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1. Introduction 

 

Steel and concrete are generally combined to form 

composite members with preeminent characteristics. Owing 

to the composite action, the composite member is usually 

stiffer and stronger than the sum of the individual members. 

Recently, circular concrete-filled tube (CCFT) columns 

have been widely used in modern construction due to their 

outstanding structural performance, economic advantages, 

and aesthetic appeal. A CCFT column provides superior 

capacities such as high strength, high ductility, and large 

energy absorption ability. The concrete core in a CCFT 

column is not only to resist compressive forces but also to 

prevent the steel member from buckling inward (Bradford 

et al. 2002). Whereas, the steel tube in a CCFT column 

reinforces the concrete to resist any tensile forces, shear 

forces, bending moments, and offers confinement to the 
concrete (Roeder et al. 2010). 

A large number of experiments has been carried out to 

investigate the behavior of CCFT columns (Aslani et al. 

2015, Khan et al. 2016, Zhang et al. 2016, Nematzadeh et 

al. 2017). Based on the experimental data and mechanical 

theory, several empirical formulae for predicting the axial 

compression capacity (ACC) of CCFT columns have been 

proposed. Some of those were used in design codes such as 

ACI 318-08 (2011), AISC 360-10 (2010), AS-5100 (2004), 
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and Eurocode-4 (EC-4) (Johnson and Anderson 2004). 

Although the design codes provide the rule for the design of 

CCFT columns, some limitations on material strengths and 

section slenderness still exist, as listed in Table 1. In the 

past, some authors have modified the existing design 

formulae based on the miserable extend experimental data 

or finite element results (Goode and Narayanan 1997, 

Giakoumelis and Lam 2004, Wang et al. 2017). These 

formulae could provide a better prediction on ACC of 

CCFT columns, however, they still have some gap between 

predicting results and many other test results. Hence, a 

more practical and accurate empirical formula for 

predicting the ACC of CCFT columns is necessary to cover 

the wide range of the updating experimental database. 

Artificial neural network (ANN) is known as a state-of-

the-art approach that imitates the human brain to solve the 

complex linear and nonlinear relationships in a simple way. 

ANN operates as a black-box to capture and learn 

significant structural data (Adeli 2001). Moreover, ANN is 

often regarded as a superior method for calculating and 

predicting, compared to classical and traditional methods 

because of special features, such as low sensitivity to error, 

massively parallel processing, distributing stored 

information, its generalization capability, and adaptability to 

new data. Additionally, the utilization of neural networks is 

reasonably simple and easy, highly effective, and accurate. 

Therefore, the ANN approach has rapidly adopted in a 

variety of fields such as damage detection and identification 

(Wu et al. 1992, Mikami et al. 1998, Mohammadhassani et 

al. 2013), optimization (Adeli and Karim 1997, Tashakori 

and Adeli 2002, Kao and Yeh 2014), prediction (Mukherjee 

et al. 1996, Naderpour et al. 2010, Pendharkar et al. 2011, 

Engin et al. 2015, Cascardi et al. 2017, Karina et al. 2017, 
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Table 1 Limitations on material strengths and sectional 

slenderness of the design codes 

Standards 
Sectional 

type 
D/t 

𝑓𝑦 

(MPa) 

𝑓𝑐
’ 

(MPa) 

ACI 

Circular 

≤ √8𝐸𝑠/𝑓𝑦 ≤ 345 ≥ 17.2 

AISC ≤ 0.15𝐸𝑠/𝑓𝑦 ≤ 525 [21 ÷ 70] 

AS-5100 ≤ 82 × 250/𝑓𝑦 [230 ÷ 400] [25 ÷ 65] 

EC-4 ≤ 900 × 235/𝑓𝑦 [235 ÷ 460] [20 ÷ 60] 
 

 

 

Mandal 2017, Nikbin et al. 2017, Tran et al. 2019) and 

given the very promising results. 

Nowadays, a large amount of database obtained from 

the CCFT experiments could be easily achieved in the open 

literature. A new model that is simple and more accurate 

than the existing ones can be developed based on the vast 

experimental database and the advanced technique. Hence, 

the main objective of this study is to propose a new 

empirical formula for predicting the ACC of CCFT columns 

using the modern ANN approach. The accuracy of the 

proposed formula is compared to the existing formulae. 

 

 

2. Existing formulae for predicting the ACC of 
CCFT columns 

 

For the purpose of comparison with the current study, a 

brief review of some notable existing empirical formulae is 

presented in this section. Note that the resistance and 

material partial factors specified in all design codes have 

been taken as a unity when comparing with the 

experimental results. 

