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1. Introduction 

 

The functionally graded (FG) nanostructures as an 

advanced product of composite structures have widespread 

applications in nano-mechanical systems. One of the 

important kinds of nanostructures is nanoplates with 

different applications in solar cells. In the FG nanoplates, 

the material properties are varied gradually from one 

surface to another. However, adding the FG layer in the 

arbitrary direction is gradually reduced the stress 

discontinuity in the same direction. This kind of the 

materials are generally nonhomogeneous and isotropic, 

which are made from a mixture of metals and ceramics to 

obtain a composition that possesses a desirable application, 

particularly in thermal environments, which leads to extend 

the application of these nanostructures. 

The dynamic and static responses of nanoplates have 

been received the great deal of attention of the researchers 

in scientific investigations. Narendar and Gopalakrishnan 

(2012) presented the buckling analysis of orthotropic 

nanoplates such as graphene using the two-variable refined 

plate theory and nonlocal small-scale effects. Malekzadeh 
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and Shojaee (2013a) employed a two-variable first-order 

shear deformation theory in combination with surface free 

energy and small scale effect to present a free vibration of 

nanoplates with arbitrary boundary conditions. Based on a 

modified couple stress theory, a model for sigmoid 

functionally graded material (S-FGM) nanoplates resting on 

elastic medium was developed by Jung et al. (2014). 

Karlicic et al. (2015) introduced to non-local elasticity 

theory for static, dynamic and stability analysis in a wide 

range of nanostructures. Bending, buckling and vibration of 

nanobeams and nanoplates subjected to different sets of 

boundary conditions based on various nonlocal theories 

were presented by Chakraverty and Behera (2016). 

Shokrani et al. (2016) presented a numerical solution for 

buckling analysis of double orthotropic nanoplates (DONP) 

embedded in elastic media under biaxial, uniaxial and shear 

loading numerically. Vibration of orthotropic double-

layered graphene sheets under hygrothermal conditions was 

investigated by Sobhy (2016) using the trigonometric shear 

deformation plate theory and Eringen model. Karami and 

Janghorban (2016) examined the effect of magnetic field on 

the wave propagation in rectangular nanoplates based on 

two-variable refined plate theory. The buckling analysis of 

FG circular/annular nanoplates under uniform in-plane 

radial compressive load with a concentric internal ring 

support and elastically restrained edges was examined by 

Bedroud et al. (2016) using an exact analytical approach 
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within the framework of nonlocal Mindlin plate theory. 

Buckling of functionally graded (FG) single-layered annular 

graphene sheets embedded in a Pasternak elastic medium 

was investigated by Golmakani and Vahabi (2017) using the 

nonlocal elasticity theory. The influence of temperature 

change on the vibration, buckling, and bending of 

orthotropic graphene sheets embedded in elastic media 

including surface energy and small-scale effects was 

investigated by Karimi and Shahidi (2017). Free vibration 

behavior of functionally nanoplate resting on a Pasternak 

linear elastic foundation was investigated by Ebrahimi and 

Heidari (2017). The wave propagation technique was 

developed by Bahrami and Teimourian (2017) for analyzing 

the wave power reflection in circular annular nanoplates. 

Forced vibration behavior of porous metal foam nanoplates 

on elastic medium was studied by Barati (2017a) via a 4-

variable plate theory. Hygro-thermo-mechanical vibration 

and buckling of exponentially graded (EG) nanoplates 

resting on two-parameter Pasternak foundations were 

studied by Sobhy (2017) using the four-unknown shear 

deformation plate theory. An exact analytical approach 

based on Mindlin plate theory was considered by Rezaei 

and Saidi (2018) for free vibration analysis of fluid-

saturated porous annular sector plates. Eringen nonlocal 

elasticity theory in conjunction with surface elasticity 

theory was employed by Ebrahimi and Heidari (2018) to 

study nonlinear free vibration behavior of FG nano-plate 

lying on elastic foundation, on the base of Reddy\’s plate 

theory. A high-order nonlocal strain gradient model was 

developed by Shahsavari et al. (2018) for wave propagation 

analysis of porous FG nanoplates resting on a gradient 

hybrid foundation in thermal environment. A new size-

dependent quasi-3D plate theory was presented by Karami 

et al. (2018) for wave dispersion analysis of functionally 

graded nanoplates while resting on an elastic foundation 

and under the hygrothermaal environment. 

There are vast researches for the static and dynamic 

responses of nano and macro structures by numerical and 

analytical methods. Phadikar and Pradhan (2010) and Xu et 

al. (2016) employed numerical approach for vibration 

response of nonlocal elastic nanobeams/nanoplates and 

double-layered graphene sheets, respectively. The Navier 

method was used by Narendar (2011) for buckling analysis 

of micro-/nano-scale plates, Malekzadeh and Shojaee 

(2013b) for free vibration of nanoplates. 

The Runge-Kutta and Bubnov-Galerkin methods were 

used by Duc (2013) for nonlinear dynamic response of 

imperfect eccentrically stiffened FG double curved shallow 

shells, Quan et al. (2015) for nonlinear dynamic analysis 

and vibration of shear deformable eccentrically stiffened S-

FG cylindrical panels, Duc (2016) for nonlinear thermal 

dynamic analysis of eccentrically stiffened S-FGM circular 

cylindrical shells, Duc et al. (2018) for nonlinear thermo-

mechanical response of eccentrically stiffened Sigmoid 

FGM circular cylindrical shells, Chan et al. (2019) for 

vibration and nonlinear dynamic response of eccentrically 

stiffened FG composite truncated conical shells 

Abbasi et al. (2014) concerned with static analysis of 

functionally graded (FG) circular plates resting on Winkler 

elastic foundation. Thermal buckling analysis of a FG 

circular plate exhibiting polar orthotropic characteristics 

and resting on the Pasternak elastic foundation was 

presented by Farhatnia et al. (2017) using differential 

transform method. Element based differential quadrature 

method (EDQM) was applied by Rajasekaran (2017) to 

analyze static, stability and free vibration of non-

homogeneous orthotropic rectangular plates of variable or 

stepped thickness. DQM is applied for Nonlinear vibration 

analysis of a nonlocal sinusoidal shear deformation carbon 

nanotubes by Rahimi Pour et al. (2015), vibration of axially 

moving viscoelastic plate By Robinson (2018) vibration 

frequency of orthotropic nanoplate by Ghadiri et al. (2017), 

nonlinear bending of FG circular plates by Farhatnia et al. 

(2018) and buckling of rectangular plates by Poodeh et al. 

(2018), thermo elasticity solution of functionally graded, 

solid, circular, and annular plates integrated with 

piezoelectric layers by Alibeigloo (2018). 

To the best knowledge of authors, no published work 

has been devoted to nonlinear bending of FG porous 

annular/circular nanoplates by considering the influence of 

three-parameter (Kerr) elastic foundation. To this end, we 

accomplished the nonlinear bending analysis of FG porous 

annular/circular nanoplates based on two variables refined 

plate theory. Shimpi and Patel (2006) was the first scholar 

who developed the two-variable plate theory for isotropic 

plates. MCST is used for capturing the size effects and the 

elastic medium is simulated by Kerr foundation. The major 

role of the third foundation parameter in Kerr foundation 

model improves the flexibility in controlling the degree of 

foundation-surface continuity between the loaded and the 

unloaded regions of the structure-foundation system 

(Limkatanyu et al. 2013). Herein, the solution procedure 

GDQM is employed in obtaining the nonlinear 

displacement and stress distribution of the nanostructure 

under different edge conditions in inner and outer 

boundaries of annular and circular plates. The influences of 

different parameters such as material length scale 

parameter, boundary conditions, and geometrical 

parameters of the nanoplate, elastic medium constants, 

porosity and FG power index are exhibited on the nonlinear 

static behavior of the annular/circular nanoplates. 
 

