving a global minimization 

optimization problem, because the parameter values are 

difficult to be calculated through trials. The key problem for 

tackling such an optimization problem is to build up a 

rational fitness function, which is crucial to the accuracy of 

final identification results. Besides, an obvious feature of 

the proposed model is that it has the highly nonlinear 

differential equation (Eq. (2)) in the mathematical 

expression, which brings about the challenges for parameter 

calculation. Here, the Runge-Kutta algorithm with four 

orders is utilized to identify the variable “y” via an iterative 

process. The corresponding process can be expressed by 

Eqs. (11)-(15). 

 

𝑦𝑖+1 = 𝑦𝑖 +
[𝑧1 + 2 ⋅ (𝑧2 + 𝑧3) + 𝑧4]

6
 (11) 

 

𝑧1 = ∆𝑡 ∙

[
 
 
 
 

ℎ(𝑦𝑖) ∙

𝜃̇𝑖 − 𝑣 ∙ (𝛽 ∙ |𝜃̇𝑖| ∙ |𝑦𝑖|
𝑛−1 ∙ 𝑦𝑖

+𝛾 ∙ 𝜃̇𝑖 ∙ |𝑦𝑖|
𝑛)                          

𝜂

]
 
 
 
 

 (12) 
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𝑧2 = ∆𝑡 ∙

[
 
 
 
 
 
 
 
 
 
 

ℎ(𝑦𝑖 +
𝑧1

2
) ∙

(
𝜃̇𝑖+𝜃̇𝑖+1

2
) − 𝑣 ∙

(

 
 

𝛽 ∙ |
𝜃̇𝑖+𝜃̇𝑖+1

2
| ∙ |𝑦𝑖 +

𝑧1

2
|
𝑛−1

∙ (𝑦𝑖 +
𝑧1

2
) + 𝛾 ∙ (

𝜃̇𝑖+𝜃̇𝑖+1

2
)

∙ |𝑦𝑖 +
𝑧1

2
|
𝑛

                    )

 
 

𝜂

]
 
 
 
 
 
 
 
 
 
 

 (13) 

 

𝑧3 = ∆𝑡 ∙

[
 
 
 
 
 

ℎ(𝑦𝑖 +
𝑧2

2
) ∙

(
𝜃̇𝑖+𝜃̇𝑖+1

2
)−𝑣∙(𝛽∙|

𝜃̇𝑖+𝜃̇𝑖+1
2

|∙|𝑦𝑖+
𝑧2
2

|
𝑛−1

∙(𝑦𝑖+
𝑧2
2

)+𝛾∙(
𝜃̇𝑖+𝜃̇𝑖+1

2
)∙|𝑦𝑖+

𝑧2
2

|
𝑛
)

𝜂

]
 
 
 
 
 

  (14) 

 

𝑧4 = ∆𝑡 ∙ [ℎ(𝑦𝑖 + 𝑧3) 

          ∙

𝜃̇𝑖+1 − 𝑣 ∙ (𝛽 ∙ |𝜃̇𝑖+1| ∙ |𝑦𝑖 + 𝑧3|
𝑛−1

∙ (𝑦𝑖 + 𝑧3) + 𝛾 ∙ 𝜃̇𝑖+1 ∙ |𝑦𝑖 + 𝑧3|
𝑛)

𝜂
] 

(15) 

 

where ∆t is the sampling rate. Hence, based on calculated 

time-series y, the fitness function can be defined as the root 

mean square (RMS) error between experimental results and 

model outputs, as shown in Eq. (16). 

 

𝑂𝑏𝑗(𝑥) = √
1

𝑁𝑑

∑[𝑇𝑡𝑒𝑠𝑡(𝑖) − 𝑀𝑇(𝑖)]2

𝑁𝑑

𝑖=1

 

              = √
1

𝑁𝑑
∑{

𝑇𝑡𝑒𝑠𝑡(𝑖) − [𝛼 ∙ 𝑘0 ∙ 𝜃𝑖 + 𝑐0 ∙ 𝜃̇𝑖

+(1 − 𝛼) ∙ 𝑘0 ∙ 𝑦𝑖 + 𝑇0]          
}
2

𝑁𝑑

𝑖=1

 

(16) 

 

where Obj denotes the fitness function; X = [k0, c0, α, β, γ, n, 

ξ10, q, p, ψ0, δψ, λ, δv, δη, T0] denotes the vector of 

parameters to be identified; Ttest and MT denote the 

measured moment in experimental testing and predicted 

moments from the model, respectively; Nd is the number of 

data samples used for model identification. Consequently, 

the model parameter identification is transformed to the 

minimization of the fitness function, as shown in Eq. (17). 