 

2.1 ACI 318-08 and AS-5100 formulae 
 

According to ACI 318-08 (2011) and AS-5100 (2004), 

the ACC of CCFT columns is expressed as 

 

𝑃𝐴𝐶𝐼−𝐴𝑆 = 0.85𝐴𝑐𝑓𝑐
’ + 𝐴𝑠𝑓𝑦, (1) 

 

where 𝐴𝑠 and 𝐴𝑐 are the cross-sectional area of the steel 

tube and the concrete core, respectively, 𝑓𝑦  is the yield 

strength of the steel tube, and 𝑓𝑐
’  is the compressive 

strength of the concrete core. 

 

2.2 AISC 360-10 formula 
 

The formula for ACC of CCFT columns stated in AISC 

360-10 (2010) is expressed as 

 

𝑃𝐴𝐼𝑆𝐶 = 𝑃𝑛𝑜 [0.658
𝑃𝑛𝑜
𝑃𝑒 ]

𝑃𝑛𝑜

𝑃𝑒

≤ 2.25 

𝑃𝐴𝐼𝑆𝐶 = 0.877𝑃𝑒

𝑃𝑛𝑜

𝑃𝑒
> 2.25, 

(2) 

 

𝑃𝑛𝑜 = 𝑃𝑝 = 𝐴𝑠𝑓𝑦 + 0.95𝐴𝑐𝑓𝑐
’, 

for compact section 
(2a) 

 

𝑃𝑛𝑜 = 𝑃𝑝 −
𝑃𝑝 − 𝑃𝑦

(𝜆𝑟 − 𝜆𝑝)2
(𝜆 − 𝜆𝑝)2, 

for non − compact section 

(2b) 

 

𝑃𝑦 = 𝐴𝑠𝑓𝑦 + 0.7𝐴𝑐𝑓𝑐
’, (2c) 

 

𝜆𝑝 = 0.15𝐸𝑠/𝑓𝑦, (2d) 

 

𝜆𝑟 = 0.19𝐸𝑠/𝑓𝑦, (2e) 

 

𝑃𝑛𝑜 = 𝐴𝑠𝑓𝑐𝑟 + 0.7𝐴𝑐𝑓𝑐
’, 

for slender section 
(2f) 

 

𝑓𝑐𝑟 =
0.72𝑓𝑦

((
𝐷

𝑡
)

𝑓𝑦

𝐸𝑠
)

0.2, 
(2g) 

 

𝑃𝑒 =
𝜋2(𝐸𝐼)𝑒

𝐿2
, (2h) 

 

(𝐸𝐼)𝑒 = 𝐸𝑠𝐼𝑠 + 𝐶3𝐸𝑐𝐼𝑐 , (2i) 

 

𝐸𝑐 = 4700√𝑓𝑐
’, (2j) 

 

𝐶3 = 0.6 + 2 [
𝐴𝑠

𝐴𝑐 + 𝐴𝑠
] ≤ 0.9, (2k) 

 

where 𝑃𝑛𝑜  is the nominal compressive capacity of the 

composite section, 𝑃𝑝 is the plastic strength of composite 

section, 𝑃𝑒  is the Euler critical load; 𝑃𝑦  is the yield 

strength of composite section, 𝐸𝑠 is the elastic modulus of 

the steel tube; 𝐸𝑐 is the elastic modulus of the concrete 

core, and 𝑓𝑐𝑟 is the critical local buckling stress. 

 

2.3 EC-4 formula 
 

According to EC-4 (Johnson and Anderson 2004), the 

design formula for predicting the ACC of CCFT columns is 

expressed as 

 

𝑃𝐸𝐶4 = 𝜂𝑎𝐴𝑠𝑓𝑦 + 𝐴𝑐𝑓𝑐
’ (1 + 𝜂𝑐

𝑡

𝐷

𝑓𝑦

𝑓𝑐
’
), (3) 

 

𝜂𝑐 = 4.9 − 18.5𝜆 + 17𝜆2 ≥ 0, (3a) 

 

𝜂𝑎 = 0.25(3 + 2𝜆) ≤ 1.0, (3b) 

 

𝜆 = √
𝑁𝑝𝑙,𝑅𝑑

𝑁𝑐𝑟
≤ 0.5, (3c) 

 

𝑁𝑝𝑙,𝑅𝑑 = 𝐴𝑠𝑓𝑦 + 𝐴𝑐𝑓𝑐
’, (3d) 