 

2. Formulation 
 

Figs. 1 and 2 show an annular and circular FG porous 

nanoplate, respectively. The circular nanoplate has radius of 

R and thickness of h which the annular one has inner radius 

of Ri, outer radius of Ro and thickness of h. The 

nanostructure is subjected to a uniform constant transverse 

loading and resting on Kerr foundation with upper and 

lower springs as well as a shear layer. 
 

2.1 Two refined plate theory 
 

Based on two refined plate theory, the displacements of 

the structure with assumption of symmetric condition in the 

nanoplate can be written as (Shimpi and Patel 2006) 
 

𝑈(𝑟, 𝑧) = 𝑢(𝑟) − 𝑧
𝑑𝑤𝑏(𝑟)

𝑑𝑟
+ 𝑓(𝑧)

𝑑𝑤𝑠(𝑟)

𝑑𝑟
, (1) 

 

308



 

Nonlinear bending analysis of porous FG thick annular/circular nanoplate based on modified couple stress… 

 

 

Fig. 1 A schematic of annular FG porous nanoplate resting 

on Kerr foundation 

 

 

 

Fig. 2 A schematic of circular FG porous nanoplate resting 

on Kerr foundation 

 

 

𝑉(𝑟, 𝑧) = 0, (2) 

 

𝑊(𝑟, 𝑧) = 𝑤𝑏(𝑟) + 𝑤𝑠(𝑟), (3) 

 

where U, V and W are displacements in the axial, 

circumferential and transverse directions, respectively; u, wb 

and ws are mid-plane axial, transverse bending and 

transverse shear displacements, respectively and 𝑓(𝑧) =

𝑧 [1 +
3𝜋

2
𝑠𝑒𝑐 ℎ2 (

1

2
)] −

3𝜋

2
ℎ 𝑡𝑎𝑛ℎ (

𝑧

ℎ
) . 

 

2.2 Modified Couple Stress Theory (MCST) 
 

According with this theory, the strain energy is written 

as a function of strain tensor (𝜺𝒊𝒋) and symmetric curvature 

tensor (𝝌𝒊𝒋) (Jung et al. 2014) 

 

𝑈𝑏 =
1

2
∫(𝜎𝑖𝑗𝜀𝑗𝑘 +𝑚𝑖𝑗𝜒𝑖𝑗)𝑑𝑉
𝑉

, (4) 

 

where 
 

𝜀𝑖𝑗 =
1

2
(
𝜕𝑢𝑗

𝜕𝑥𝑖
+
𝜕𝑢𝑖
𝜕𝑥𝑗
), (5) 

 

𝜒𝑖𝑗 =
1

2
(
𝜕𝜃𝑖
𝜕𝑥𝑗

+
𝜕𝜃𝑗

𝜕𝑥𝑖
), (6) 

 

where 𝑢 = [𝑈, 𝑉,𝑊] and 𝜃 is the rotation vector which 

can be defined as 
 

𝜃𝑖 =
1

2
𝑒𝑖𝑗𝑘

𝜕𝑢𝑘
𝜕𝑥𝑗

=
1

2
𝛻×u, (7) 

where 𝑒𝑖𝑗𝑘is the components of permutation tensor. The 

Cartesian components of the stress tensor (𝝈𝒊𝒋) and the 

deviatoric part of the symmetric couple stress tensor (𝒎𝒊𝒋) 

are 

𝜎𝑖𝑗 = 𝐾𝛿𝑖𝑗𝜀𝑚𝑚 + 2𝐺𝜀𝑖𝑗 , (8) 

 

𝑚𝑖𝑗 = 2𝑙0
2𝐺𝜒𝑖𝑗 , (9) 

 

in which 𝑙0 is the material length scale parameter; K and G 

are bulk and shear modulus, respectively which can be 

expressed in term of Young’ modulus (E) and Poisson’s 

ratio (𝝂) as 

𝐾 =
𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)
, (10) 

 

𝐺 =
𝐸

2(1 + 𝜈)
. (11) 

 

Substituting Eqs. (1)-(3) into Eqs. (5) and (6), the non-

zero components of strain and curvature tensors are 

 

𝜀𝑟𝑟 =
𝑑𝑢

𝑑𝑟
− 𝑧

𝑑2𝑤𝑏
𝑑𝑟2

+ 𝑓(𝑧)
𝑑2𝑤𝑠
𝑑𝑟2

+
1

2
(
𝑑𝑤𝑏
𝑑𝑟

+
𝑑𝑤𝑠
𝑑𝑟
)
2

, (12) 

 

𝜀𝜃𝜃 =
𝑢

𝑟
−
𝑧

𝑟

𝑑𝑤𝑏
𝑑𝑟

+
𝑓(𝑧)

𝑟

𝑑𝑤𝑠
𝑑𝑟
, (13) 

 

𝜀𝑟𝑧 =
𝑑𝑤𝑠
𝑑𝑟

+
𝑑𝑓(𝑧)

𝑑𝑧

𝑑𝑤𝑠
𝑑𝑟
. (14) 

 

𝜒𝑟𝜃 = −
𝑑2𝑤𝑏
𝑑𝑟2

+
1

2

𝑑𝑓(𝑧)

𝑑𝑧

𝑑2𝑤𝑠
𝑑𝑟2

−
1

2

𝑑2𝑤𝑠
𝑑𝑟2

 

+
1

𝑟

𝑑𝑤𝑏
𝑑𝑟

+
1

2𝑟

𝑑𝑤𝑠
𝑑𝑟

−
1

2𝑟

𝑑𝑓(𝑧)

𝑑𝑧

𝑑𝑤𝑠
𝑑𝑟
, 

(15) 

 

𝜒𝑧𝜃 =
1

2

𝑑2𝑓(𝑧)

𝑑𝑧2
𝑑𝑤𝑠
𝑑𝑟
. (16) 

 

Substituting Eqs. (1)-(3) into Eqs. (8) and (9), the non-

zero components of Cartesian stress and deviatoric part of 

the symmetric couple stress tensors are 

 

𝜎𝑟𝑟 =
𝐸

1 − 𝜈2

(

 
 
 
 

(

 

𝑑𝑢

𝑑𝑟
− 𝑧

𝑑2𝑤𝑏
𝑑𝑟2

+ 𝑓(𝑧)
𝑑2𝑤𝑠
𝑑𝑟2

+
1

2
(
𝑑𝑤𝑏
𝑑𝑟

+
𝑑𝑤𝑠
𝑑𝑟
)
2

)

 

+𝜈 (
𝑢

𝑟
−
𝑧

𝑟

𝑑𝑤𝑏
𝑑𝑟

+
𝑓(𝑧)

𝑟

𝑑𝑤𝑠
𝑑𝑟
) )

 
 
 
 

, (17) 

 

𝜎𝜃𝜃 =
𝐸

1 − 𝜈2

(

 
 
 
 𝜈

(

 

𝑑𝑢

𝑑𝑟
− 𝑧

𝑑2𝑤𝑏
𝑑𝑟2

+ 𝑓(𝑧)
𝑑2𝑤𝑠
𝑑𝑟2

+
1

2
(
𝑑𝑤𝑏
𝑑𝑟

+
𝑑𝑤𝑠
𝑑𝑟
)
2

)

 