 
Min  𝑂𝑏𝑗(𝑋)                                                        
𝑠. 𝑡.  𝑘0 > 0, 𝑐0 > 0, 0 < 𝛼 < 1,     
𝛽 > 0,        𝑛 > 0,         𝜉10 > 0,                       
𝑞 > 0, 𝑝 > 0,        𝜓0 > 0, 𝛿𝜓 > 0,

 𝜆 > 0, 𝛿𝑣 > 0,       𝛿𝜂 > 0                         

 (17) 

 

When the fitness value equals to zero, the corresponding 

X (parameter matrix) will be the optimal parameters of the 

proposed model. To solve such a problem, the direct and 

gradient-based search algorithms may not work due to high 

nonlinearity and indescribable gradient information in the 

optimization problem. As a result, a modified chicken 

swarm optimization algorithm is put forward to solve this 

optimization problem for optimal parameter identification 

of the proposed rotational hysteresis model. 

4. Modified chicken swarm optimization 
 
4.1 CSO description 
 

Chicken swarm optimization (CSO), proposed by Meng 

et al. in 2014 (Meng et al. 2014), is a novel heuristic 

swarm-based optimization algorithm in accordance with 

food searching of hens, cocks and chicks. Besides the 

characteristics of traditional swarm intelligence 

optimization algorithms, the CSO adopts the strategies of 

population subdivision and collaborative optimization to 

maximize the global search ability of the algorithm in the 

solution space. As one of the most common poultry, chicken 

is a kind of gregarious animal with strong hierarchy. In 

general, the cock is playing a dominant part in the chicken 

swarm with stronger food search ability, followed by hens 

and chicks. Via simulating this social formation, the CSO is 

employed to resolve the practical optimization problems. 

In view of above description, the individuals in the 

chicken swarm can be simplified as follows. 
 

(1) The whole chicken swarm can be divided into 

several groups and each group consists of a cock, a 

few hens and chicks. 

(2) The fitness is employed to distinguish the identities 

of cock, hen and chick in the swarm. The chickens 

with several optimal fitness values are regarded as 

the cocks. The chickens with several worst fitness 

values are considered as the chicks. The rest of the 

chickens will be the hens in the swarm. The hens 

are always randomly assigned to each group and 

the relationships between hens and their chicks are 

randomly built up as well. 

(3) The identities, hierarchical ranking and parent-

child relationship of each group in the swarm are 

kept unchanged and just updated every G times of 

algorithm iteration. 

(4) In each group, the chickens follow the cock (group 

leader) to search for food, and simultaneously 

prevent other chickens from eating their own food. 

Suppose that the chickens are able to randomly 

steal other chickens’ food and the chicks find food 

around their mothers in the swarm. Hence, the 

dominant chickens have benefits in the process of 

food searching. 
 

Suppose there are N chickens in the swarm, in which the 

numbers of cock, hen and chick are CON, HN and ChN, 

respectively. Let 𝑥𝑖,𝑗
𝑡  (I = 1, …, N; j = 1, …, D) denote the 

location of ith chicken at tth iteration in the D-dimensional 

space. Different types of chicken have different location 

update strategies, given as follows. 

Location update of cock: the cock with better fitness 

value has wider range to seek for food than other cocks with 

less fitness. Its location is only affected by other cocks’ 

locations. Hence, the location update formula of the cock is 

given as follows 

 

𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑖,𝑗

𝑡 ⋅ [𝑅𝑑𝑛(0, 𝜎2) + 1] (18) 

 

where xi,j denotes the location of ith cock at jth dimension; t 
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denotes the current iteration number; Rdn(0,σ2) denotes a 

random value with normal distribution of zero mean value 

and standard deviation of σ2. The value of σ2 is determined 

by the following equation. 
 

𝜎2 = {𝑒
𝑓𝑘−𝑓𝑖
𝜀+|𝑓𝑖| ,      𝑓𝑖 > 𝑓𝑘

1, 𝑜𝑡ℎ𝑒𝑟𝑠
,       𝑘 ∈ [1, 𝑁],       𝑘 ≠ 𝑖 (19) 

 

where ε is a small constant that is used to avoid aero 

denominator. fi denotes the fitness value of ith cock while fk 

denotes randomly selected kth cock. 

Location update of hen: The hens follow the cocks in 

their groups to search for food, and in the meantime, they 

compete with other hens via stealing their food. Therefore, 

the location of the hen is affected by other cocks and hens. 

The location update strategy of the hen is formulated as 

follows. 
 

𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑖,𝑗

𝑡 + 𝑐1 ⋅ 𝑅𝑑1 ⋅ (𝑥𝑟1,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡 ) 

              +𝑐2 ⋅ 𝑅𝑑2 ⋅ (𝑥𝑟2,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡 ) 
(20) 

 

𝑐1 = 𝑒

𝑓𝑖−𝑓𝑟1
𝜀+|𝑓𝑖|  (21) 

 

𝑐2 = 𝑒𝑓𝑟2−𝑓𝑖 (22) 
 

where Rd1 and Rd2 denote random numbers between 0 and 

1; c1 represents the influencing factor of r1th cock in the ith 

hen’s group on ith hen; c2 denotes the influencing factor of 

r2th cock or hen in the swarm on ith hen. 