 

𝑁𝑐𝑟 =
𝜋2(𝐸𝐼)𝑒

𝐿2
, (3e) 

 

(𝐸𝐼)𝑒 = 𝐸𝑠𝐼𝑠 + 0.6𝐸𝑐𝐼𝑐 , (3f) 
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where 𝜂𝑎 , 𝜂𝑐  are the steel reduction factor and the 

concrete enhancement factor, respectively, 𝜆 is the relative 

slenderness ratio, 𝑁𝑝𝑙,𝑅𝑑 is the characteristic plastic cross-

sectional compressive resistance, and 𝑁𝑐𝑟  is the Euler 

critical load. 

 

2.4 Goode and Narayanan formula 
 

Goode and Narayanan (1997) proposed a formula to 

predict the ACC of CCFT columns, expressed as 

 

𝑃𝐺𝑁 =
6𝑡

(𝐷 − 2𝑡)
𝐴𝑐𝑓𝑦 + 0.85𝐴𝑐𝑓𝑐

’, (4) 

 

where 𝐴𝑐, 𝑓𝑦, and 𝑓𝑐
’ are the cross-sectional area of the 

concrete core, the yield and compressive strength of steel 

tube and the concrete core, respectively, 𝐷 is the outer 

diameter of the steel tube, and 𝑡 is the thickness of the 

steel tube. 

 

2.5 Giakoumelis and Lam formula 
 

According to Giakoumelis and Lam (2004), the ACC of 

CCFT columns can be determined using 

 

𝑃𝐺𝐿 = 𝐴𝑠𝑓𝑦 + 1.3𝐴𝑐𝑓𝑐
’, (5) 

 

where 𝐴𝑠 and 𝐴𝑐 are the cross-sectional area of the steel 

tube and the concrete core, respectively, 𝑓𝑦  is the yield 

strength of the steel tube, and 𝑓𝑐
’  is the compressive 

strength of the concrete core. 

 

2.6 Wang et al. formula 
 

Recently, Zhi-Bin Wang et al. (Wang et al. 2017) used 

regression analysis of numerical results to conduct a 

simplified model for predicting the ACC of CCFT columns. 

The proposed formula is expressed as 

 

𝑃𝑊𝑎𝑛𝑔 = 𝜂𝑎𝐴𝑠𝑓𝑦 + 𝜂𝑐𝐴𝑐𝑓𝑐
’, (6) 

 

𝜂𝑎 = 0.95 − 12.6𝑓𝑦
−0.85 𝑙𝑛( 0.14𝐷/𝑡), (6a) 

 

𝜂𝑐 = 0.99 + [5.04 − 2.37(𝐷/𝑡)0.04(𝑓𝑐
’)0.1] (

𝑡𝑓𝑦

𝐷𝑓𝑐
’
)

0.51

, (6b) 

 

where 𝐴𝑠, 𝐴𝑐, 𝑓𝑦, and 𝑓𝑐
’ are the cross-sectional area of 

the steel tube and the concrete core, the yield and compres- 

 

 

sive strength of the steel tube and the concrete core, 

respectively, 𝐷 is the outer diameter of the steel tube, 𝑡 is 

the thickness of the steel tube, 𝜂𝑎 is a reduction factor 

(smaller than 1) for the strength contribution of the steel 

tube to consider the influence of concrete confinement and 

possible local buckling of the steel tube, and 𝜂𝑐  is an 

amplification factor (larger than 1) to account for the 

increased strength of concrete due to the confinement 

effect. 
 

 

3. Experimental datasets 
 

For the purpose of this study, a total of 258 experimental 

data were collected from the literature (see Appendix A). 

These data are taken from the tests conducted by Janss 

(1974), Lin (1988), Luksha and Nesterovich (1991), 

O’Shear and Bridge (1994, 1996, 2000), Kato (1995, 1996), 

Saisho et al. (1999), Huang et al. (2002), Kang et al. 

(2002), Johansson (2002), Yamamoto et al. (2002), Yu et al. 

(2002, 2007), Han and Yao (2003, 2004), Giakoumelis and 
Lam (2004), Gu et al. (2004), Sakino et al. (2004), Gardner 

and Jacobson (1967), Zhang and Wang (2004), Han et al. 