+(
𝑢

𝑟
−
𝑧

𝑟

𝑑𝑤𝑏
𝑑𝑟

+
𝑓(𝑧)

𝑟

𝑑𝑤𝑠
𝑑𝑟
) )

 
 
 
 

, (18) 

 

𝜎𝑟𝑧 =
𝐸

2(1 + 𝜈)
(
𝑑𝑤𝑠
𝑑𝑟

+
𝑑𝑓(𝑧)

𝑑𝑧

𝑑𝑤𝑠
𝑑𝑟
). (19) 
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𝑚𝑟𝜃 = 2𝑙0𝐺 (−
𝑑2𝑤𝑏
𝑑𝑟2

+
1

2

𝑑𝑓(𝑧)

𝑑𝑧

𝑑2𝑤𝑠
𝑑𝑟2

−
1

2

𝑑2𝑤𝑠
𝑑𝑟2

 

+
1

𝑟

𝑑𝑤𝑏
𝑑𝑟

+
1

2𝑟

𝑑𝑤𝑠
𝑑𝑟

−
1

2𝑟

𝑑𝑓(𝑧)

𝑑𝑧

𝑑𝑤𝑠
𝑑𝑟
), 

(20) 

 

𝑚𝑧𝜃 = 2𝑙0𝐺 (
1

2

𝑑2𝑓(𝑧)

𝑑𝑧2
𝑑𝑤𝑠
𝑑𝑟
). (21) 

 

2.3 The effective material property of FG porous 
nanoplate 

 

Based on the modified power-law model, Young’s 

modulus can be described as (Barati 2017b) 

 

𝐸(𝑧) = (𝐸𝑐 −𝐸𝑚) (
𝑧

ℎ
+
1

2
)
𝑝

+ 𝐸𝑚−
𝜉

2
(𝐸𝑐 +𝐸𝑚), (22) 

 

where the m and c indexes are related to metal and ceramic, 

respectively; p is the nonhomogeneous parameter and 𝝃 

shows the porosity of the structure. 

 

2.4 Governing equations 
 

To establish the governing equilibrium equations for the 

annular/circular FG porous thick nanoplate resting on the 

Kerr foundation, herein we use the Hamilton’s principle as 

 

∫ (𝜹𝜫)𝒅𝒕
𝒕

𝟎

= ∫ −(𝜹𝑼𝒃 + 𝜹𝑾𝒆 + 𝜹𝑾𝒃)𝒅𝒕
𝒕

𝟎

= 𝟎. (23) 

 

where δ is variation operator; 𝛱 denotes the total potential 

energy of the nanostructure; Ub, We and Wb represent the 

bending strain energy, the Kerr foundation energy, and the 

potential of external work done by uniform constant 

transverse load, respectively. By utilizing δ in the above-

mentioned parameters, we have 

 

𝛿𝑈𝑏 = ∫
(𝜎𝑟𝑟𝛿𝜀𝑟𝑟 + 𝜎𝜃𝜃𝛿𝜀𝜃𝜃 + 𝜎𝑟𝑧𝛿𝜀𝑟𝑧
+𝑚𝑟𝜃𝛿𝜒𝑟𝜃 +𝑚𝑧𝜃𝛿𝜒𝑧𝜃)𝑟𝑑𝑟𝑑𝜃𝑑𝑧𝑉

, (24) 

 

𝛿𝑊𝑒 = ∫𝑞𝐾𝑒𝑟𝑟 𝛿𝑊𝑟𝑑𝑟𝑑𝜃
𝐴

. (25) 

 

𝛿𝑊𝑏 = −∫𝑞 𝛿𝑊𝑟𝑑𝑟𝑑𝜃
𝐴

. (26) 

 

where q is the transverse load applied to the annular/circular 

nanoplate and 𝑞𝐾𝑒𝑟𝑟 is the force of the Kerr foundation 

which can be expressed as (Paliwal and Ghosh 2014) 

 

𝑞𝐾𝑒𝑟𝑟 −(
𝑘𝑠

𝑘𝑙 + 𝑘𝑢
)𝛻2 𝑞𝐾𝑒𝑟𝑟 =(

𝑘𝑙𝑘𝑢
𝑘𝑙 + 𝑘𝑢

) 

(𝑤𝑏 +𝑤𝑠) − (
𝑘𝑠𝑘𝑢
𝑘𝑙 + 𝑘𝑢

)𝛻2(𝑤𝑏 +𝑤𝑠). 
(27) 

 

Substituting Eqs. (12)-(16) into Eq. (24) and carrying 

out some mathematical simplification, yields 

 

𝛿𝑈𝑏 = 2𝜋∫ [𝑟𝑁𝑟 (

𝑑𝛿𝑢

𝑑𝑟
+
𝑑𝑤𝑏
𝑑𝑟

𝑑𝛿𝑤𝑏
𝑑𝑟

+
𝑑𝑤𝑠
𝑑𝑟

𝑑𝛿𝑤𝑠
𝑑𝑟

+
𝑑𝑤𝑠
𝑑𝑟

𝑑𝛿𝑤𝑏
𝑑𝑟

+
𝑑𝛿𝑤𝑠
𝑑𝑟

𝑑𝑤𝑏
𝑑𝑟

)
𝑉

 

+𝑁𝜃(𝛿𝑢) + 𝑟𝑁𝑟𝑧 (
𝑑𝛿𝑤𝑠
𝑑𝑟

) + 𝑟𝑄𝑟𝑧 (
𝑑𝛿𝑤𝑠
𝑑𝑟

) 

−𝑟𝑀𝑟𝑏 (
𝑑2𝛿𝑤𝑏
𝑑𝑟2

) + 𝑟𝑀𝑟𝑠 (
𝑑2𝛿𝑤𝑠
𝑑𝑟2

) 

−𝑀𝜃𝑏 (
𝑑𝛿𝑤𝑏
𝑑𝑟

) +𝑀𝜃𝑠 (
𝑑𝛿𝑤𝑠
𝑑𝑟

) 

+𝑟𝑃𝑟𝜃 (−
𝑑2𝛿𝑤𝑏
𝑑𝑟2

−
1

2

𝑑2𝛿𝑤𝑠
𝑑𝑟2

+
1

𝑟

𝑑𝛿𝑤𝑏
𝑑𝑟

+
1

2𝑟

𝑑𝛿𝑤𝑠
𝑑𝑟

) 

+𝑟𝑌𝑟𝜃 (
1

2

𝑑2𝛿𝑤𝑠
𝑑𝑟2

−
1

2𝑟

𝑑𝛿𝑤𝑠
𝑑𝑟

) + 𝑟𝑇𝑧𝜃 (
1

2

𝑑𝛿𝑤𝑠
𝑑𝑟

)] 𝑑𝑟, 

(28) 

 

where the stress resultants are 
 

(𝑁𝑟 , 𝑀𝑟𝑏, 𝑀𝑟𝑠) = ∫ 𝜎𝑟𝑟(1, 𝑧, 𝑓(𝑧))𝑑𝑧
ℎ/2

−ℎ/2

, (29) 

 

(𝑁𝜃, 𝑀𝜃𝑏, 𝑀𝜃𝑠) = ∫ 𝜎𝜃𝜃(1, 𝑧, 𝑓(𝑧))𝑑𝑧
ℎ/2

−ℎ/2

, (30) 

 

(𝑁𝑟𝑧, 𝑄𝑟𝑧) = ∫ 𝜎𝑟𝑧 (1,
𝑑𝑓(𝑧)

𝑑𝑧
) 𝑑𝑧

ℎ/2

−ℎ/2

, (31) 

 