Location update of chick: The chick has the least ability 

to search for food and can only follow its mother hen in its 

group for the food. Hence, the location of the chick is just 

affected by its mother, with the following expression. 
 

𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑖,𝑗

𝑡 + ℎ1 ⋅ (𝑥𝑚,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡 ) (23) 

 

where xm,j denotes the location of mth mother hen at jth 

dimension; h1 denotes the influencing factor of mother hen 

on the chick’s location, which is a constant in CSO. 

To sum up, the procedure of CSO can be summarized as 

the following steps. 
 

Step 1. Initialize the chicken population N. Set 

maximum iteration number Nite, interval generation G, cock 

number CON, hen number HN and chick number ChN. 

Step 2. Calculate the fitness value of each chicken in the 

swarm and set current iteration number t = 0. 

Step 3. Judge whether current t meets the update 

condition of chicken identity. If t % G = 0, rearrange the 

chickens according to their fitness values, re-divide chicken 

population into different groups and re-establish the 

hierarchical order and mother-child relationship. 

Step 4. Use Eqs. (18)-(23) to update the locations of 

cocks, hens and chicks in the swarm. 

Step 5. Calculate the fitness value of each chicken in the 

updated swarm. If individual fitness value after updating is 

better than its previous one, update its location; otherwise, 

keep previous location unchanged. 

Step 6. Update t = t + 1. If t < Nite, repeat Steps 3-6; 

otherwise, terminate the algorithm iteration. 

4.2 M-CSO algorithm 
 

Despite the fact that CSO has been proved to be 

effective in the application of engineering optimization, it 

still has the drawback of the premature convergence when 

dealing with complex optimization problems. To prevent 

the algorithm from early trapping into the local optimum, a 

modified CSO (M-CSO) is developed in this study to 

improve the identification accuracy. In the CSO, the chicks 

are as important as cocks and hens in food searching. 

Accordingly, the main idea of M-CSO is to improve 

location update mechanism of chicks in the swarm. In the 

original CSO, the location of the chick is only affected by 

its mother hen. When the mother is located near local 

optimal location, the child is more prone to be trapped in 

local optimal location. However, in practice, the chick not 

only follows its mother to find food, but also refers to the 

location of the cock, which is the most dominant in the 

group. Hence, in the location update formula of the chick, a 

self-learning factor w and an influencing factor c3 are added 

to Eq. (23), shown as follows. 
 

𝑥𝑖,𝑗
𝑡+1 = 𝑤 ⋅ 𝑥𝑖,𝑗

𝑡 + ℎ1 ⋅ (𝑥𝑚,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡 ) 

             +𝑐3 ⋅ (𝑥𝑟,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡 ) 
(24) 

 

𝑤 + 𝑐3 = 1 (25) 
 

where c3 represents the location influence from rth cock in 

the swarm. Moreover, the influencing factor h1 is always 

defined as a constant. If h1 is assigned with a big value, the 

algorithm will have better global search ability but worse 

local search ability. Conversely, if h1 is assigned with a 

small value, the algorithm will have better local search 

ability but worse global search ability. It is challenging to 

balance both global and local search abilities in the 

algorithm iteration procedure to speed up the convergence 

and improve identification accuracy in the meantime. In this 

study, a self-adaptive h1 will be introduced in location 

update of the chick, which starts with a high value to make 

the algorithm rapidly converge to approximate location of 

global optimum and gradually decreases to a small value to 

improve the result accuracy in the later stage of iteration via 

enhancing local search ability. There are a large number of 

choices for mathematical expression of self-adaptive 

decreasing h1, including both linear and nonlinear 

expressions. Here, a nonlinear expression is employed to 

automatically adjust the value of h1 during the evolutionary 

procedure, shown in Eq. (26). 
 

ℎ1 = ℎ1
min + (ℎ1

max − ℎ1
min) ⋅ 𝑒

𝛼⋅(
𝑡

𝑁𝑖𝑡𝑒
)𝛽

 (26) 

 

where [ℎ1
min, ℎ1

max] denotes the range of h1; α and β are two 

parameters to regulate the curve. In this study, α = -20 and β 

= 5 due to the perfect feature of symmetry. Fig. 10 gives an 

example of decreasing h1 comparison between linear and 

nonlinear cases. It is clearly seen that nonlinear decreasing 

h1 is better than linear one, as it can keep maximum value 

of h1 for a long time in the initial period of optimization and 

quickly decline to its minimum value at the later stage. 

Accordingly, both exploration and exploitation abilities of 
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Fig. 10 Comparison between linear and nonlinear 

decreasing h1 
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relationships according to the fitness 
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individual location is better than 
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Fig. 11 Flowchart of M-CSO 

 

the CSO algorithm are enhanced. Based on these 

modifications, the procedure of M-CSO can be illustrated 

by the flowchart in Fig. 11. 