(2005), Tan (2006), Hu et al. (2011), Liao et al. (2011), Xue 

et al. (2012), Abed et al. (2013), Ekmekyapar and Al-Eliwi 

(2016), Lin et al. (2018). In order to ensure the consistency 

and reliability of the databases, the selection criteria are 

based on the following: (1) only the circular specimens 

under monotonic uniaxial compression are included; (2) 

specimens are not included the internal steel reinforcement, 

shear stub, tab stiffeners; and (3) to reduce the end effects 

and minimize the slenderness ratio, the 𝐿/𝐷 ratio should 

be from 2 to 4. It is noted that the values of 𝐿 ,𝐷,𝑡,𝑓𝑦, and 

𝑓𝑐
’ are in the range of 203.20 mm - 3060.70 mm, 89.15 mm 

- 1020.06 mm, 0.71 mm - 13.26 mm, 181.40 MPa - 853.00 

MPa, and 12.00 MPa - 113.49 MPa, respectively. The 

statistical properties of experimental data are shown in 

Table 2. 
 

 

4. Proposed ANN model 
 

4.1 Input and output neurons 
 

The number of input and output neurons are determined 

by the number of features in the input and output data, 

respectively. In the current ANN model, 𝐿, 𝐷, 𝑡, 𝑓𝑦, and 

𝑓𝑐
’ were considered as the input parameters, while the axial 

compression capacity of the CCFT column, 𝑃𝑢  was 

considered as the output parameter. 

 

 

Table 2 Statistical properties of experimental data 

Input data L (mm) D (mm) t (mm) 𝑓𝑦 (MPa) 𝑓𝑐
’ (MPa) Pexp (kN) 

Minimum 203.20 89.15 0.71 181.40 12.00 435.93 

Mean 604.11 196.49 4.06 371.69 53.83 3395.37 

Maximum 3060.70 1020.06 13.26 853.00 113.49 45998.17 

Standard deviation 394.42 127.30 2.42 126.85 24.34 4887.10 

Coefficient of variation 0.65 0.65 0.60 0.34 0.45 1.44 
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4.2 Learning strategy 
 

Feed-forward back-propagation (BPP) algorithm is 

widely used in supervised learning technique of ANN 

(Hornik et al. 1989). This is due to its relative simplicity 

and universal approximation capacity. Supervised learning 

technique supplies the neural network with inputs and the 

desired output data. Weights are modified to reduce the 

difference between the actual and desired outputs. The feed-

forward BPP algorithm involves two passes. In the forward 

pass, the input data are fed to the network at the input layer. 

Depending on the weights and processing function of each 

neuron, the input signals propagate along the network to 

make an output at the output layer. The error between the 

predicted and actual values is computed. In the backward 

pass, these error signals are sent back from the output layer 

to the input layer through the hidden layer. During the BPP 

of the signals, the weights and bias at each neuron are 

modified to minimize the output error. 

To overcome the over-fitting problem, the Bayesian 

framework proposed by David MacKay (MacKay 1992) is 

used. This framework has been implemented in the function 

“trainbr” of MATLAB software (Beale et al. 1992, Bashir 

and Ashour 2012). Bayesian regularization divides the 

datasets into two subsets: training and test cases. This 

algorithm eliminates network weights with small effects on 

the solution and shows super performance by avoiding local 
minimums (Jazayeri et al. 2016). In this analysis, 258 

datasets of the CCFT columns were divided into two parts, 

in which 220 datasets are used for training (85%) and 38 

datasets are used for testing (15%). Owning to the fact that 

the “trainbr” works best with scaled data, the network 

inputs and targets are scaled so that they fall in the range of 

-1 to 1 (Beale et al. 1992). 

 

4.3 Activation functions 
 

The activation function is the mechanism by which the 

artificial neuron processes information and passes it 

throughout the network. According to Nikbin et al. (2017), 

the activation functions in the hidden and output layers 

were chosen in the current ANN model as TANSIG and 

PURELIN, respectively. The TANSIG function transforms 

values between -1 and +1, meanwhile, the PURELIN 

function generates the outputs between -∞ and +∞, as 

shown in Fig. 1. 

 

 

4.4 Error measurements 
 

The main goal of network training is to optimize the 

generalization of the network by minimizing network error. 

In the current ANN model, mean square error (MSE) is used 

to measure the performance of the network, as shown in Eq. 

(7) 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑒𝑖)

2

𝑁

𝑖=1

=
1

𝑁
∑(𝑡𝑖 − 𝛼𝑖)

2

𝑁

𝑖=1

, (7) 

 

where 𝑁 denotes the number of examples, and 𝑡𝑖, 𝛼𝑖 are 

the target and predicted values of the 𝑖𝑡ℎ sample. 

