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1. Introduction 

 

The functionally graded (FG) circular cylindrical shells 

are widely used in practical engineering applications due to 

the special self-structural performance and excellent 

mechanical properties. And the FG circular cylindrical 

shells are usually working in complex environmental 

conditions and exposed to a variety of dynamic excitations 

as results that the excessive vibration. Thus, the vibration 

characteristics analysis of FG circular cylindrical shells is of 

great significant. This paper aims to use a semi analytical 

method to present a unified formulation to analyze the free 

vibration characteristics of uniform and stepped FG circular 

cylindrical shells with complex boundary conditions. 

In the past few decades, a large number of analytical and 

numerical methods have been proposed to analyze the 

vibration characteristics of functionally graded circular 

cylindrical shells: Tornabene (2009) studied the vibration 

behavior of FG conical, cylindrical and other structures by 

using differential quadrature method. Fantuzzi et al. (2016) 

investigated the free vibration of simply supported 

functionally graded material (FGM) shells, in which 

spherical and cylindrical shell geometries are included. 

Brischetto et al. (2016) investigated the differences between 

a three-dimensional (3D) exact solution and several two- 
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dimensional (2D) numerical solutions to analyze the free 

vibration of functionally graded plates and cylinders. Zghal 

et al. (2018) made comparison study on various FG 

composite shells reinforced by carbon nanotubes and 

highlight the efficiency and applicability of the model in 

forecasting the vibration behavior of the shells. Tornabene 

and Viola (2009) studied the dynamic behavior of FG 

circular panels, parabolic panels and shells of revolution 

based on First-order Shear Deformation Theory. Qu et al. 

(2013b) proposed a unified formulation for vibration 

analysis of functionally graded shells of revolution with 

arbitrary boundary conditions. Bidgoli et al. (2015) 

analyzed the instability and nonlinear for vibration of a FG 

cylindrical shell by using a semi analytical method. Wang et 

al. (2017b) applied the Fourier-Ritz method to study the 

vibration behavior of the moderately thick functionally 

graded (FG) parabolic and circular panels and shells of 

revolution with general boundary conditions. The modified 

Fourier series is chosen as the basis function of the 

admissible functions of the structure to eliminate all the 

relevant discontinuities of the displacements and their 

derivatives at the edges, and the vibration behavior is solved 

by means of the Ritz method. Liu et al. (2018) analyzed the 

free vibration characteristics of FG reinforced composite 

cylindrical shell on the base of three dimensional elasticity 

theory. Kar and Panda (2015) proposed a nonlinear 

mathematical model by using higher order shear 

deformation theory for shallow shell and investigated 

nonlinear vibration behaviour of FG spherical shells. Beni 

et al. (2015) developed a size-dependent equation to 

analyze the free vibration behavior of FG cylindrical shell 

subject to non-classical boundary conditions. In the same 

field, Zeighampour and Shojaeian (2017) also analyzed the 
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FG cylindrical shell vibration with size-dependent. Su et al. 

(2014) presented a unified solution to obtain the vibration 

characteristics of FG cylindrical and other shell structures. 

Jin et al. (2014) proposed the Haar wavelet method to study 

the free vibration behavior of FG cylindrical shells, in 

which the classical first order shear deformation theory is 

adopted. Wang et al. (2017b) also investigated the FG 

cylindrical shell on base of shear deformation theory, and 

the differences between this article with other published 

literatures are the shell structure and the basic theory. Cao 

and Tang (2012) modified the 3-D foundational equations 

into coupling 2-D equations, in which the various 

coefficients were changed into the constant coefficients. 

Zhang et al. (2015) firstly proposed the four-unknown shear 

deformation theory, and the theory is capable of analyzing 

the vibration of FG cylindrical shell, including only four 

independent displacement functions. Zhao et al. (2009) 

used the element-free-kp-method to study the vibration 

characteristics of FG cylindrical shell, in which the FG shell 

structure is consist of the metal and ceramic. Ye et al. 

(2016) used the improved Fourier Series method to study 

the vibration characteristic of FG deep open cylindrical 

shell. Yas et al. (2013) used the differential quadrature 

approach to investigate the three-dimensional free vibration 

of FG cylindrical panel subject to simply support at four 

ends of the structure. Bodaghi and Shakeri (2012) studied 

not only the free vibration of FG cylindrical panels, but also 

the transient vibration of the structure by an analytical 

method, and the shell is acted by impulsive loads with 

simply support restraints. So the solution of this paper could 

be used as the reference data for related studies. Hosseini-

Hashemi et al. (2012) obtained the exact solution of FG 

cylindrical structure by using Donnell and Sanders theories. 

Kamarian et al. (2014) focused on the vibration behavior of 

FG sandwich cylindrical shells, and the most significant of 

this paper is the Pasternak foundation, which make the 

solution more accurate. Razavi et al. (2017) investigated the 

free vibration characteristics of FG cylindrical shell subject 

to general restraints at the end of shell structure. 

For the vibration analysis of the stepped functionally 

graded structures, Hosseini-Hashemi et al. (2013) used an 

accurate mathematical method to study free vibration of 

stepped thickness circular/annular Mindlin functionally 

graded plates. Javed et al. (2016) analyzed the vibration 

behavior of composite cylindrical shells under non-uniform 

thickness walls. Bambill et al. (2015) studied free 

transverse vibrations of axially functionally graded beams 

with stepped changes in geometry and in material 

properties, in which the differential quadrature method with 

domain decomposition technique is used, and the governing 

equations of motion are based on Timoshenko beam theory 

and are derived using Hamilton's principle. Li et al. (2019) 

used a semi analytical method to analyze free vibration 

characteristics of uniform and stepped FG shells of 

revolution. Tang et al. (2017) analyzed the vibration 

characteristics by using reverberation-ray matrix method. 