(𝑃𝑟𝜃, 𝑌𝑟𝜃) = ∫ 𝑚𝑟𝜃 (1,
𝑑𝑓(𝑧)

𝑑𝑧
) 𝑑𝑧

ℎ/2

−ℎ/2

, (32) 

 

𝑇𝑧𝜃 = ∫ 𝑚𝑧𝜃
𝑑2𝑓(𝑧)

𝑑𝑧2
𝑑𝑧

ℎ/2

−ℎ/2

, (33) 

 

Substituting Eqs. (25), (26) and (28) into Eq. (23) 

integrating the parts, and collecting the coefficients of δu, 

δwb, δws, the governing equilibrium equations can be 

obtained as follows 
 

𝛿𝑢:     
1

𝑟
(
𝑑

𝑑𝑟
(𝑟𝑁𝑟) − 𝑁𝜃) = 0, (34) 

 

𝛿𝑤𝑏 :     
1

𝑟

𝑑2

𝑑𝑟2
(𝑟𝑀𝑟𝑏) −

1

𝑟

𝑑𝑀𝜃𝑏
𝑑𝑟

+
1

𝑟

𝑑𝑃𝑟𝜃
𝑑𝑟

 

              +𝑞 − 𝑞𝐾𝑒𝑟𝑟 = 0 

(35) 

 

𝛿𝑤𝑠 :     
1

𝑟

𝑑𝑀𝜃𝑠
𝑑𝑟

−
1

𝑟

𝑑2

𝑑𝑟2
(𝑟𝑀𝑟𝑠) +

1

𝑟

𝑑

𝑑𝑟
(𝑟𝑁𝑟𝑧) 

              +
1

2𝑟
(
𝑑𝑃𝑟𝜃
𝑑𝑟

−
𝑑𝑌𝑟𝜃
𝑑𝑟

+
𝑑

𝑑𝑟
(𝑟𝑇𝑧𝜃)) 

              +
1

𝑟

𝑑

𝑑𝑟
(𝑟𝑄𝑟𝑧) + 𝑞 − 𝑞𝐾𝑒𝑟𝑟 = 0 

(36) 

 

substituting 𝑞𝐾𝑒𝑟𝑟 from Eq. (27) into Eqs. (35) and (36) 

yields 
 

1

𝑟
(
𝑑

𝑑𝑟
(𝑟𝑁𝑟) − 𝑁𝜃) = 0, (37) 
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(
1

𝑟

𝑑2

𝑑𝑟2
(𝑟𝑀𝑟𝑏) −

1

𝑟

𝑑𝑀𝜃𝑏
𝑑𝑟

+
1

𝑟

𝑑𝑃𝑟𝜃
𝑑𝑟

+ 𝑞) 

−(
𝑘𝑠

𝑘𝑙 + 𝑘𝑢
)𝛻2(

1

𝑟

𝑑2

𝑑𝑟2
(𝑟𝑀𝑟𝑏) −

1

𝑟

𝑑𝑀𝜃𝑏
𝑑𝑟

+
1

𝑟

𝑑𝑃𝑟𝜃
𝑑𝑟

+ 𝑞

) 

= (
𝑘𝑙𝑘𝑢
𝑘𝑙 + 𝑘𝑢

) (𝑤𝑏 + 𝑤𝑠) − (
𝑘𝑠𝑘𝑢
𝑘𝑙 + 𝑘𝑢

)𝛻2(𝑤𝑏 + 𝑤𝑠), 

(38) 

 

𝑞𝐾𝑒𝑟𝑟 −(
𝑘𝑠

𝑘𝑙 + 𝑘𝑢
)𝛻2𝑞𝐾𝑒𝑟𝑟 = (

𝑘𝑙𝑘𝑢
𝑘𝑙 + 𝑘𝑢

) 

(𝑤𝑏 +𝑤𝑠) − (
𝑘𝑠𝑘𝑢
𝑘𝑙 + 𝑘𝑢

)𝛻2(𝑤𝑏 + 𝑤𝑠) 

+
1

𝑟

𝑑𝑀𝜃𝑠
𝑑𝑟

−
1

𝑟

𝑑2

𝑑𝑟2
(𝑟𝑀𝑟𝑠) +

1

𝑟

𝑑

𝑑𝑟
(𝑟𝑁𝑟𝑧) 

+
1

2𝑟
(
𝑑𝑃𝑟𝜃
𝑑𝑟

−
𝑑𝑌𝑟𝜃
𝑑𝑟

+
𝑑

𝑑𝑟
(𝑟𝑇𝑧𝜃)) 

+
1

𝑟

𝑑

𝑑𝑟
(𝑟𝑄𝑟𝑧) + 𝑞 − 𝑞𝐾𝑒𝑟𝑟 = 0 

(39) 

 

Substituting Eqs. (12)-(21) into Eqs. (29)-(33), the stress 

resultants can be expanded as 

 

𝑁𝑟 = 𝐴(
𝑑𝑢

𝑑𝑟
+
1

2
(
𝑑𝑤𝑏
𝑑𝑟

+
𝑑𝑤𝑠
𝑑𝑟
)
2

) − 𝐵
𝑑2𝑤𝑏
𝑑𝑟2

 

          +𝐹
𝑑2𝑤𝑠
𝑑𝑟2

+ 𝜈 (𝐴
𝑢

𝑟
−
𝐵

𝑟

𝑑𝑤𝑏
𝑑𝑟

+
𝐹

𝑟

𝑑𝑤𝑠
𝑑𝑟
), 

(40) 

 

𝑀𝑟𝑏 = 𝐵 (
𝑑𝑢

𝑑𝑟
+
1

2
(
𝑑𝑤𝑏
𝑑𝑟

+
𝑑𝑤𝑠
𝑑𝑟
)
2

) − 𝐷
𝑑2𝑤𝑏
𝑑𝑟2

 

            +𝐻
𝑑2𝑤𝑠
𝑑𝑟2

+ 𝜈 (𝐵
𝑢

𝑟
−
𝐷

𝑟

𝑑𝑤𝑏
𝑑𝑟

+
𝐻

𝑟

𝑑𝑤𝑠
𝑑𝑟
), 

(41) 

 

𝑀𝑟𝑠 = 𝐹 (
𝑑𝑢

𝑑𝑟
+
1

2
(
𝑑𝑤𝑏
𝑑𝑟

+
𝑑𝑤𝑠
𝑑𝑟
)
2

) − 𝐻
𝑑2𝑤𝑏
𝑑𝑟2

 

            +𝐼
𝑑2𝑤𝑠
𝑑𝑟2

+ 𝜈 (𝐹
𝑢

𝑟
−
𝐻

𝑟

𝑑𝑤𝑏
𝑑𝑟

+
𝐼

𝑟

𝑑𝑤𝑠
𝑑𝑟
), 

(42) 

 

𝑁𝜃 = 𝜈

(

 
𝐴
𝑑𝑢

𝑑𝑟
− 𝐵

𝑑2𝑤𝑏
𝑑𝑟2

+ 𝐹
𝑑2𝑤𝑠
𝑑𝑟2

+
𝐴

2
(
𝑑𝑤𝑏
𝑑𝑟

+
𝑑𝑤𝑠
𝑑𝑟
)
2

)

  

          +𝐴
𝑢

𝑟
−
𝐵

𝑟

𝑑𝑤𝑏
𝑑𝑟

+
𝐹

𝑟

𝑑𝑤𝑠
𝑑𝑟

 

(43) 

 