In order to avoid the over-fitting problem and improve 

the generalization of the network, the regularization method 

can be used to modify the error function to be a linear sum 

of MSE and the mean squared network weights and biases, 

as expressed in Eq. (8) 

 

𝑀𝑆𝐸𝑅𝐸𝐺 = 𝛾𝑅𝑀𝑆𝐸 + (1 − 𝛾)𝑀𝑆𝑊, (8) 

 

where 𝛾 is the performance ratio, 𝑀𝑆𝑊 =
1

𝑛
∑ 𝜔𝑗

2𝑛
𝑗=1 , is 

the mean squared weights and biases. 
 

4.5 ANN architecture 
 

There is no reliable rule to determine the number of 

hidden layers and the number of nodes in the hidden layer. 

In general, more complex network topologies with a greater 

number of network connections allow for the learning of 

more complex problems. However, large neural networks 

can also be computationally expensive and slow to train. 

Leung et al. (2006), Naderpour et al. (2010), and Nikbin et 

al. (2017) showed that the neural network with one hidden 

layer can obtain the good result compared with 

experimental data. In the current ANN model, one hidden 

layer was also adopted and the numbers of neurons in the 

hidden layers were determined through a trial and error 

method. The network architecture stands for 𝑚𝐵𝑅𝑛 − 1, 

where 𝑚 is the number of input node, 𝐵𝑅 is Bayesian 

Regularization method, 𝑛 is the number of hidden nodes 

and the third digit is the number of output nodes. 

Twenty trial networks are carried out in order to find the 

number of nodes in the hidden layer of the network. All 

these networks have the same structure and only the number 

of nodes in the hidden layer is varied, as shown in Fig. 2. 

 

 

  

Fig. 1 Activation functions 
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Fig. 2 Maximum mean squared error versus number of 

hidden-layer neurons 

 

 

The best ANN model which offered the lowest MSE of 

training and testing was chosen. Eventually, the best 

configuration with one hidden layer and 5 neurons in the 

hidden layer was observed, as shown in Fig. 3. 

In short, the parameters of the chosen ANN model are 

listed in Table 3. In this table, some of the parameters are 

described previously, and others are set as default. 

 

4.6 Performance of the 5BR5-1 model 
 

Fig. 4 shows the performance of the chosen ANN 

model. Fig. 4(a) shows the training and testing processes of 

the 5BR5-1 model starting at a large value and decreasing to 

a smaller one. The best training performance is obtained as 

 

 

 

Fig. 3 Schematic architecture of ANN model 

 

 

0.001041 at the 145th epoch. A minimum value of the MSE 

defines a good ANN model. Figs. 4(b)-(d) show the 

coefficients regression of training, testing, and all data of 

 

 

  
 

  

Fig. 4 Performance of the 5BR5-1 model 
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Table 3 Parameters of the 5BR5-1 model 

Description Value 

Training data ratio 0.85 

Testing data ratio 0.15 

Learning agorithm TRAINBR 

Network type Feed-forward backprop 

Activation functions TANSIG, PURELIN 

Maximum number of epochs to train 150 

Performance goal 0 

Marquardt adjustment parameter 0.005 

Decrease factor for mu 0.1 

Increase factor for mu 10 

Maximum value for mu 1e10 

Generate command-line output false 

Show training GUI true 
 

 

 

 

 

 

the 5BR5-1 model. These figures explain the correlation 

between the target (experimental data) and the ANN model 

output. The dashed line in each figure represents the 

targeted values. The best-fit linear regression line between 

the outputs and targets is represented by a solid line. The 

values of the coefficients for training, testing, and all data 

are found to be 0.99955, 0.99318, and 0.99946, 

respectively. The overall response with R close to 1 

verifying that the training has produced the optimal results. 

 

 

 

Fig. 5 Comparison between the 5BR5-1 model and existing 

formulae 

 

 

5. Comparison of the 5BR5-1 model with the 
existing formulae 
 

The obtained results from the 5BR5-1 model were 

compared with the existing formulae to evaluate the 

capability of the ANN in predicting the ACC of CCFT 

columns, as illustrated in Fig. 5 and Table 4. 

Fig. 5 compares experimental data against predicted 

data obtained from the 5BR5-1 model and different existing 

formulae. The more deviation from the dashed line in black 

color (0% error), the more inaccuracy. As can be seen in 

this figure, Eqs. (1), (2), (3), (4), (5) and (6) underestimate 

the ACC of CCFT columns. Meanwhile, Eqs. (3) and (6) 

have higher accuracy in comparison with Eqs. (1), (2), (4), 

and (5), however, that is not as accurate as of the 5BR5-1 

model. 
 