 

4.3 Algorithm performance evaluation 
 

In this section, four benchmark functions are employed 

to test the performance of the proposed M-CSO via a 

comparison with other commonly used swarm-based 

optimization algorithms. Here, both identification accuracy 

and convergence rate are considered as algorithm 

evaluation indices. Table 5 gives the details of four 

benchmark test functions, including Griewangk function 

(F1), Rastrigrin function (F2), Rosenbrock function (F3) 

and Schewefel function (F4), which are able to 

comprehensively evaluate the algorithm performance. Fig. 

12 shows corresponding two-dimensional (x) graphs of four 

functions. It is clearly seen that all the functions are 

nonlinear multi-modal functions with a large number of 

local optimal solutions, and they have global optimal 

solution with value of 0. In this study, the optimization 

dimension is set as 20. Besides the proposed M-CSO, 

particle swarm optimization (PSO), fruit fly algorithm 

(FFA) and standard CSO are adopted to solve the 

optimization problems of the test functions. To make a fair 

comparison, the swarm size and maximum iteration number 

are set as 40 and 500 for all the optimization algorithms. 

Other parameter settings of algorithms are provided as 

follows: in the PSO, the inertia weight is set as 0.85 and two 

learning factors are set as 1.5 (Das et al. 2018, Ho-Huu et 

al. 2018); in the FFA, the searching step is in the range of [-

1, 1]; in the CSO and M-CSO, the number of cocks is 6, the 

number of hens is 28, the number of chicks is 6, w = 0.6, 

and c3 = 0.4. 

Then, the PSO, FFA, CSO and M-CSO are adopted to 

optimize four test functions. All algorithms are programmed 

using Matlab v.2016a. For each algorithm and each 

function, 50 independent tests were conducted, and used to 

record and calculate the minimum fitness, maximum 

fitness, mean fitness, standard deviation of fitness and mean 

running time. Table 6 shows the test results of different 

optimization algorithms. From the optimization results of 

F1, the optimal fitness values of CSO and M-CSO are 0, 

which is the target of the optimization problem. The optimal 

fitness values of PSO and FFA are 0.0059 and 0.0014, 

respectively. Hence, the optimization capacities of CSO and 

M-CSO are obviously better than that of PSO and FFA. 

Compared with CSO, the M-CSO has optimal mean fitness 

and standard deviation, which proves outstanding stability 

and robustness. Similar to results of F1, the results of F2, 

F3 and F4 also validate that the M-CSO outperforms PSO, 

FFA and CSO in terms of minimum fitness, maximum 

fitness and solution stability, even though it requires more 

time for solving the optimization problem than PSO and 

FFA. The mean running time of both CSO and M-CSO is in 

the range of [1.3, 1.5] s, which demonstrates that the 

modified version of CSO is capable of effectively 

improving the algorithm accuracy without adding any 

calculation cost. 
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To better evaluate the convergence rate and accuracy of 

each algorithm, the fitness variations of four algorithms 

during the evolutionary process are also compared, as 

shown in Fig. 13. It is clearly noted that the proposed M-

CSO algorithm has the fastest convergence and best 

accuracy compared with other three algorithms, which fall 

into the local optimums for a period to different degrees. 

The M-CSO, however, has the ability of avoiding trapping 

into the local optimum and can accurately find the 

optimization target in a short time. 

 

 

 

 

5. Identification results and analysis 
 

5.1 Modeling results 
 

To appraise the capacity of the proposed rotational 

hysteresis model to predict the cyclic behavior of the 

composite joints, the measured data from five specimens 

are employed to identify the best model parameter values. 

The parameter values of M-CSO are the same as that of M-

CSO in Section 4.3. The optimal parameter values of the 

Table 5 Details of benchmark test functions 

Function Expression Dimension Range Target 

Griewangk (F1) 

2

1 1

cos( ) 1
4000

N N
i i

i i

x x

i= =

− +   20 [-10,10] 0 

Rastrigrin (F2) 
2

1

10 [ 10 cos(2 )]
N

i i

i

N x x
=

 + −     20 [-10,10] 0 

Rosenbrock (F3) 

1
2 2 2

1

1

[100 ( ) (1 ) ]
N

i i i

i

x x x
−

+

=

 − + −  20 [-10,10] 0 

Schewefel (F4) 
1 1

N N

i i

i i

x x
= =

+   20 [-10,10] 0 

 

  

(a) Griewangk (b) Rastrigrin 
 

  

(c) Rosenbrock (d) Schewefel 

Fig. 12 Plots of 2-D benchmark test functions 
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proposed model for the composite joints are summarized in 

Table 7. Figs. 14(a)-18(a) show the hysteretic loop 

comparisons between experimental results and model 

predictions for five composite joints, respectively, in which 

 

 

 