𝑀𝜃𝑏 = 𝜈

(

 
𝐵
𝑑𝑢

𝑑𝑟
− 𝐷

𝑑2𝑤𝑏
𝑑𝑟2

+ 𝐻
𝑑2𝑤𝑠
𝑑𝑟2

+
𝐵

2
(
𝑑𝑤𝑏
𝑑𝑟

+
𝑑𝑤𝑠
𝑑𝑟
)
2

)

  

            +𝐵
𝑢

𝑟
−
𝐷

𝑟

𝑑𝑤𝑏
𝑑𝑟

+
𝐻

𝑟

𝑑𝑤𝑠
𝑑𝑟

 

(44) 

 

𝑀𝜃𝑠 = 𝜈

(

 
𝐹
𝑑𝑢

𝑑𝑟
− 𝐻

𝑑2𝑤𝑏
𝑑𝑟2

+ 𝐼
𝑑2𝑤𝑠
𝑑𝑟2

+
𝐹

2
(
𝑑𝑤𝑏
𝑑𝑟

+
𝑑𝑤𝑠
𝑑𝑟
)
2

)

  (45) 

+𝐹
𝑢

𝑟
−
𝐻

𝑟

𝑑𝑤𝑏
𝑑𝑟

+
𝐼

𝑟

𝑑𝑤𝑠
𝑑𝑟

 (45) 

 

𝑁𝑟𝑧 =
(1 − 𝜈)

2
(𝐴
𝑑𝑤𝑠
𝑑𝑟

+ 𝐽
𝑑𝑤𝑠
𝑑𝑟
). (46) 

 

𝑄𝑟𝑧 =
(1 − 𝜈)

2
(𝐻
𝑑𝑤𝑠
𝑑𝑟

+ 𝐿
𝑑𝑤𝑠
𝑑𝑟
). (47) 

 

𝑃𝑟𝜃 = 𝑙0(1 − 𝜈) (−𝐴
𝑑2𝑤𝑏
𝑑𝑟2

+
𝐽

2

𝑑2𝑤𝑠
𝑑𝑟2

−
𝐴

2

𝑑2𝑤𝑠
𝑑𝑟2

 

            +
𝐴

𝑟

𝑑𝑤𝑏
𝑑𝑟

+
𝐴

2𝑟

𝑑𝑤𝑠
𝑑𝑟

−
𝐽

2𝑟

𝑑𝑤𝑠
𝑑𝑟
), 

(48) 

 

𝑌𝑟𝜃 = 𝑙0(1 − 𝜈) (−𝐽
𝑑2𝑤𝑏
𝑑𝑟2

+
𝐿

2

𝑑2𝑤𝑠
𝑑𝑟2

−
𝑀

2

𝑑2𝑤𝑠
𝑑𝑟2

 

           +
𝑀

𝑟

𝑑𝑤𝑏
𝑑𝑟

+
𝑀

2𝑟

𝑑𝑤𝑠
𝑑𝑟

−
𝐿

2𝑟

𝑑𝑤𝑠
𝑑𝑟
), 

(49) 

 

𝑇𝑧𝜃 = 𝑙0(1 − 𝜈)
𝑀

2

𝑑𝑤𝑠
𝑑𝑟
, (50) 

 

where 
 

(
𝐴, 𝐵, 𝐷, 𝐹, 𝐻,
𝐼, 𝐽, 𝐿,𝑀

)

=
𝐸

1 − 𝜈2
∫

(

  
 

1, 𝑧, 𝑧2, 𝑓(𝑧) , 𝑧𝑓( 𝑧) ,

𝑓( 𝑧)2 ,
𝑑𝑓(𝑧)

𝑑𝑧

, (
𝑑𝑓(𝑧)

𝑑𝑧
)
2

,
𝑑2𝑓(𝑧)

𝑑𝑧2 )

  
 
𝑑𝑧

ℎ/2

−ℎ/2

. 
(51) 

 

2.5 Boundary conditions 
 

The boundary conditions for the annular nanoplates at 

the inner and outer surfaces are 
 

❖ Clamped-Clamped (CC) 
 

𝑢 = 𝑤𝑏 = 𝑤𝑠 =
𝑑𝑤𝑏
𝑑𝑟

=
𝑑𝑤𝑠
𝑑𝑟

= 0   at   𝑟 = 𝑅𝑖 , 𝑅𝑜 (52) 

 

❖ Simply-Simply supported (SS) 
 

𝑢 = 𝑤𝑏 = 𝑤𝑠 = 𝑀𝑟𝑏 = 𝑀𝑟𝑠 = 0   at   𝑟 = 𝑅𝑖 , 𝑅𝑜 (53) 
 

❖ Clamped-Simply supported (CS) 
 

𝑢 = 𝑤𝑏 = 𝑤𝑠 =
𝑑𝑤𝑏
𝑑𝑟

=
𝑑𝑤𝑠
𝑑𝑟

= 0   at   𝑟 = 𝑅𝑖 

𝑢 = 𝑤𝑏 = 𝑤𝑠 = 𝑀𝑟𝑏 = 𝑀𝑟𝑠 = 0   𝑎𝑡   𝑟 = 𝑅𝑜 

(54) 

 

❖ Simply- Clamped (SC) 
 

𝑢 = 𝑤𝑏 = 𝑤𝑠 = 𝑀𝑟𝑏 = 𝑀𝑟𝑠 = 0   𝑎𝑡   𝑟 = 𝑅𝑖 

𝑢 = 𝑤𝑏 = 𝑤𝑠 =
𝑑𝑤𝑏
𝑑𝑟

=
𝑑𝑤𝑠
𝑑𝑟

= 0   𝑎𝑡   𝑟 = 𝑅𝑜 
(55) 

 

❖ Clamped-Free (CF) 
 

𝑢 = 𝑤𝑏 = 𝑤𝑠 =
𝑑𝑤𝑏
𝑑𝑟

=
𝑑𝑤𝑠
𝑑𝑟

= 0   𝑎𝑡   𝑟 = 𝑅𝑖 

𝑁𝑟 = 𝑁𝑟𝑧 = 𝑄𝑟𝑧 = 𝑀𝑟𝑠 = 𝑀𝑟𝑏 = 0   𝑎𝑡   𝑟 = 𝑅𝑜 

(56) 
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❖ Free- Clamped (FC) 
 

𝑁𝑟 = 𝑁𝑟𝑧 = 𝑄𝑟𝑧 = 𝑀𝑟𝑠 = 𝑀𝑟𝑏 = 0   𝑎𝑡   𝑟 = 𝑅𝑖 

𝑢 = 𝑤𝑏 = 𝑤𝑠 =
𝑑𝑤𝑏
𝑑𝑟

=
𝑑𝑤𝑠
𝑑𝑟

= 0   𝑎𝑡   𝑟 = 𝑅𝑜 
(57) 

 

Noted that the first boundary condition is related to 

inner surface of the annular nanoplate and the second ones 

show the boundary condition of outer surface. For instance, 

CS boundary conditions indicate clamped edge in the inner 

surface and simply supported at the outer surface of the 

annular nanoplate. 