 

 

Table 4 Distribution of error percentages for different models 

Error range Number of data in error range and percentage to total data 

(%) 
ACI-AS 

(Eq. (1)) 

AISC 

(Eq. (2)) 

EC-4 

(Eq. (3)) 

Goode and 

Narayanan (1997) 

(Eq. (4)) 

Giakoumelis and 

Lam (2004) 

(Eq. (5)) 

Wang et al. 

(2017) 

(Eq. (6)) 

5BR5-1 

± 5 2 6 141 78 73 115 155 

 (0.78%) (2.33%) (54.65%) (30.23%) (28.29%) (44.57%) (60.08%) 

± 10 11 18 208 160 145 197 226 

 (4.26%) (6.98%) (80.62%) (62.02%) (56.20%) (76.36%) (87.60%) 

± 15 32 57 247 206 202 244 247 

 (12.40%) (22.09%) (95.74%) (79.84%) (78.29%) (94.57%) (95.74%) 

± 20 89 136 254 242 229 253 256 

 (34.50%) (52.71%) (98.45%) (93.80%) (88.76%) (98.06%) (99.22%) 

± 25 176 206 257 256 240 257 256 

 (68.22%) (79.84%) (99.61%) (99.22%) (93.02%) (99.61%) (99.22%) 

± 30 239 251 258 258 244 258 258 

 (92.64%) (97.29%) (100%) (100%) (94.57%) (100%) (100%) 

± 35 253 255 258 258 252 258 258 

 (98.06%) (98.84%) (100%) (100%) (97.67%) (100%) (100%) 

± 40 258 258 258 258 258 258 258 

 (100%) (100%) (100%) (100%) (100%) (100%) (100%) 
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Table 4 summarizes the error distribution of the 5BR5-1 

model and different existing formulae. For the 5BR5-1 

model, more than 99% of predicted results are within ± 

20% of experimental data, while this value is 52.71%, 

34.50%, 98.45%, 93.80%, 88.76%, and 98.06% for Eqs. 

(1), (2), (3), (4), (5) and (6), respectively. Moreover, 

60.08% of the results derived by the 5BR5-1 model, 54.65% 

of the results derived by Eq. (3), 44.57% of the results 

derived by Eq. (6), 30.23% of the results derived by Eq. (4), 

and 28.29% of the results derived by Eq. (5) are within ± 

5% of the experimental results whereas Eqs. (1), and (2) 

reflect poor results in this range of error (±5%). Obviously, 

the 5BR5-1 model shows excellent performance for 

predicting the ACC of CCFT columns. 

 

 

6. Stability analysis, sensitivity analysis, and 
parametric study 
 

6.1 Stability analysis 
 

Fig. 6 indicates the stability of Eqs. (1), (2), (3), (4), (5), 

(6) and the 5BR5-1 model in terms of each input 

parameters. A stable prediction was considered with the 

ratios of the experimental axial compression capacity 

(𝑃𝑢
𝑒𝑥𝑝

) to the predicted one (𝑃𝑢) close to 1.0 (the solid line 

in black color) for the entire range of each parameter value. 

Generally, the existing formulae underestimate the ACC of 

CCFT columns. Surprisingly, the 5BR5-1 model with the 

trend line approximately, which lies on the black solid line, 

is the most stable. This means that the experimental and 

predicted results are relatively equal. 

 

6.2 Sensitivity analysis 
 

Sensitivity analysis is conducted on the 5BR5-1 model 

to estimate the influence of input parameters on the ACC of 

 

 

Table 5 Quantities regarding each input parameter 

Input 

parameters 
L ML M MH H 

𝐿 (mm) 203.20 403.65 604.11 1832.40 3060.70 

𝐷 (mm) 89.15 142.82 196.49 608.27 1020.06 

𝑡 (mm) 0.71 2.39 4.06 8.66 13.26 

𝑓𝑦 (MPa) 181.40 276.54 371.69 612.34 853.00 

𝑓𝑐
’ (MPa 12.00 32.92 53.83 83.66 113.49 

 

 

 

 

Fig. 7 Sensitivity analysis of input parameters 
 

 

CCFT columns. According to Nikbin et al. (2017), each 

input parameter was divided into five sets including L, ML, 

M, MH, H, varied from lowest (L) to highest (H) values, in 

which ML is the midway between L and M, MH is the 

midway between M and H, as list in Table 5. In the 

sensitivity analysis, each input parameter varies from its L 

to H value, while the other parameters are kept constant at 

their mean values. 