As we can see from the literatures review, researches 

around the world mainly used analytical method, numerical 

method, differential quadrature method, Fourier-Ritz 

method, Haar wavelet method and Modified Fourier-Ritz 

method et al. to investigate the vibration characteristics of 

FG cylindrical panels and shells under classical or general 

boundaries conditions. In addition, we can see that there are 

rarely any published literatures focused on the vibration 

analysis of stepped FG cylindrical shell. Therefore, it is of 

great significant to establish a unified formulation to study 

free vibration characteristics of uniform and stepped FG 

circular cylindrical shells subject to complex boundary 

conditions. 
 

 

2. Theoretical formulations 
 

2.1 The model description 
 

The model of FG circular cylindrical shell is described 

in Fig. 1. It is assumed that the FG circular cylindrical shell 

is made up of same materials. The length of the FG circular 

cylindrical shell is L. hi represents the thicknesses of 

different section for circular cylindrical shell. The model is 

described by cylindrical coordinate system (x, θ, z), in 

which the axial and circumferential directions were 

represented by x and θ, respectively. The displacements in 

the direction of x, θ, z of the middle surface are respectively 

represented by u, v and w. The displacement components of 

FG circular cylindrical shells with reference to its 

coordinate system are presented as U, V, W. To obtain more 

accurate results the FG circular cylindrical shells are 

decomposed into H shell segments along the axial direction 

(Qu et al. 2013b, Pang et al. 2019c). 
 

2.2 Functionally graded (FG) model 
 

Two types of FG model are considered and the Voigt’s 

rule is employed to evaluate the effective material 

properties of layers varying continuously and smoothly in 

thickness direction in this paper. The Young’s modulus (E), 

mass density (ρ) and Poisson’s ratios (ν) of FG model can 

be expressed as follows 
 

𝐸(𝑧) = (𝐸𝑐 − 𝐸𝑚)𝑉𝑐 + 𝐸𝑚 (1a) 

 

𝜌(𝑧) = (𝜌𝑐 − 𝜌𝑚)𝑉𝑐 + 𝜌𝑚 (1b) 

 

𝜈(𝑧) = (𝜈𝑐 − 𝜈𝑚)𝑉𝑐 + 𝜈𝑚 (1c) 
 

where the subscripts c and m represent the ceramic and 

metallic constituents, respectively, and the volume fraction 

Vc follows two general four-parameter power-law 

distributions 
 

 

 
 

(a) Cross section (b) Differential element 

Fig. 1 Geometry notations and coordinate system of FG 

circular cylindrical shell 
 

164



 

Free vibration analysis of uniform and stepped functionally graded circular cylindrical shells 

 

 

𝐹𝐺𝑀𝛪(𝑎/𝑏/𝑐/𝑝): 𝑉𝑐 = [1 − 𝑎 (
1

2
+
𝑧

ℎ
) + 𝑏 (

1

2
+
𝑧

ℎ
)
𝑐

]

𝑝

 (2a) 

 

𝐹𝐺𝑀𝛪𝛪(𝑎/𝑏/𝑐/𝑝): 𝑉𝑐 = [1 − 𝑎 (
1

2
−
𝑧

ℎ
) + 𝑏 (

1

2
−
𝑧

ℎ
)
𝑐

]

𝑝

 (2b) 

 

where p is the power-law exponent and takes only positive 

values. z signifies the thickness coordinate. The parameters 

a, b and c determine the material variation profile through 

 

 

functionally graded shell thickness. The different power-law 

distributions can be obtained by setting proper value of the 

parameters a, b, c and p. The variations of volume fraction 

Vc for different values of the parameters a, b, c and p are 

depicted in Fig. 2 
 

2.3 Energy functions of FG circular cylindrical shell 
 

According to first-order shear deformation shown in 

Refs. (Wang et al. 2017b, Pang et al. 2019a, b, Li et al. 

  

(a) FGMI (a=1/b=0/c/p) (b) FGMII (a=1/b=0/c/p) 

  

(c) FGMI (a=1/b=0.5/c=2/p) (d) FGMII (a=1/b=0.5/c=2/p) 

  

(e) FGMI (a=0/b=−0.5/c=2/p) (f) FGMI (a=0/b=−0.5/c=2/p) 

Fig. 2 Variations of the volume fraction (Vc) through the structure thickness for different values of power-law exponent 
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2019), the strains at any point on FG circular cylindrical 

shells can be defined in terms of the reference surface 

displacements and rotations of normal as 
 

𝜀𝑥
𝑖 = 𝜀𝑥

0,𝑖 + 𝑧𝜅𝑥
0,𝑖          𝜀𝜃

𝑖 = 𝜀𝜃
0,𝑖 + 𝑧𝜅𝜃

0,𝑖
 (3a) 

 

𝛾𝑥𝜃
𝑖 = 𝛾𝑥𝜃

0,𝑖 + 𝑧𝜅𝑥𝜃
0,𝑖           𝛾𝑥𝑧

𝑖 = 𝛾𝑥𝑧
0,𝑖          𝛾𝜃𝑧

𝑖 = 𝛾𝜃𝑧
0,𝑖

 (3b) 

 

Meanwhile, the membrane strains can also be obtained 

in mentioned Refs (Wang et al. 2017b, Pang et al. 2019a, b, 

Li et al. 2019). Based on the law of Hook, the stresses can 

be described as below 
 

{
 
 

 
 
𝜎𝑥
𝑖

𝜎𝜃
𝑖

𝜏𝑥𝜃
𝑖

𝜏𝑥𝑧
𝑖

𝜏𝜃𝑧
𝑖 }
 
 

 
 

=

[
 
 
 
 
𝑄11(𝑧) 𝑄12(𝑧) 0 0 0

𝑄12(𝑧) 𝑄22(𝑧) 0 0 0

0 0 𝑄66(𝑧) 0 0

0 0 0 𝑄66(𝑧) 0

0 0 0 0 𝑄66(𝑧)]
 