The assumed boundary conditions for the circular 

nanoplates are 
 

❖ Clamped edge 
 

𝑢 = 𝑤𝑏 = 𝑤𝑠 =
𝑑𝑤𝑏
𝑑𝑟

=
𝑑𝑤𝑠
𝑑𝑟

= 0   𝑎𝑡   𝑟 = 𝑅 (58) 

 

❖ Simply supported 
 

𝑢 = 𝑤𝑏 = 𝑤𝑠 = 𝑀𝑟𝑏 = 𝑀𝑟𝑠 = 0   𝑎𝑡   𝑟 = 𝑅 (59) 
 

In the center of the circular nanoplate, the below 

conditions should be satisfied 
 

𝑢 =
𝑑𝑤𝑏
𝑑𝑟

=
𝑑𝑤𝑠
𝑑𝑟

= 𝑁𝑟𝑧 = 𝑄𝑟𝑧 = 0   𝑎𝑡   𝑟 = 0 (60) 

 

 

3. Solution method 
 

Based on GDQM, the first and the higher order of 

derivatives of f(r) are approximated by a linear sum of all 

the function values in the whole domain as follows 

(Bellman and Casti 1971, Asemi et al. 2014, 

Hajmohammad et al. 2018, Dastjerdi et al. 2016) 
 

𝑓1(𝑟𝑖) =∑𝐶𝑖𝑗
(1)𝑓(𝑟𝑗)

𝑁𝑟

𝑗=1

  for  𝑖 = 0,… ,𝑁𝑟 

𝑓𝑟
(𝑚−1)(𝑟𝑖) =∑𝐶𝑖𝑗

(𝑚−1)𝑓(𝑟𝑗)

𝑁𝑟

𝑗=1

  for  𝑖 = 1,2, . . , 𝑁𝑟𝑚 

                     = 2,3, … , 𝑁𝑟 − 1 

𝑓𝑟
(𝑚)(𝑟𝑖) =∑𝐶𝑖𝑗

(𝑚)
𝑓(𝑟𝑗)

𝑁𝑟

𝑗=1

  for  𝑖 = 1,2, . . , 𝑁𝑟𝑚 

                 = 2,3, . . . , 𝑁𝑟 − 1 

(61) 

 

where Nr and ri are the number of grids and sample points, 

respectively; 𝐶𝑖𝑗
(1)

 and 𝐶𝑖𝑗
(𝑚)

 are weighting coefficients, 

obtained as follows 
 

𝐶𝑖𝑗
(1)
=

𝑀(1)(𝑟𝑖)

(𝑟𝑖 − 𝑟𝑗)𝑀
(1)(𝑟𝑗)

   for   𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2, . . . , 𝑁𝑟 

𝐶𝑖𝑖
(1)
=
𝑀(2)(𝑟𝑖)

2𝑀(1)(𝑟𝑖)
   for   𝑖 = 1,2, . . . , 𝑁𝑟 

𝐶𝑖𝑗
(𝑚−1)

=
𝑁(𝑚−1)(𝑟𝑖 , 𝑟𝑗)

𝑀(1)(𝑟𝑗)
 

𝐶𝑖𝑗
(𝑚)

=
𝑁(𝑚)(𝑟𝑖 , 𝑟𝑗)

𝑀(1)(𝑟𝑗)
 

(62) 

where M and N are determined by recurrence relations as 

follows 
 

𝑀(1)(𝑟𝑖) =∏(𝑟𝑖 , 𝑟𝑘)

𝑁𝑟

𝑘=1
𝑘≠𝑖

 

𝑁(𝑚−1)(𝑟𝑖 , 𝑟𝑗) = 𝑀
(1)(𝑟𝑖)𝐶𝑖𝑗

(𝑚−1)
 

𝑁(𝑚−1)(𝑟𝑖 , 𝑟𝑖) =
𝑀(𝑚)(𝑟𝑖)

𝑚
 

𝑁(𝑚)(𝑟𝑖 , 𝑟𝑗) =
𝑀(𝑚)(𝑟𝑖) − 𝑚𝑁

(𝑚−1) (𝑟𝑖 , 𝑟𝑗)

(𝑟𝑖 − 𝑟𝑗)
  for   𝑖 ≠ 𝑗 

(63) 

 

For optimal selection of the sample points, the 

normalized Chebyshev–Lobatto points are exploited as 

respectively for annular and circular nanoplates as 

(Dastjerdi et al. 2016) 
 

𝑟𝑖 =
𝑅𝑜
2
[1 − 𝑐𝑜𝑠 (

𝑖 − 1

𝑁𝑟 − 1
)𝜋] + 𝑅𝑖𝑖 = 1, . . . , 𝑁𝑟 (64) 

 

𝑟 =
𝑅

2
[1 − 𝑐𝑜𝑠 (

𝑖 − 1

𝑁𝑟 − 1
)𝜋] 𝑖 = 1, . . . , 𝑁𝑟 (65) 

 

Applying Eq. (61) into Eqs. (37)-(39) yields the final 

governing equation in matrix form as 
 

[
𝐾𝑏𝑏 𝐾𝑏𝑑
𝐾𝑑𝑏 𝐾𝑑𝑑

] [
{𝑦𝑏}

{𝑦𝑑}
] = [

{0}

{𝑞}
], (66) 

 

where 𝑦 = [𝑢,𝑤𝑏, 𝑤𝑠] ; 𝐾𝑏𝑏  and 𝐾𝑏𝑑  are stiffness 

matrixes of boundary and domain points in the boundary 

equations, respectively; 𝐾𝑑𝑏  and 𝐾𝑑𝑑  are stiffness 

matrixes of boundary and domain points in the governing 

equations, respectively. Finally, using an iterative method, 

the solution of Eq. (66) yields to the nonlinear 

displacements of the FG porous annular/circular nanoplate. 
 

 

4. Numerical results 
 

In this section, the effects of different parameters are 

shown on the nonlinear displacements of the FG porous 

nanoplate. For this purpose, the FG nanoplate is consisted 

of metal and ceramic with Young’s modulus of 𝐸𝑚 =
70 Gpa  and 𝐸𝑐 = 151 Gpa , respectively (Karami and 

Janghorban 2016). The inner to outer radius of nanoplate is 

𝑅𝑖/𝑅𝑜 = 0.5 and thickness to outer radius of ℎ/𝑅𝑜 = 0.1. 

For the annular nanoplates, the boundary conditions of CC, 

SS, CS, SC, CF and FC are considered which the first 

boundary condition is related to inner surface of the annular 

nanoplate and the second ones show the boundary condition 

of outer surface. In addition, for the circular nanoplate two 

boundary conditions of clamped and simply supported are 

assumed. 
 

4.1 Validation 
 

Firstly, the results are validated considering the material 

properties the same as (Saidi et al. 2009) neglecting 

porosity, Kerr foundation and material length scale 
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parameter, the dimensionless deflection (𝑊 = 64𝐷𝑤/𝑞𝑅4) 

for the circular plate with simply boundary condition is 

determined. The results are shown in Table 1 for first order 

shear deformation theory (FSDT) (Saidi et al. 2009), third 

order shear deformation theory (TSDT) (Ma and Wang 

2004) and two refined variable shear deformation theory. As 

seen, the results are in good agreement with those reported 

by Saidi et al. (2009) and Ma and Wang (2004). 

For another validation of this work, the porosity value, 

Kerr foundation and material length scale parameter are 

neglected and axisymmetric bending of a FG circular plate 

with clamped and simply supported boundary conditions is 

studied based on FSDT. A FGM plate made of a 

combination of Titanium and Zirconium is considered with 

𝐸𝑐 = 151 Gpa and 𝐸𝑚/𝐸𝑐 = 0.396. The dimensionless 

deflection of the structure for thickness-to-radius ratio of 

 

 

 

 

h/R = 0.15 is shown in Table 2 and the present results are 

compared with those obtained by Reddy et al. (1999) and 

Golmakani and Kadkhodayan (2011). Table 2 shows an 

acceptable agreement on the dimensionless maximum 

deflection and thus validated of the present numerical 

method. 