   
 

  

Fig. 6 Stability of different predictions for each input parameter 
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Fig. 8 Effect of the combination of 𝐿 with parameters 𝐷, 𝑡, 𝑓𝑦, and 𝑓𝑐
’ on 𝑃𝑢 

  
 

  

Fig. 9 Effect of the combination of 𝐷 with parameters 𝐿, 𝑡, 𝑓𝑦, and 𝑓𝑐
’ on 𝑃𝑢 
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Fig. 7 shows the results of sensitivity analysis for 

different input parameters. As can be seen, all considered 

parameters govern the axial compression capacity of CCFT 

columns, however, the outer diameter of the steel tube is the 

most sensitive one. That means that the outer diameter of 

the steel tube plays a critical role in predicting the axial 

compression capacity of the CCFT columns. 

 

6.3 Parametric study 
 

A parametric study is conducted on the 5BR5-1 model to 

examine the effects of input parameters on the ACC of 

CCFT columns. In order to investigate the parametric study, 

an input variable values vary from its minimum to 

maximum value, while all other parameters are held 

constant at their mean values. As a result, a total of 120 case 

studies are simulated, as shown in Figs. 8-12. Fig. 8 shows 

the effect of the combination of 𝐿 with parameters 𝐷, 𝑡, 

𝑓𝑦, and𝑓𝑐
’ on 𝑃𝑢. It can be seen that the ACC of CCFT 

columns slightly decreases when the length of the column 

increases. In contrast, it increases when 𝐿 is held constant 

and increasing other parameters. 

Figs. 9-12 show the effect of the combination of 𝐷 

with parameters, 𝐿 , 𝑡 , 𝑓𝑦 , and 𝑓𝑐
’ ; the effect of the 

combination of 𝑡 with parameters, 𝐿, 𝐷, 𝑓𝑦, and 𝑓𝑐
’; the 

effect of the combination of 𝑓𝑦 with parameters, 𝐿, 𝐷, 𝑡, 

and 𝑓𝑐
’ ; and the effect of the combination of 𝑓𝑐

’  with 

parameters, 𝐿, 𝐷, 𝑡, and 𝑓𝑦 on 𝑃𝑢, respectively. 

 

 

These figures show that 𝑃𝑢 increases when 𝐷, 𝑡, 𝑓𝑦, 

and 𝑓𝑐
’ increase. The effect of the thickness and the yield 

strength of the steel tube, and the compressive strength of 

concrete on the ACC of CCFT columns is reasonable. 

Notably, when the outer diameter of steel tube increases 

from minimum to maximum value, the ACC of CCFT 

columns drastically increases. 
 

 

7. Proposed empirical formula 
 

As seen in the previous sections, the results of the ACC 

of CCFT column derived from the 5BR5-1 model are in 

good agreement with the experimental data. However, using 

the neural network for practical design is not a convenient 

method. In order to deal with this problem, one practical 

approach is proposed. Fig. 13 shows the relationship 

between the most sensitive parameter, 𝐷 and the ACC of 

CCFT columns using the 5BR5-1 model. In this figure, the 

outer diameter of the steel tube varies from minimum to 

maximum values, while other parameters remain constant at 

their reference values. Table 6 lists the reference value for 

each input parameter, these values are chosen to be close to 

the mean value. According to Leung et al. (2006), 

Naderpour et al. (2010), and Nikbin et al. (2017), to 

incorporate the effects of the parameters, 𝐿, 𝑡, 𝑓𝑦, and 𝑓𝑐
’ 

on the formula of the axial compression capacity of CCFT 

columns, a correction function (𝐹) is derived, as expressed 

in Eq. (9) 

 

 

 

  
 

  

Fig. 10 Effect of the combination of 𝑡 with parameters 𝐿, 𝐷, 𝑓𝑦, and 𝑓𝑐
’ on 𝑃𝑢 
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Fig. 11 Effect of the combination of 𝑓𝑦 with parameters 𝐿, 𝐷, 𝑡, and 𝑓𝑐
’ on 𝑃𝑢 

  
 

  

Fig. 12 Effect of the combination of 𝑓𝑐
’ with parameters 𝐿, 𝐷, 𝑡, and 𝑓𝑐

’ on 𝑃𝑢 
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Fig. 13 𝑃𝑐ℎ𝑎𝑟𝑡 of ACC at reference parametric values 