 
 
 

{
 
 

 
 
𝜀𝑥
𝑖

𝜀𝜃
𝑖

𝛾𝑥𝜃
𝑖

𝛾𝑥𝑧
𝑖

𝛾𝜃𝑧
𝑖 }
 
 

 
 

 (4) 

 

where 𝜎𝑥
𝑖  and 𝜎𝜃

𝑖  are normal stresses; 𝜏𝑥𝜃
𝑖 , 𝜏𝑥𝑧

𝑖  and 𝜏𝜃𝑧
𝑖  

denote shear stresses. 𝜀𝑥
𝑖  and 𝜀𝜃

𝑖  are normal strains in the 

direction of x and θ. 𝛾𝑥𝜃 is shear strains. Qij (z) (i, j = 1, 2, 

6) are constants, and the value of which are obtained as 

displayed in Eq. (5) 
 

𝑄11(𝑧) =
𝐸(𝑧)

1 − 𝜈2(𝑧)
,    𝑄12(𝑧) =

𝜈(𝑧)𝐸(𝑧)

1 − 𝜈2(𝑧)
, 

𝑄66(𝑧) =
𝐸(𝑧)

2[1 + 𝜈(𝑧)]
 

(5) 

 

By carrying the integration of the stresses over the 

cross-section, the force and moment resultants can be 

obtained as follows 
 

{

𝑁𝑥
𝑖

𝑁𝜃
𝑖

𝑁𝑥𝜃
𝑖

} = [

𝐴11 𝐴12 0
𝐴12 𝐴22 0
0 0 𝐴66

] {

𝜀𝑥
0,𝑖

𝜀𝜃
0,𝑖

𝛾𝑥𝜃
0,𝑖

} 

                  + [

𝐵11 𝐵12 0
𝐵12 𝐵22 0
0 0 𝐵66

] {

𝜀𝑥
0,𝑖

𝜀𝜃
0,𝑖

𝛾𝑥𝜃
0,𝑖

} 

(6a) 

 

{

𝑀𝑥
𝑖

𝑀𝜃
𝑖

𝑀𝑥𝜃
𝑖

} = [

𝐵11 𝐵12 0
𝐵12 𝐵22 0
0 0 𝐵66

] {

𝜀𝑥
0,𝑖

𝜀𝜃
0,𝑖

𝛾𝑥𝜃
0,𝑖

} 

                  + [

𝐷11 𝐷12 0
𝐷12 𝐷22 0
0 0 𝐷66

] {

𝜅𝑥
𝑖

𝜅𝜃
𝑖

𝜅𝑥𝜃
𝑖

} 

(6b) 

 

{
𝑄𝑥
𝑖

𝑄𝜃
𝑖 } = �̄� [

𝐴66 0
0 𝐴66

] [
𝛾𝑥𝑧
0,𝑖

𝛾𝜃𝑧
0,𝑖] (6c) 

 

where �̄� is shear correction factor, and �̄�=5/6 is assumed 

in this paper. Aij, Bij and Dij are three kinds of stiffness, and 

they are obtained by Eq. (7) 
 

(𝐴𝑖𝑗 , 𝐵𝑖𝑗, 𝐷𝑖𝑗) = ∫ 𝑄𝑖𝑗

ℎ/2

−ℎ/2

(𝑧)(1, 𝑧, 𝑧2)𝑑𝑧 (7) 

The strain energy (UV) of the i th segment is displayed 

in Eq. (8) 
 

𝑈𝜉
𝑖 =

1

2
∭

(

 
 

𝑁𝑥
𝑖𝜀𝑥
0,𝑖 + 𝑁𝜃

𝑖𝜀𝜃
0,𝑖

+𝑁𝑥𝜃
𝑖 𝛾𝑥𝜃

0,𝑖 +𝑀𝑥
𝑖𝑘𝑥

𝑖

+𝑀𝜃
𝑖 𝑘𝜃

𝑖 +𝑀𝑥𝜃
𝑖 𝑘𝑥𝜃

𝑖

+𝑄𝑥
𝑖 𝛾𝑥𝑧

0,𝑖 + 𝑄𝜃
𝑖 𝛾𝜃𝑧

0,𝑖
)

 
 

𝑉

𝐴𝐵𝑑𝑥𝑑𝜃𝑑𝑧 (8) 

 

In the equations above, A and B are namely Lamé 

parameters (Wang et al. 2017b, Guo et al. 2018). Then, the 

expression of strain energy can be expressed as 𝑈𝑖 = 𝑈𝑆
𝑖 +

𝑈𝐵
𝑖 + 𝑈𝐵𝐶

𝑖 , in which 𝑈𝑆
𝑖 , 𝑈𝐵

𝑖  and 𝑈𝐵𝐶
𝑖  respectively 

represent the energy expressions of Stretching, Bending and 

Bending–Stretching coupling. 

 

𝑈𝑆
𝑖 =

1

2
∫∫∫

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 𝐴11 (

1

𝐴

𝜕𝑢𝑖

𝜕𝑥
+
𝑣𝑖

𝐴𝐵

𝜕𝐴

𝜕𝜃
)

2

                                                

+𝐴22 (
1

𝐵

𝜕𝑣𝑖

𝜕𝜃
+
𝑢𝑖

𝐴𝐵

𝜕𝐵

𝜕𝑥
+
𝑤𝑖

𝑅𝜃
)

2

                                  

+𝐴66 (
𝐴

𝐵

𝜕

𝜕𝜃
(
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𝐴
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𝐵

𝐴

𝜕

𝜕𝑥
(
𝑣𝑖

𝐵
))