For the third validation of this work, the bending of an 

annular FG plate is investigated for thickness-to-outer 

radius ratio of h/R = 0.15. Herein, the The material 

properties are assumed to be 𝐸𝑚 = 70 Gpa ,  𝐸𝑐 =
427 Gpa ,  𝜈𝑚 = 0.3  a n d  𝜈𝑐 = 0.17  f o r  t h e  m e t a l , 

aluminum, and the ceramic, silicon carbide, respectively. 

The maximum dimensionless deflection is listed in Table 3 

is compared with those reported by Golmakani and 

Kadkhodayan (2011) for the FSDT and third order shear 

deformation theory (TSDT). As observed, the present 

Table 1 Non-dimensional deflection of circular FG plate (𝑊 = 64𝐷𝑤/𝑞𝑅4) 

BC p Ref 
h/R 

0.10 0.20 0.35 0.30 

Simply 

supported 

0 

FSDT (Saidi et al. 2009) 4.1502 4.0075 3.9071 3.7905 

TSDT (Ma and Wang 2004) 4.1502 4.0077 3.9072 3.7911 

TSDT (Saidi et al. 2009) 4.1503 4.0079 3.9072 3.7911 

Present work 4.1503 4.0078 3.9073 3.7911 

10 

FSDT (Saidi et al. 2009) 7.9717 7.7149 7.5325 6.3217 

TSDT (Ma and Wang 2004) 7.9733 7.7213 7.5424 6.3353 

TSDT (Saidi et al. 2009) 7.9730 7.7211 7.5425 6.3348 

Present work 7.9736 7.7212 7.5427 6.3350 

Clamped 

edge 

0 

FSDT (Saidi et al. 2009) 14.089 12.571 11.631 10.657 

TSDT (Ma and Wang 2004) 14.089 12.574 11.638 10.670 

TSDT (Saidi et al. 2009) 14.089 12.575 11.639 10.670 

Present work 14.089 12.575 11.639 10.670 

10 

FSDT (Saidi et al. 2009) 27.111 24.353 22.627 20.823 

TSDT (Ma and Wang 2004) 27.133 24.423 22.725 20.948 

TSDT (Saidi et al. 2009) 27.131 24.422 22.725 20.949 

Present work 27.134 24.423 22.726 20.949 
 

Table 2 Comparison of the maximum dimensionless deflection (𝑊 = 64𝐷𝑤/𝑞𝑅4) of circular FG plate for 

thickness-to-radius ratio h/R = 0.15 

FG 

index 

Clamped edge Simply supported 

Reddy et al. 

(1999) 

Golmakani and 

Kadkhodayan (2011) 
Present 

Reddy et al. 

(1999) 

Golmakani and 

Kadkhodayan (2011) 
Present 

0 2.781 2.774 2.778 10.623 10.572 10.611 

2 1.151 1.511 1.512 5.610 5.565 5.577 

4 1.384 1.382 1.381 5.271 5.200 5.231 

8 1.278 1.277 1.277 4.870 4.876 4.874 

10 1.250 1.251 1.252 4.772 4.760 4.770 

50 1.137 1.134 1.135 4.348 4.346 4.347 

100 1.119 1.116 1.117 4.280 4.281 4.282 

1000 1.103 1.107 1.102 4.214 4.229 4.222 

10000 1.101 1.102 1.103 4.207 4.217 4.211 
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Table 3 Comparisons of the maximum dimensionless 

deflection (𝑊 = 64𝐷𝑤/𝑞𝑅4) of SS annular FGM 

plate 

FG 

power 

FSDT 

(Golmakani and 

Kadkhodayan 2011) 

TSDT 

(Golmakani and 

Kadkhodayan 2011) 

Present 

0 2.45e-3 2.49e-3 2.48e-3 

0.1 2.95e-3 2.99e-3 2.98e-3 

0.5 3.66e-3 3.70e-3 3.72e-3 

1 4.32e-3 4.39e-3 4.31e-3 

2 5.16e-3 5.34e-3 5.22e-3 

5 6.50e-3 6.88e-3 6.66e-3 

Metal 1.58e-2 1.56e-2 1.57e-2 
 

 

 

 

results are in good agreement with those of Golmakani and 

Kadkhodayan (2011). 

 

4.2 Convergence of GDQM 
 

In order to study the convergence of the GDQM, the 

dimensionless deflection (𝑊𝑏 = 𝑤𝑏/ℎ) for the annular and 

circular FG porous nanoplate is reported in Tables 4 and 5, 

respectively for different boundary conditions. Six types of 

boundary conditions for the annular nanoplate are 

considered namely as simply-simply (SS), clamped-

clamped (CC), clamped-simply (CS), simply-clamped (SC), 

clamped-free (CF) and free-clamped (FC). As observed, by 

increasing the number of grid points, the convergent results 

are achieved. The number of terms, N = 17 is sufficient to 

give accurate results in Table 4. 
 

 

 

Table 4 Convergence and accuracy of GDQM for deflection 

of annular nanoplate with Q = 2 

N CC SC CS SS FC CF 

7 0.1500 0.2550 0.548 0.807 0.924 1.387 

11 0.3140 0.5338 1.277 1.860 2.435 3.652 

13 0.4400 0.7481 2.002 2.886 4.211 6.317 

15 0.4659 0.7921 2.183 3.139 4.691 7.036 

17 0.4897 0.8325 2.364 3.389 5.183 7.774 

19 0.4897 0.8325 2.364 3.389 5.183 7.774 
 

 

 

 

Table 5 Convergence and accuracy of GDQM for deflection 

of circular nanoplate with l0/h = 0.5 

N Clamped edge Simply supported 

7 109.32 153.048 

11 20.642 28.898 

13 12.921 18.089 

15 2.0562 2.8787 

17 0.3971 0.5559 

19 0.3971 0.5559 
 

4.3 Parametric study 
 

Herein, the influences of different parameters on the 

dimensionless bending nonlinear displacement (Wb) versus 

dimensionless transverse load (Q = q/Em) for the clamped 

annular nanoplate and material length scale parameter to 

thickness ratio for the circular nanoplate are shown. As 

expected, with increasing the dimensionless transverse load, 

the dimensionless nonlinear displacement is enhanced. In 

addition, with growing the material length scale parameter 

to thickness ratio, the dimensionless nonlinear displacement 

is decreased. It is due to the fact that with increasing the 

material length scale parameter to thickness ratio, the 

stiffness of the nanostructure is improved. 

Figs. 3 and 4 present the effect of different boundary 

condition on the dimensionless nonlinear displacement for 

the annular and circular nanoplates, respectively. It is 

observed that in the annular nanoplate, the dimensionless 

nonlinear displacement is minimum for the annular 

nanoplate with CC and maximum for the CF boundary 

conditions. It is because the bending rigidity of the annular 

nanoplate with CC boundary condition is higher than other 

considered boundary conditions. In addition, the dimension- 
 

 

 

Fig. 3 The effect of different boundary conditions on the 

dimensionless nonlinear displacement for the FG 

porous annular nanoplate 
 

 

 

Fig. 4 The variation of the dimensionless nonlinear 

displacement of FG porous circular nanoplate with 

respect to l0/h under two boundary condition 
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less nonlinear displacement for the SC and FC annular 

nanoplates is lower than CS and CF one. It shows that the 

effect of clamped boundary condition in the author surface 

of the annular nanoplate is higher than that in the inner 

surface. For instance, at Q = 3, the dimensionless nonlinear 

displacement for SC, FC, CS and CF annular nanoplates are 

1.003, 8.366, 3.445 and 12.55, respectively. In the other 

words, the dimensionless nonlinear displacement for SC 

and FC annular nanoplates are 3.4 and 1.5 times lower those 

that of CS and CF annular nanoplates, respectively. The 

same as Fig. 3, in the Fig. 4, it can be concluded that the 

dimensionless nonlinear displacement for the clamped 

circular nanoplate is lower that simply supported ones. 