 

 

 

𝐹(𝐿, 𝑡, 𝑓𝑦, 𝑓𝑐
’) = 𝑓1(𝐿). 𝑓2(𝑡). 𝑓3(𝑓𝑦). 𝑓4(𝑓𝑐

’) = 𝐶𝐿𝐶𝑡𝐶𝑓𝑦
𝐶𝑓𝑐

’ , (9) 

 

In this equation, the variation of 𝑃𝑢  with each 

parameter is supposed to be independent of other 

parameters. In order to derive the correction factors (𝐶𝐿, 𝐶𝑡, 

𝐶𝑓𝑦
, 𝐶𝑓𝑐

’ ), a group of curves, called Master Curves, are 

plotted using the 5BR5-1 model, as shown in Fig. 14. 

From this figure, a particular correction factor is plotted 

against each parameter, while all the other parameters 

remain constant at their reference values. Ultimately, a 

fitting curve which has the minimum least square error is 

chosen to represent as the correction factor for each 

parameter. For instance, to derive correction factor, 𝐶𝐿, a 

group of curves are plotted with a variation in 𝐿/600 (600 

 

 

   
 

   
 

   

 

 

 

  

Fig. 14 Correction factors 
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Fig. 15 Comparison between proposed formula and existing 

formulae 
 

 

is the reference value of 𝐿 indicated in Table 6) at different 

levels of 𝑡, 𝑓𝑦, and 𝑓𝑐
’. Afterward, these curves are divided 

by the value in which all parameters are fixed in their 

reference values, as shown in Figs. 14(a)-(c). Finally, a 

curve in Eq. (10) that has the best fit to the Master Curves 

of Figs. 14(a)-(c) is established. 

 

𝐶𝐿 = 0.0006(
𝐿

600
)2 − 0.0660(

𝐿

600
) + 1.0650, (10) 

 

In the same manner, the Eqs. (11), (12), and (13) are 

derived for the correction factor of 𝐶𝑡 , 𝐶𝑓𝑦
, and 𝐶𝑓𝑐

’ , 

respectively 
 

𝐶𝑡 = −0.0792(
𝑡

5
)3 + 0.2540(

𝑡

5
)2 

          +0.2770(
𝑡

5
) + 0.5494, 

(11) 

 

𝐶𝑓𝑦
= 0.0701(

𝑓𝑦

350
)2 + 0.1114(

𝑓𝑦

350
) + 0.8164, (12) 

 

𝐶𝑓𝑐
’ = −0.0539(

𝑓𝑐
’

50
)3 + 0.1058(

𝑓𝑐
’

50
)2 

           +0.5518(
𝑓𝑐
’

50
) + 0.3963, 

(13) 

 

Consequently, the axial compression capacity of the 

CCFT columns (𝑃𝑢) can be expressed in Eq. (14) 

 

𝑃𝑢 = (𝑃𝑢)𝑐ℎ𝑎𝑟𝑡𝐶𝐿𝐶𝑡𝐶𝑓𝑦
𝐶𝑓𝑐

’ , (14) 

 

Fig. 15 compares the axial compression capacity of the 

CCFT columns obtained from Eqs. (1), (2), (3), (4), (5), (6), 

and Eq. (14). Obviously, the ACC of CCFT columns 

computed by Eq. (14) show reasonable agreement with the 

experimental data and reflects a superior accuracy. The 

results obtained from Eq. (14) are based upon a large 

number of data from the literature, and the equation is 

reliable to the design of the CCFT column with various 

parameters lie in the range of the data used for the neural 

network model. It is concluded that Eq. (14) is simpler and 

more practical than the ANN model, and it could be 

considered in practical designs. 

8. Conclusions 
 

In this study, the following conclusions can be drawn: 

 

● The ANN approach can be used to predict accurately 

the axial compression capacity (ACC) of circular 

concrete-filled tube (CCFT) columns with various 

geometrical and material properties. In this study, a 

good agreement between the ANN model and 

experimental results is achieved. 

● Using a reliable 5BR5-1 model, a new formula is 

derived in order to determine the ACC of CCFT 

columns. The proposed equation covers a wide range 

of parameters and shows superior accuracy 

compared to existing empirical equations. 

● The proposed empirical formula show more 

practical, accurate, and stable than different existing 

empirical formulae. Hence, it is introduced for the 

practical design of the CCFT columns. 
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