2
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1

𝐴

𝜕𝑤𝑖

𝜕𝑥
+ 𝜓𝑥

𝑖)
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𝐴

𝜕𝑢𝑖
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𝐵
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𝐴𝐵𝑑𝑥𝑑𝜃𝑑𝑧 (9) 
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𝜕𝜓𝑥
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𝜓𝜃
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𝜕𝜓𝜃
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𝑖
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𝐴

𝐵

𝜕
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𝜕𝜓𝜃
𝑖
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𝐴𝐵𝑑𝑥𝑑𝜃𝑑𝑧 (10) 

 
𝑈𝐵𝑆
𝑖
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𝐴

𝜕𝑢𝑖

𝜕𝑥
+
𝑣𝑖

𝐴𝐵

𝜕𝐴

𝜕𝜃
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𝐴

𝜕𝜓𝑥
𝑖
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𝑖

𝐴𝐵

𝜕𝐴

𝜕𝜃
)

+𝐵12 (
1

𝐴

𝜕𝑢𝑖

𝜕𝑥
+
𝑣𝑖

𝐴𝐵

𝜕𝐴

𝜕𝜃
)(
1

𝐵

𝜕𝜓𝜃
𝑖

𝜕𝜃
+
𝜓𝑥
𝑖

𝐴𝐵

𝜕𝐵

𝜕𝑥
)

+𝐵12 (
1

𝐵

𝜕𝑣𝑖

𝜕𝜃
+
𝑢𝑖

𝐴𝐵

𝜕𝐵

𝜕𝑥
+
𝑤𝑖

𝑅
)(
1

𝐴

𝜕𝜓𝑥
𝑖

𝜕𝑥
+
𝜓𝜃
𝑖

𝐴𝐵

𝜕𝐴

𝜕𝜃
) +

𝐵66 (
1

𝐴

𝜕𝑢𝑖

𝜕𝑥
+
𝑣𝑖

𝐴𝐵

𝜕𝐴

𝜕𝜃
)(

𝐴

𝐵

𝜕

𝜕𝜃
(
𝜓𝑥
𝑖

𝐴
) +

𝐵

𝐴

𝜕

𝜕𝑥
(
𝜓𝜃
𝑖

𝐵
))

+𝐵22 (
1

𝐵

𝜕𝑣𝑖

𝜕𝜃
+
𝑢𝑖

𝐴𝐵

𝜕𝐵

𝜕𝑥
+
𝑤𝑖

𝑅
)(

1

𝐵

𝜕𝜓𝜃
𝑖

𝜕𝜃
+
𝜓𝑥
𝑖

𝐴𝐵

𝜕𝐵

𝜕𝑥
)
}
 
 
 
 
 
 

 
 
 
 
 
 

𝐴𝐵𝑑𝑥𝑑𝜃𝑑𝑧 (11) 

 

The corresponding kinetic energy function of i th 

segment can be expressed as 

 

𝑇𝜉
𝑖 =

1

2
∭𝜌(𝑧)

𝑉

[
(�̇̄�𝑖)

2

+ (�̇̄�𝑖)
2

+(�̇̄�𝑖)
2 ] (1 +

𝑧

𝑅
)𝐴𝐵𝑑𝑥𝑑𝜃𝑑𝑧 

      =
1

2
∫ ∫ {𝐼0[(�̇�

𝑖)2 + (�̇�𝑖)2 + (�̇�𝑖)2]
2𝜋

0

𝑥1

𝑥0

 

          +2𝐼1(�̇�
𝑖�̇�𝑥

𝑖 + �̇�𝑖�̇�𝜃
𝑖 ) 

          +𝐼2 [(�̇�𝑥
𝑖 )
2
+ (�̇�𝜃

𝑖 )
2
]} 𝐴𝐵𝑑𝑥𝑑𝜃 

(12) 

166



 

Free vibration analysis of uniform and stepped functionally graded circular cylindrical shells 

where the dot in Eq. (12) represent the differentiation about 

time, and 

 

(𝐼0, 𝐼1, 𝐼2) = ∫ 𝜌(𝑧) (1 +
𝑧

𝑅
) (1, 𝑧, 𝑧2)

ℎ/2

−ℎ/2

𝑑𝑧 (13) 

 

The energy stored in the end of boundary springs can be 

expressed as 

 

𝑈𝑏 =
1

2
∫ ∫ {

𝑘𝑢,0𝑢
2 + 𝑘𝑣,0𝑣

2 + 𝑘𝑤,0𝑤
2

+𝑘𝑥,0𝜓𝑥
2 + 𝑘𝜃,0𝜓𝜃

2 }
ℎ/2

−ℎ/2

2𝜋

0 𝑥=𝑥𝑙,0

𝐵𝑑𝜃𝑑𝑧 

+
1

2
∫ ∫ {

𝑘𝑢,1𝑢
2 + 𝑘𝑣,1𝑣

2 + 𝑘𝑤,1𝑤
2

+𝑘𝑥,1𝜓𝑥
2 + 𝑘𝜃,1𝜓𝜃

2 }
ℎ/2

−ℎ/2

2𝜋

0 𝑥=𝑥𝑙,1

𝐵𝑑𝜃𝑑𝑧 

(14) 

 

where 𝑘𝑡,0 (𝑡 = 𝑢, 𝑣, 𝑤, 𝑥, 𝜃)  and 𝑘𝑡,1  respectively 

represent the spring values at two sides of FG circular 

cylindrical shell. For neighbor segments, the energy stored 

in connective springs can be expressed as 

 

𝑈𝑠
𝑖 =

1

2
∫ ∫ {

𝑘𝑢(𝑢
𝑖 − 𝑢𝑖+1)2 + 𝑘𝑣(𝑣

𝑖 − 𝑣𝑖+1)2

+𝑘𝑤(𝑤
𝑖 − 𝑤𝑖+1)2                                   

+𝑘𝑥(𝜓𝑥
𝑖 − 𝜓𝑥

𝑖+1)2 + 𝑘𝜃(𝜓𝜃
𝑖 − 𝜓𝜃

𝑖+1)
2
}

ℎ

2

−
ℎ

2

2𝜋

0

𝑖,𝑖+1

𝐵𝑑𝜃𝑑𝑧 (15) 

 

The total energy representing the boundary and 

connective conditions can be expressed in Eq. (16) 

 

𝑈𝐵𝐶 = 𝑈𝑏 +∑𝑈𝑠
𝑖

𝐻−1

𝑖=1

 (16) 

 

where H is the number of segments decomposed in FG 

circular cylindrical shell structure. 