The effect of material in-homogeneity parameter on the 

dimensionless nonlinear deflection is demonstrated in Figs. 

5 and 6, respectively for annular and circular nanoplates, 

respectively. It can be found that with increasing the 

material in-homogeneity parameter, the material changes 

from ceramic (p = 0) and metal (p = ∞) and consequently 

the dimensionless nonlinear deflection increases. It is due to 

this fact that by enhancing the material in-homogeneity 

parameter, the stiffness of the annular/circular nanoplate 

reduces. For example, at Q = 3, the dimensionless nonlinear 
 

 

 

Fig. 5 The effect of material in-homogeneity parameter on 

the dimensionless nonlinear displacement for the 

FG porous annular nanoplate 
 

 

 

Fig. 6 The effect of material in-homogeneity parameter on 

the dimensionless nonlinear displacement for the 

FG porous circular nanoplate 

deflection of the ceramic annular nanoplate is 0.5027 while 

it is 0.9346 for the metal ones. As sketched, the 

dimensionless nonlinear deflection of the ceramic annular 

nanoplate is 85% lower than that of metallic ones. 

Furthermore, for the circular nanoplate at l0/h = 1, changing 

the material in-homogeneity parameter from zero to infinite, 

the dimensionless nonlinear deflection is increased about 

38%. 

Figs. 7 and 8 indicate the effect of porosity on the 

dimensionless nonlinear deflection of the annular and 

circular nanoplates, respectively. It is shown that with 

increasing the porosity, the dimensionless nonlinear 

deflection is increased due to reduction in the stiffness of 

the structure. Furthermore, with increasing the applied load, 

the effect of porosity becomes more considerable. In 

another words, at Q = 0.5, the dimensionless nonlinear 

deflection of the porous annular nanoplate (𝜉 = 0.8) is 33% 

higher than perfect (𝜉 = 0) ones while for Q = 3, this 

percentage is about 50%. As sketched in Fig. 8, in circular 

nanoplate, the porosity effect is approximately independent 

to scale parameter to thickness ratio. For instance, at l0/h = 

1, the dimensionless nonlinear deflection of the porous 

annular nanoplate ( 𝜉 = 0.8 ) is 50% higher than the 

deflection of perfect (𝜉 = 0) annular nanoplate. 
 

 

 

Fig. 7 The effect of porosity on the dimensionless nonlinear 

displacement for the FG porous annular nanoplate 

 

 

 

Fig. 8 The effect of porosity parameter on the dimensionless 

nonlinear displacement for the FG porous circular 

nanoplate 
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The effect of different elastic medium on the 

dimensionless nonlinear displacement for the annular and 

circular nanoplate is presented in Figs. 9 and 10, 

respectively. Four cases of without elastic medium, Winkler 

medium (𝑘𝑢 ≠ 0, 𝑘𝑙 = 𝑘𝑠 = 0), Pasternak medium (𝑘𝑢 ≠
𝑘𝑠 ≠ 0, 𝑘𝑙 = 0) and Kerr medium (𝑘𝑢 ≠ 𝑘𝑠 ≠ 𝑘𝑙 ≠ 0) are 

considered. It can be seen that the dimensionless nonlinear 

displacement of the annular/circular without medium 

increases due to reduction in the stiffness of the structure. In 

addition, the dimensionless nonlinear displacement of the 

nanostructure with Kerr foundation is lower than Pasternak 

type and that is lower than Winkler ones. It is since in the 

Kerr medium, two spring and one shear constants are 

assumed while in the Pasternak medium we have one shear 

and spring constants and in the Winkler medium, there is 

only one spring element. Hence, the stiffness of the Kerr 

foundation is higher than Pasternak and Winkler mediums. 

In order to quantitative analysis of the results, at Q = 3, the 

dimensionless nonlinear displacement for the annular 

nanoplate resting on Kerr foundation is 0.5899 while it is 

1.63 for the annular nanoplate without elastic medium. It 

shows that the Kerr foundation reduces the dimensionless 

nonlinear displacement 2.7 times with respect to the annular 

 

 

 

Fig. 9 The effect of elastic medium on the dimensionless 

nonlinear displacement for the FG porous annular 

nanoplate 

 

 

 

Fig. 10 The effect of elastic medium on the dimensionless 

nonlinear displacement for the FG porous circular 

nanoplate 
 

 

Fig. 11 The variation of linear and nonlinear deflection of 

FG porous annular nanoplate with respect to 

dimensionless transverse load (Q) 

 

 

 

Fig. 12 The difference between the dimensionless 

nonlinear and linear deflection for the FG porous 

circular nanoplate 

 

 

nanoplate without elastic medium. 

Figs. 11 and 12 illustrate the difference between the 

dimensionless nonlinear and linear deflection of the annular 

and circular nanoplates, respectively. By increasing Q, the 

deflection increases, leading to increasing the influence of 

nonlinear relations that causes the deflection in nonlinear 

situation to deviate from linear situation. It is indicated that 

the differences between the results of linear and nonlinear 

analysis grows by increasing Q. Another notable point 

concluded from Fig. 11 is that for Wb < 0.4, the difference 

between linear and nonlinear analysis is not significant 

when compared with Wb > 0.4. 

 

 

5. Conclusions 
 

This study was concerned with nonlinear bending 

analysis of FG porous annular/circular nanoplates resting on 

Kerr foundation. The size effects were proposed using 

MCST. Applying two refined plate theory, the governing 

equations were derived and using GDQM, the nonlinear 

deflection of the nanostructure was calculated for different 

boundary conditions. The effects of different parameters 
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such as material length scale parameter, boundary 

condition, geometrical parameters of the nanoplate, elastic 

medium constants, porosity and FG index were shown on 

the nonlinear deflection of the annular/circular nanoplates. 

Numerical results show that the dimensionless nonlinear 

displacement for the SC and FC annular nanoplates was 

lower than CS and CF one. In the other words, the 

dimensionless nonlinear displacement for SC and FC 

annular nanoplates were 3.4 and 1.5 times lower than that of 

CS and CF annular nanoplates, respectively. With 

increasing the material in-homogeneity parameter, the 

dimensionless nonlinear deflection increases up to 85% at Q 

= 3 for the annular nanoplate and 38% for the circular ones 

at l0/h = 1. It was shown that with increasing the porosity, 

the dimensionless nonlinear deflection was increased. With 

increasing the applied load, the effect of porosity becomes 

more considerable. In another words, at Q = 0.5, the 

dimensionless nonlinear deflection of the porous annular 

nanoplate (𝜉 = 0.8) was 33% higher than perfect (𝜉 = 0) 

ones while for Q = 3, this percentage was about 50%. The 

Kerr foundation reduces the dimensionless nonlinear 

displacement 2.7 times with respect to the annular 

nanoplate without elastic medium. In addition, the 

dimensionless nonlinear displacement of the nanostructure 

with Pasternak foundation was higher than Kerr type while 

the deflection of Kerr medium was lower than Winkler 

ones. Furthermore, the differences between the results of 

linear and nonlinear analysis rises up by increasing applied 

load. For Wb < 0.4, the difference between linear and 

nonlinear analysis is negligible whereas when Wb > 0.4, this 

discrepancy is significant. 
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