 

the solid blue lines represent measured moments by the 

testing and the red dotted lines denote the predicted 

moments from the proposed model. It is noticeable from the 

figures that with the increase of loading amplitude, the 

Table 6 Test results of different algorithms 

Index Algorithm 
Minimum 

fitness 

Maximum 

fitness 

Mean 

fitness 

Standard 

deviation 

Mean 

time (s) 

F1 

PSO 0.0059 0.1758 0.0599 0.0024 0.1692 

FFA 0.0014 0.3516 0.0217 0.0031 0.0735 

CSO 0 0.1246 0.0261 0.0009 1.4398 

M-CSO 0 8.41E-06 7.04E-11 2.41E-24 1.4524 

F2 

PSO 7.1903 75.2250 25.2108 512.8166 0.1962 

FFA 5.8382 8.2734 7.1649 0.2816 0.1103 

CSO 1.6148 12.7440 5.5184 47.3729 1.3974 

M-CSO 0 2.3876 1.3734 3.4481 1.3911 

F3 

PSO 7.7626 12.7392 9.4148 0.9249 0.2192 

FFA 3.2369 9.0972 5.4321 2.2351 0.1024 

CSO 2.8291 6.2484 4.1492 0.6314 1.4038 

M-CSO 9.91E-05 1.9867 0.9778 0.3076 1.4005 

F4 

PSO 0.1853 1.1231 0.5735 0.0401 0.1973 

FFA 0.0430 0.04147 0.0422 1.16E-07 0.0974 

CSO 1.22E-23 3.17E-27 1.32E-24 7.77E-48 1.3732 

M-CSO 2.21E-31 8.61E-50 5.61E-33 1.22E-63 1.3729 
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Fig. 13 Algorithm iteration process 
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phenomenon of stiffness and strength degradations become 

more obvious. And the good agreements between two types 

of hysteresis loops effectively prove the outstanding ability 

of the proposed model to capture the nonlinear behaviour of 

the composite joints under cyclic loading. To further 

quantify the model prediction accuracy, the Pearon’s 

correlation coefficient (R) between measured and predicted 

moments is also employed for model assessment, the 

 

 

 

 

 

 

formula of which is given in Eq. (27). 

 

𝑅 =

𝑁𝑑 ∙ [∑ 𝑀𝑇(𝑖) ∙ 𝑇𝑡𝑒𝑠𝑡(𝑖)
𝑁𝑑
𝑖=1 ]

−[∑ 𝑀𝑇(𝑖)
𝑁𝑑
𝑖=1 ] ∙ [∑ 𝑇𝑡𝑒𝑠𝑡(𝑖)

𝑁𝑑
𝑖=1 ]

√{
𝑁𝑑 ∙ ∑ 𝑀𝑇(𝑖)2𝑁𝑑

𝑖=1

−[∑ 𝑀𝑇(𝑖)
𝑁𝑑
𝑖=1

]2
} ∙ {

𝑁𝑑 ∙ ∑ 𝑇𝑡𝑒𝑠𝑡(𝑖)
2𝑁𝑑

𝑖=1

−[∑ 𝑇𝑡𝑒𝑠𝑡(𝑖)
𝑁𝑑
𝑖=1

]2
}

 (27) 

 

 

 

 

Table 7 Parameter identification results of the five specimens 

Parameter k0 c0 α β γ n ξ10 

ID 

S-1 5.9130 2.6758 0.0018 0.0116 0.0141 1.0395 0.3527 

S-2 4.9564 1.8798 0.0663 0.0249 0.0013 1.0000 0.8452 

S-3 5.0485 1.2356 0.0442 0.0205 0.0131 1.0001 0.3266 

S-4 5.9389 2.7568 0.0712 0.0192 0.0076 1.0005 0.0269 

S-5 5.8977 3.3775 0.0659 0.0193 0.0058 1.0001 3.8×10-6 

Parameter q p ψ0 δψ λ δv δη 

ID 

S-1 0.0010 0.0422 0.0355 0.0009 0.3283 8.2×10-5 1.6×10-5 

S-2 0.0003 1.4×10-10 0.0266 0.0003 0.1145 0.0001 4.9×10-5 

S-3 0.0040 0.2688 0.0593 0.0008 0.4999 4.5×10-5 8.9×10-10 

S-4 0.0009 0.3563 0.0279 0.0001 0.0299 0.0001 2.1×10-5 

S-5 0.4259 0.2993 0.0295 0.0010 0.0583 0.0002 4.2×10-5 
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Fig. 14 Response comparison of S-1 between experimental results and model predictions 
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Fig. 15 Response comparison of S-2 between experimental results and model predictions 
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where Ttest and MT denote the experimentally measured 

moment and predicted moments from the model, 

respectively, and Nd is the number of data samples. In 

general, the correlation coefficient higher than 0.95 

indicates a satisfactory level of accuracy for the modeling 

task. Figs. 14(b)-18(b) indicate the correlation analysis 

results of the proposed rotational hysteresis model for 

characterizing different joint specimens. It is clearly seen 

that all the points are uniformly scattered around the line y 

= x and the values of the correlation coefficient are above 

 

 

 

 

 

 

0.99 for all five cases, which indicates the high prediction 

accuracy of the model to forecast the cyclic behavior of 

different composite joints. 