 

2.4 Admissible displacements and solution 
procedure 

 

In present method, the displacement functions are 

handled by unified Jacobi polynomials along axial direction 

and Fourier series along circumferential direction. It is 

generally known that the recurrence relations of degree i in 

Jacobi polynomials 𝑃𝑖
(𝛼,𝛽)

(𝜙) (Bhrawy et al. 2015) are 

shown in Eq. (17) 

 

𝑃0
(𝛼,𝛽)

(𝜙) = 1 (17a) 

 

𝑃1
(𝛼,𝛽)

(𝜙) =
𝛼 + 𝛽 + 2

2
𝜙 −

𝛼 − 𝛽

2
 (17b) 

 

𝑃𝑖
(𝛼,𝛽)(𝜙) 

=
(
𝛼 + 𝛽
+2𝑖 − 1

) {𝛼2 − 𝛽2 + 𝜙 (
𝛼 + 𝛽
+2𝑖

) (
𝛼 + 𝛽
+2𝑖 − 2

)}

2𝑖(𝛼 + 𝛽 + 𝑖)(𝛼 + 𝛽 + 2𝑖 − 2)
𝑃𝑖−1
(𝛼,𝛽)

(𝜙) 

    −
(𝛼 + 𝑖 − 1)(𝛽 + 𝑖 − 1)(𝛼 + 𝛽 + 2𝑖)

𝑖(𝛼 + 𝛽 + 𝑖)(𝛼 + 𝛽 + 2𝑖 − 2)
𝑃𝑖−2
(𝛼,𝛽)

(𝜙) 

(17c) 

 

where 𝛼, 𝛽 > −1 and 𝑖 = 2, 3, … 

The displacement components of the shell segments can 

be written as 

𝑢 = ∑ 𝑈𝑚𝑃𝑚
(𝛼,𝛽)

(𝜙) 𝑐𝑜𝑠( 𝑛𝜃)𝑒𝑖𝜔𝑡
𝑀

𝑚=0

 (18a) 

 

𝑣 = ∑ 𝑉𝑚𝑃𝑚
(𝛼,𝛽)

(𝜙) 𝑠𝑖𝑛( 𝑛𝜃)𝑒𝑖𝜔𝑡
𝑀

𝑚=0

 (18b) 

 

𝑤 = ∑𝑊𝑚𝑃𝑚
(𝛼,𝛽)

(𝜙) 𝑐𝑜𝑠( 𝑛𝜃)𝑒𝑖𝜔𝑡
𝑀

𝑚=0

 (18c) 

 

𝜓𝑥 = ∑ 𝜓𝑥𝑚𝑃𝑚
(𝛼,𝛽)

(𝜙) 𝑐𝑜𝑠( 𝑛𝜃)𝑒𝑖𝜔𝑡
𝑀

𝑚=0

 (18d) 

 

𝜓𝜃 = ∑ 𝜓𝜃𝑚𝑃𝑚
(𝛼,𝛽)

(𝜙) 𝑐𝑜𝑠( 𝑛𝜃)𝑒𝑖𝜔𝑡
𝑀

𝑚=0

 (18e) 

 

where 𝑈𝑚 , 𝑉𝑚 , 𝑊𝑚 , 𝜓𝑥𝑚  and 𝜓𝜃𝑚  are unknown 

coefficients. 𝑃𝑚
(𝛼,𝛽)

(𝜙) is the Jacobi polynomials of degree 

m for the displacement in axial direction. 𝑡 is time. n and 

m represent the wave number in axial and circumferential 

directions, respectively. The highest degree of m is 

represented by M. The total Lagrangian energy functions L 

of FG circular cylindrical shell can be expressed in Eq. (19) 

 

𝐿 =∑(𝑇𝑖 − 𝑈𝑖)

𝐻

𝑖=1

− 𝑈𝐵𝐶 (19) 

 

The differentiation with respect to unknown coefficients 

about Eq. (19) is shown in Eq. (20) 

 
𝜕𝐿

𝜕𝜗
= 0      𝜗 = 𝑈𝑚,  𝑉𝑚,  𝑊𝑚, 𝜓𝑥𝑚, 𝜓𝜃𝑚 (20) 

 

By substituting Eqs. (8), (12), (16), (18) and Eq. (19) 

into Eq. (20), the form of Eq. (21) can be obtained 

 
(𝐾 − 𝜔2𝑀)𝐵 = 0 (21) 

 

where K, M and B respectively represent the stiffness 

matrix, mass matrix and vector of undetermined coefficient 

of the shell. The detailed description of Eq. (21) is given in 

Appendix A. 

 

 

3. Numerical results and discussion 
 

In this section, some numerical discussions are 

presented to verify the reliability and accuracy of proposed 

method in solving the vibration characteristics of uniform 

and stepped FG circular cylindrical shell structures. To 

simplify the study, the boundary conditions are represented 

by its first symbol. F, C, SD, SS and Ei (i = 1, 2, 3) 

represent the free, clamped, shear diaphragm, shear support 

and elastic restraint, respectively. The material parameters 

are chosen as: Em = 70 GPa, Ec = 168 GPa, ρm = 2707 

kg/m3, ρc = 5700 kg/m3, νm = νc = 0.3, M = 8, α = 0, β = −0.5, 
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Fig. 3 Frequency parameters Ω of FG cylindrical shell with different boundary parameters 
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Table 1 The spring stiffness values of the general boundary 

conditions 

BC ku,0, ku,1 kv,0, kv,1 kw,0, kw,1 kφ,0, kφ,1 kθ,0, kθ,1 

F 0 0 0 0 0 

SD 0 103Ec 103Ec 0 0 

SS 103Ec 103Ec 103Ec 0 103Ec 

C 103Ec 103Ec 103Ec 103Ec 103Ec 

E1 10−3Ec 103Ec 103Ec 103Ec 103Ec 

E2 103Ec 10−3Ec 103Ec 103Ec 103Ec 

E3 10−3Ec 10−3Ec 103Ec 103Ec 103Ec 
 

 

 

H = 5. The geometrical dimensions of uniform and stepped 

FG circular cylindrical shell structures are chosen as 

follows: R = 1 m, L = 2 m. For uniform FG circular 

cylindrical shell, the thickness is selected as h = 0.1 m, and 

for the stepped FG circular cylindrical shell structure, the 

thickness is chosen as: ℎ1 ∶  ℎ2 ∶  ℎ3 ∶  ℎ4 = 0.1 : 0.15 : 
0.2 : 0.25. In addition, the results of this paper will dealt 

with the non-dimensional formulation: 𝛺 = 𝜔𝑅√
𝜌𝑐

𝐸𝑐
. 

 

3.1 Convergence study 
 

Fig. 3 shows the frequency parameter Ω of uniform 

FGMI(a=1/b=0.5/c=2/p=0.6) cylindrical shell with various restraint 

 

 

parameters. For two kinds of springs, it can be seen clearly 

that the stiffness values in scope of 102E~1010E can 

guarantee the stable results. Thus, the general restraints of 

FG cylindrical shells can be obtained as Table 1 shown. 

Fig. 4 displays the percentage error on the frequency 

parameters of uniform FGMI(a=1/b=0.5/c=2/p=0.6) cylindrical 

shell with different Jacobi parameters α and β. The results 

of frequency parameters α = β = 0 are taken as the reference 

data. It can be see that different Jacobi parameter α and β 

have little change on the results of frequency parameters Ω, 

and the maximum percentage error does not exceed 2×10−6. 

In other words, it implies that all of the polynomials can be 

used in present method. It is one of the most important 

discoveries of this paper. 

Fig. 5 shows the frequency parameter Ω of uniform FG 

cylindrical shell with different truncation numbers. It is 

clearly see that stable convergence can be provided when 

the maximum degree M is no less than 5. To obtain more 

accurate results, the truncated number of the Jacobi 

polynomial is selected as M = 8 in this paper. 

Fig.  6  shows the frequency parameter  Ω  of 

FGMI(a=1/b=0.5/c=2/p=0.6) cylindrical shell about the value of H. 

From Fig. 6, we can see clearly that the results converge 

quickly with the value of H increasing. However, when the 

number of segments reaches a certain level, increasing the 

number of segments will reduces the efficiency of the 

solution, and the accuracy of the solution is not greatly 

improved. We can also see that the accuracy of proposed 
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Fig. 4 Percentage error of frequency parameters Ω for α and β in FG cylindrical shell (BC: C–C) 
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method can be guaranteed when H is higher than 2. 

 

3.2 Free vibration behaviors of uniform FG 
cylindrical shell structure 

 

Table 2 shows the accuracy of proposed method in 

solving free vibration characteristics of uniform FG 

cylindrical shell subject to classical boundary conditions, 

and all results are compared with those obtained by FEM. 

All the results obtained by FEM have converged to stable 

 

 

 

 

when the mesh size is chosen as 0.02 m. It should be noted 

that all finite element modeling in this paper is a special 

form of FG material. From Table 2, we can easily get that 

the proposed method has ability to investigate the vibration 

characteristics of uniform FG cylindrical shell subject to 

classical boundary conditions. 

Table 3 also shows the accuracy of proposed method in 

solving the free vibration characteristics of uniform FG 

cylindrical shell structure, and all the results are compared 

with those obtained by published literatures. We can easily 
 

  
 

 
 

Fig. 5 Frequency parameters Ω for different truncation in FG cylindrical shell (BC: C–C) 

  

Fig. 6 Frequency parameters Ω for number of segments H in FG cylindrical shell (BC: C–C) 
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get that the proposed method is very accurate in solving the 

vibration characteristics of FG cylindrical shell structure. 

Thus, from Tables 2−3, we can conclude that the proposed 

method has the ability to analyze the free vibration 

characteristics of FG cylindrical shell subjected to general 

boundary conditions. However, the boundary conditions of 

the structures are usually very complex in practical 

engineering applications. So the following content will be 

focused on the free vibration characteristics of FG 

 

 

 

 

 

cylindrical shell subject to complex boundary conditions. 

Table 4 shows the numerical results for free vibration 

characteristics of uniform FG cylindrical shell with various 

restraints and power-law exponent p. From Table 4, it can 

be seen clearly that the vibration characteristics are not only 

affected by the boundary restraints, but also the power-law 

index p. In addition, the frequency parameter values will be 

lower when the power-law exponent p increasing under the 

same boundary restraint, regardless of the FGMI and the 
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Fig. 6 Continued 

Table 2 Comparison of frequency parameter 𝛺 = 𝜔𝑅√
𝜌𝑐

𝐸𝑐
 for uniform FGMI(a/b/c/p=0) circular cylindrical shell 

n m 
C–C C–F SD–SD 

Present FEM Present FEM Present FEM 

1 

1 0.6336 0.6338 0.2935 0.2936 0.6035 0.6036 

2 0.9924 0.9922 0.7555 0.7555 0.9335 0.9333 

3 1.2742 1.2747 0.9443 0.9451 1.1541 1.1541 

2 

1 0.4547 0.4539 0.1768 0.1753 0.3721 0.3707 

2 0.8513 0.8501 0.5370 0.5344 0.7752 0.7737 

3 1.2374 1.2369 0.9288 0.9267 1.1059 1.1048 

3 

1 0.4360 0.4344 0.2545 0.2529 0.3536 0.3510 

2 0.8047 0.8021 0.4990 0.4943 0.7095 0.7063 

3 1.2384 1.2365 0.8924 0.8882 1.0996 1.0970 
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FGMII. 