 

5.2 Performance analysis 
 

5.2.1 Skeleton curve 
Skeleton curve is a good indicator to represent the 

strength degradation, stiffness deterioration and ductility 

performance (flexural capacity) of the structure, which can 
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Fig. 16 Response comparison of S-3 between experimental results and model predictions 
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Fig. 17 Response comparison of S-4 between experimental results and model predictions 
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Fig. 18 Response comparison of S-5 between experimental results and model predictions 
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be obtained via extracting the points with maximal values 

of the loading at each cycle of moment-rotation hysteretic 

loop and then connecting them together in turn. Fig. 19 

displays the comparisons of skeleton curves between 

experimental results and model predictions for all five joint 

specimens. It is clearly observed that all the skeleton curves 

grow in an almost linear manner until they arrive at the 

yielding points, which indicates that the skeletons will 

change from the elastic state to the plastic state. After that, 

structural lateral stiffness, represented by the slope of the 

curve, starts to reduce, and at the same time, the strength of 

the specimen begins to decrease after reaching its maximum 

loading point, and the strength degradation continues until 

the failure of the structure. By and large, except for some 

increasing errors in the latter loading stage, the skeleton 

curves predicted from the proposed model are in good 

agreement with the experimental results, which represents 

the model capacity to capture this important indicator. 

 

5.2.2 Strength degradation 
The maximum moment of the joint specimen, at the 

same rotation level during the cyclic loading, will be 

gradually reduced due to accumulated damage, the 

phenomenon of which is regarded as the strength 

degradation. Generally, the strength degradation is 

characterized using a strength degradation factor, which is 

defined as follows 
 

𝑆𝑡𝑟𝑒𝑛𝑗 =
𝑇𝑗

𝑖

𝑇𝑗
1 (28) 

 

where 𝑇𝑗
𝑖 and 𝑇𝑗

1 denote the maximal moments at 1st and 

ith loading cycles, when the loading rotation is j. Here, the 

capacity of the proposed model to demonstrate the strength 

degradation phenomenon is investigated through a compari- 

 

 

son between model predictions and experimental results. 

The corresponding results are shown in Fig. 18. It is noted 

that the strength degradation factors of all five specimens 

reduced rapidly and dramatically with the addition of the 

drift ratio because of the accumulated damage. Before the 

peak strengths are reached, the values of strength 

degradation factor are higher than 0.95 and 0.98 for 

hogging and sagging conditions, respectively, which 

indicates weak and minor strength deterioration. Then, the 

values of strength degradation factors will continuously 

drop off after the maximal strengths are achieved. When the 

beam flanges are at failure, the strength degradation factor 

will sharply decrease, as shown in Fig. 20. The comparison 

results sufficiently demonstrate that the proposed model can 

depict these features of strength degradation, even if several 

obvious deviations exist in the early stages of the loading. 

 

5.2.3 Stiffness deterioration 
Similar to the strength degradation, stiffness 

deterioration is another major phenomenon of the 

composite joints under cyclic loading. Hence, it is of great 

importance to evaluate the performance of the model to 

illustrate this characteristic. In tis study, the degree of the 

stiffness deterioration can be evaluated using the stiffness 

deterioration factor, which is defined in the following 

equation (Wang et al. 2009) 
 

𝑆𝑡𝑖𝑓𝑗 =

∑ 𝑃𝐿𝑗
𝑖

𝑛

𝑖=1

∑ 𝑃𝑑𝑗
𝑖

𝑛

𝑖=1

 (29) 

 

where 𝑃𝐿𝑗
𝑖  denotes the maximum value of applied loading 

at ith cycle, 𝑃𝑑𝑗
𝑖 denotes the maximum value of the drift at 

ith cycle, and n represents the number of loading cycles. 
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Fig. 19 Skeleton curve comparison between experimental results and model predictions 
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The comparisons of stiffness deterioration factors/ 

rotations relationships between the experimental results and 

the predictions from the proposed model for all five joint 

specimens are shown in Fig. 21. It is noticeable that the 

effect of the slab on the stiffness deterioration of the 

specimen is similar to that on the reduction of the strength. 

Because of the RBS contribution, the S-5 under hogging 

condition has similar variation tendency as the S-1 in 

developing the stiffness deterioration. However, the flexural 

stiffness of the S-1 is smaller than that of the S-5 under 

 

 

 

 

sagging moment due to the presence of the slab. On the 

other hand, the height of the steel and the depth of the RBS 

cut have certain impact on the joint stiffness deterioration. 