Tables 5-6 respectively represent the numerical results 

for vibration characteristics of uniform FG cylindrical shell 

with classical, elastic and classical–elastic restraints. 

Various thicknesses of the structure are also considered. 

We can easily get that the thickness of FG cylindrical shell 

 

 

will mainly affect the results of frequency parameter, and 

the greater value of thickness is chosen, the higher requency 

will obtained. In addition, some mode shapes are 

demonstrated of FGMI cylindrical shell in Table 5 with 

different boundary restraints in Figs. 7-9. 

Table 3 Comparison of frequency (Hz) for uniform FGM circular cylindrical shell with classical restraints 

p BC Method 
n 

1 2 3 4 5 6 7 

FGMI (a=1/b=0.5/c=2/p) 

0.6 

C–C 

Present 543.68 390.51 375.21 483.25 674.80 921.28 1209.49 

Su (2014) 543.89 390.69 375.35 483.34 674.86 921.34 1209.54 

Qu (2013) 543.84 390.65 375.30 483.30 674.82 921.30 1209.50 

SD–SD 

Present 517.60 319.25 304.27 437.72 645.96 901.31 1194.60 

Su (2014) 517.86 319.47 304.46 437.89 646.13 901.49 1194.79 

Qu (2013) 517.81 319.41 304.35 437.76 645.99 901.34 1194.63 

SS–SS 

Present 528.06 363.68 346.81 461.35 658.79 909.20 1200.09 

Su (2014) 528.28 363.87 346.93 461.41 658.83 909.22 1200.10 

Qu (2013) 528.23 363.83 346.90 461.40 658.82 909.22 1200.10 

5 

C–C 

Present 526.62 380.10 369.16 479.19 670.54 915.44 1200.98 

Su (2014) 526.75 380.22 369.25 479.25 670.59 915.48 1201.03 

Qu (2013) 526.72 380.18 369.21 479.22 670.55 915.45 1200.99 

SD–SD 

Present 500.08 309.51 299.70 434.77 642.37 895.93 1186.47 

Su (2014) 500.27 309.70 299.88 434.94 642.54 896.10 1186.64 

Qu (2013) 500.21 309.62 299.76 434.80 642.40 895.95 1186.49 

SS–SS 

Present 512.22 357.05 345.27 460.67 656.81 904.95 1192.76 

Su (2014) 512.35 357.16 345.35 460.71 656.84 904.97 1192.77 

Qu (2013) 512.32 357.14 345.33 460.70 656.83 904.96 1192.76 

FGMII (a=1/b=0.5/c=2/p) 

0.6 

C–C 

Present 543.64 390.33 374.60 481.90 672.58 918.12 1,205.34 

Su (2014) 543.86 390.51 374.74 481.99 672.64 918.18 1,205.39 

Qu (2013) 543.81 390.47 374.69 481.94 672.60 918.14 1,205.36 

SD–SD 

Present 517.77 319.55 304.01 436.49 643.77 898.15 1,190.44 

Su (2014) 518.02 319.75 304.17 436.65 643.94 898.33 1,190.62 

Qu (2013) 517.98 319.72 304.09 436.53 643.80 898.18 1,190.46 

SS–SS 

Present 526.89 359.90 342.05 457.06 654.71 904.83 1,195.11 

Su (2014) 527.11 360.09 342.17 457.13 654.74 904.84 1,195.12 

Qu (2013) 527.06 360.05 342.14 457.11 654.73 904.84 1,195.11 

5 

C–C 

Present 526.46 379.37 366.99 474.54 662.99 904.73 1,186.97 

Su (2014) 526.59 379.49 367.08 474.60 663.04 904.78 1,187.02 

Qu (2013) 526.56 379.45 367.04 474.57 663.00 904.74 1,186.98 

SD–SD 

Present 500.63 310.40 298.67 430.55 634.95 885.23 1,172.40 

Su (2014) 500.80 310.51 298.78 430.67 635.09 885.39 1,172.57 

Qu (2013) 500.76 310.50 298.72 430.57 634.97 885.25 1,172.42 

SS–SS 

Present 508.50 345.10 330.32 447.06 643.58 890.53 1,176.20 

Su (2014) 508.63 345.20 330.38 447.09 643.60 890.54 1,176.20 

Qu (2013) 508.60 345.18 330.37 447.08 643.59 890.54 1,176.20 
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Table 4 Frequencies (Hz) of uniform FGM cylindrical shell with various restraints and power-law exponents p 

(h/R = 0.15, R = 1 m; m = 1) 

p 
Boundary conditions 

SD–SD C–C C–SD SS–SS C–SS SD–SS E1–E1 E2–E2 E3–E3 E1–E2 E1–E3 E2–E3 

FGMI (a=1/b=0.5/c=2/p) 

0 525.04 563.49 537.24 535.20 548.45 525.26 536.30 332.11 296.77 388.00 312.28 326.09 

0.5 521.70 560.30 534.00 532.76 545.67 522.06 533.14 330.49 295.30 385.96 310.74 324.49 

1 518.48 557.25 530.90 530.38 542.98 519.00 530.16 328.89 293.88 383.97 309.24 322.91 