The stiffness deteriorations of the S-2 and S-3 are slightly 

slower than that of the S-4 and S-5. The main reason for 

this phenomenon is that the higher the beam is, the more 

effective plasticity will be generated at the same rotation 

level. Overall, on account of comparisons between 

experiential and predicted results, the proposed rotational 

hysteresis model is capable of effectively capturing these 
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Fig. 20 Strength degradation comparison between experimental results and model predictions 
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Fig. 21 Stiffness deterioration comparison between experimental results and model predictions 
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characteristics of the five joint specimens in terms of 

stiffness deterioration. 

 

5.2.4 Energy dissipation 
The ability for energy dissipation is also important to the 

performance evaluation of the composite joints, which can 

be evaluated by the enclosed area under the hysteresis loop. 

Generally, the larger the enclosed area of the hysteresis 

loop, the better the seismic performance of the composite 

joint. Fig. 22 shows the comparisons of energy dissipations 

calculated from experimental data and model predictions 

for all five joint specimens, respectively. It is noticeable that 

with the adding of storey shift ratio, the energy absorbed at 

each loading cycle is increased accordingly. The main factor 

contributing to this phenomenon is that after steel yielding, 

the flexural deformations of the joints will be increased 

moderately, leading to more absorbed energy. It can be 

observed from the figures that all the specimens start with 

absorbed energy of around 100 N·m at the drift ratio of 1, 

and finally arrive at the maximum energy of around 16,000 

N·m before the failure of the joints. This finding 

demonstrates that the presence of the RBS and slab has 

limited influence on the change of dissipated energy. Five 

groups of comparisons validate the performance of the 

proposed model to predict the energy dissipation of the 

composite joints under cyclic loading. Especially, in the 

initial stage of the loading, the predicted absorbed energies 

resemble the experimental results very well. 

 

5.3 Model parameter analysis 
 

To better utilize the proposed rotational hysteresis model 

to characterize cyclic behavior of the composite joints, a 

numerical investigation is carried out to evaluate the effects 
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Fig. 23 Cyclic loading simulated for parametric study 
 

 

of the parameters of the model on the moment outputs. In 

this study, the reference parameters are set as: k0 = 5, c0 = 1, 

α = 0.05, β = 0.02, γ = 0.01, n = 1, ξ10 = 0, q = 0.1, p = 0.2, 

ψ0 = 0.1, δψ = 0.001, λ = 0.5, δv = 0.0005 and δη = 0.00005. 

The cyclic loading is simulated and shown in Fig. 23. Fig. 

24 gives the comparison results of moment-rotation 

hysteretic loops with regard to different values of model 

parameters k0, c0, α, β, γ, n, ξ10, q, p, ψ0, δψ, λ, δv and δη, 

respectively. It can be observed from Figs. 24(a) and (c) that 

with the addition of the parameter value, the slopes of the 

hysteresis loops will be increased accordingly, which 

indicates that k0 and α are parameters directly affecting the 

stiffness of the structure. The influence of c0 on the output 

hysteretic loops is illustrated in Fig. 24(b). Unlike k0 and α 

that have a certain impact on the slope of the loops, c0 will 

contribute to the enlarged enclosed area with the increase of 

its value, which improves energy dissipation ability. As 

mentioned in Section 3, the parameters γ, β and n are related 

to the hysteresis curve, in which n controls the loop 

smoothness and the combination of β and γ is responsible 
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Fig. 24 Effect of model parameter on moment output 
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for the shape of the loop. And Figs. 24(d)-(f) well 

demonstrate how the values of γ, β and n could affect the 

shape of the hysteretic loop, respectively. As can be found 

in Fig. 24(g), the parameter ξ10 is used to regulate the slip 

scale of the hysteretic loop. When the value of ξ10 is zero, 

there is no slip in the hysteretic loop. However, with the 

ascending value of ξ10, the slip phenomenon can be 

gradually observed in the loop. q is a constant coefficient to 

govern the pinching level of the hysteretic loop and Fig. 

24(h) portrays how the variation of q affects the hysteretic 

loops. When q is set as 0.1, no pinching can be found in the 

loops whilst with the increment of q, more and more 

obvious pinching is observed in the loops. For parameters p, 

ψ0 and λ, changing their values while keeping other 

parameters unchanged will not generate obvious changes in 

the hysteretic loops, which is noticeable in Figs. 24(i), (j) 

and (l). Besides, with the increasing value of parameter δψ, 

the pinching area extends accordingly, as depicted in Fig. 

24(k). Parameters δv and δη are responsible for the stiffness 

and strength deteriorations, and the system will undergo 

more degradation with the increase of their values, as 

shown in Figs. 24(m) and (n). In short, the skeleton curve of 

response loops is determined by the structural property 

parameters k0, c0 and α as well as hysteretic loop parameters 

γ, β and n. The pinching phenomenon including pinching 

spread as well as pinching and slope magnitude is regulated 

by parameters ξ10, q and δψ. The stiffness and strength 

degradations are governed by parameters δv and δη. 

Consequently, by reasonably adjusting different model 

parameters, one is capable of satisfying various require-

ments for characterization of the composite joints. 

To effectively assess the effect of the model parameter 

variation on the output and simplify the expression of the 

proposed rotational hysteresis model, a sensitivity analysis 

is conducted in this section. The reference values of model 

parameters in this case are selected from the specimen S-3, 

that is k0 = 5.0485, c0 = 1.2356, α = 4.5×10-5, β = 0.0205, γ 

= 0.0131, n = 1.0001, ξ10 = 0.3266, q = 0.0040, p = 0.2688, 

ψ0 = 0.0593, δψ = 0.0008, λ = 0.4999, δv = 0.0005 and δη = 

8.9×10-10. During the analysis, each parameter is changed 

from -50% to 50% of its reference value with an increment 

of 10% and at the same time other parameter values 

remained unchanged. Then, the mean RMS errors between 

the responses with varied parameters and with reference 

parameters are evaluated and the corresponding RMS error 

percentage of each parameter is calculated as well. Finally, 

the sensitivities of model parameters are ranked in the 

sequence of decreasing percentages. Fig. 25 shows the 

parameter sensitivity analysis results of the proposed 

rotational hysteretic model, where a spider chart is used to 

indicate the RMS error variation of each parameter. Table 8 

shows the parameter sensitivity ranking of the proposed 

model for composite joints in accordance with descending 

averaged RMS percentages. It is clearly seen that 

parameters k0, with the percentage of 32.89%, is the most 

sensitive parameter in the proposed model followed by n 

and β with RMS percentages of 21.68% and 18.08%, 

respectively. In the sensitivity analysis, the model 

parameters with percentages higher than 3% are generally 
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Fig. 25 Sensitivity analysis results of parameters in the 

proposed model 
 

 

 

Table 8 Sensitivity rank of model parameters 

Parameter Mean RMSE Proportion Rank 

k0 18.0087 32.89% 1 

c0 0.2851 0.52% 10 

α 1.5101 2.76% 7 

β 9.9003 18.08% 3 

γ 4.2274 7.72% 5 

n 11.8773 21.68% 2 

ξ10 2.2989 4.20% 6 

q 0.1440 0.26% 11 

p 0.0091 0.02% 13 

ψ0 0.0871 0.16% 12 

δψ 1.0816 1.98% 8 

λ 0.6549 1.20% 9 

δv 4.6801 8.55% 4 

δη 0.0001 0.0002% 14 
 

 

 
 

regarded as sensitive parameters. Consequently, k0, β, γ, n, 

ξ10 and δv are sensitive parameters in the proposed model, 

because they will result in rational RMS errors when their 

values diverge from the reference values. Conversely, for c0, 

α, q, p, ψ0, δψ, λ and δη, the mean RMS error percentages of 

which are below 3%, belong to insensitive parameters in the 

proposed model. These parameters will have less 

contribution to the model output, even if their values are 

proportionally varied from the baseline. As a result, the 

values of insensitive parameters can be set as constants in 

any numerical study to decrease the number of the model 

parameters to be identified and then the developed 

rotational hysteresis model of composite joints will possess 

the characteristics of feasibility and practicality in 

engineering applications. 
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6. Conclusions 
 

This paper presented a numerical method to predict 

cyclic behavior of the composite joints based on a novel 

rotational hysteresis model. The proposed predictive model, 

consisting of a rotational stiffness element, a rotational 

damping element and a modified Bouc-Wen element, is 

capable of capturing the unique features of the composite 

joints such as strength and stiffness deteriorations as well as 

pinching. Then, the model parameters were identified using 

chicken swarm optimization algorithm based on 

experimental results. To improve the modeling accuracy, the 

chicks’ locations in the swarm were updated using both 

cocks and hens’ information, avoiding the algorithm 

trapping into local optimum. Four benchmark functions 

have been employed to validate the superiority of the M-

CSO in terms of algorithm convergence and accuracy. 

Finally, five joint specimens with different designs were 

tested in the laboratory and the experimental results were 

used in the proposed hysteresis model for parameter 

identification. The identification results have indicated that 

the model can not only provide the moment response 

prediction of the specimens with high accuracy, but also 

perfectly capture the unique characteristics of the composite 

joints under cyclic loading such as stiffness and strength 

degradations as well as energy dissipation. Finally, a 

parametric study was carried out to investigate the influence 

of each parameter on the output of the proposed model and 

identify insensitive parameters that can be eliminated to 

simplify the model configuration. In the future work, the 

artificial intelligence techniques, such as neural network 

(NN), support vector machine (SVM), adaptive neuro-fuzzy 

inference system (ANFIS), etc, will be employed to develop 

the learning models to associate the parameters of the 

proposed model to physical parameters or material 

properties of the composite joint that facilitates the 

engineering application in the real condition. 
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