2 512.83 551.94 525.49 526.02 538.18 513.67 524.99 326.10 291.41 380.51 306.61 320.16 

5 503.10 542.75 516.09 517.20 529.16 504.22 515.50 321.88 287.27 374.88 302.44 315.99 

10 498.15 537.49 510.97 510.99 523.38 498.96 509.90 319.68 284.96 371.82 300.18 313.83 

20 495.43 533.77 507.81 506.80 519.41 495.93 506.78 317.21 283.15 369.16 298.07 311.42 

50 493.47 530.59 505.34 503.74 516.31 493.78 504.78 314.38 281.46 366.48 295.84 308.66 

FGMII (a=1/b=0.5/c=2/p) 

0 525.04 563.49 537.24 535.20 548.45 525.26 536.30 332.11 296.77 388.00 312.28 326.09 

0.5 522.02 560.25 534.15 531.29 544.83 522.17 533.14 330.47 295.29 385.97 310.73 324.47 

1 519.07 557.16 531.18 527.71 541.45 519.22 530.16 328.84 293.87 383.99 309.21 322.88 

2 513.79 551.78 525.95 521.68 535.68 514.01 524.99 326.02 291.40 380.56 306.59 320.11 

5 504.33 542.51 516.68 511.71 525.97 504.64 515.50 321.78 287.28 374.98 302.42 315.95 

10 499.10 537.29 511.43 506.76 520.92 499.29 509.90 319.61 284.97 371.91 300.17 313.80 

20 496.00 533.64 508.08 504.27 517.94 496.13 506.78 317.17 283.16 369.22 298.07 311.40 

50 493.71 530.53 505.46 502.63 515.66 493.86 504.78 314.36 281.47 366.50 295.84 308.66 
 

Table 5 Frequencies (Hz) for uniform FGM cylindrical shell with classical and elastic boundaries (m = 1) 

n h/R 
Boundary conditions 

SD–SD C–C C–SD SS–SS C–SS SD–SS E1–E1 E2–E2 E3–E3 E1–E2 E1–E3 E2–E3 

FGMI (a=1/b=0.5/c=2/p) 

1 

0.05 498.30 514.20 501.31 508.77 511.44 498.75 503.91 244.81 241.33 319.16 241.72 241.34 

0.1 500.08 526.62 507.67 512.22 519.16 500.83 515.41 290.14 271.42 350.67 278.90 285.21 

0.15 503.10 542.75 516.09 517.20 529.16 504.22 515.50 321.88 287.27 374.88 302.44 315.99 

2 

0.05 291.00 344.89 315.51 335.79 340.25 310.94 303.00 268.39 249.23 269.93 267.82 256.35 

0.1 309.51 380.10 341.85 357.05 368.01 330.67 340.31 324.71 304.04 321.38 317.68 311.84 

0.15 336.48 424.96 376.77 387.00 404.66 358.93 387.00 378.45 358.14 373.27 369.27 365.71 

3 

0.05 210.49 273.12 241.35 262.39 267.57 236.42 228.41 254.74 223.18 240.71 225.56 238.77 

0.1 299.70 369.16 332.42 345.27 356.44 322.00 335.41 358.67 333.48 346.38 334.39 345.69 

0.15 398.83 476.29 434.32 442.33 457.99 419.85 447.79 468.33 446.69 457.41 447.21 457.05 

FGMII (a=1/b=0.5/c=2/p) 

1 

0.05 498.43 514.12 501.36 506.84 510.40 498.75 503.90 244.79 241.33 319.20 241.72 241.33 

0.1 500.63 526.46 507.91 508.50 517.06 500.98 515.39 290.09 271.42 350.74 278.89 285.19 

0.15 504.33 542.51 516.68 511.71 525.97 504.64 515.50 321.78 287.28 374.98 302.42 315.95 

2 

0.05 291.21 344.65 315.49 329.37 336.85 308.18 302.82 268.17 249.04 269.74 267.63 256.14 

0.1 310.40 379.37 341.94 345.10 361.42 325.72 339.70 323.97 303.38 320.72 317.04 311.16 

0.15 338.09 423.43 376.87 370.07 394.97 352.09 385.66 376.88 356.70 371.84 367.87 364.23 

3 

0.05 210.43 272.62 241.09 253.40 262.65 232.00 227.90 254.22 222.67 240.20 225.06 238.26 

0.1 298.67 366.99 330.95 330.32 347.36 314.28 333.23 356.46 331.28 344.19 332.19 343.49 

0.15 395.74 471.49 430.63 422.46 444.90 408.80 443.03 463.47 441.90 452.61 442.44 452.24 
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Table 6 Frequencies (Hz) for uniform FGM cylindrical shell with classical-elastic restraints (m=1) 

n h/R 
Boundary conditions 

C–E1 C–E2 C–E3 SD–E1 SD–E2 SD–E3 SS–E1 SS–E2 SS–E3 F–E1 F–E2 F–E3 

FGMI (a=1/b=0.5/c=2/p) 

1 

0.05 504.10 358.05 352.52 501.07 317.69 240.42 501.48 356.70 351.26 20.92 156.10 18.66 

0.1 515.41 390.12 387.14 507.48 346.60 276.28 508.09 386.33 383.60 30.14 177.37 25.92 

0.15 530.26 415.53 413.54 514.49 367.15 298.15 516.85 408.20 406.63 38.74 190.27 33.29 

2 

0.05 321.55 299.84 294.75 296.90 265.31 262.99 316.79 296.65 291.24 45.71 122.91 43.66 

0.1 357.73 348.79 341.25 324.31 308.16 303.89 345.38 339.30 330.92 86.82 145.97 84.56 

0.15 403.40 399.15 390.95 360.24 350.06 345.23 382.76 382.08 372.66 126.44 173.91 124.23 

3 

0.05 250.71 263.11 247.95 219.22 232.20 216.77 245.37 258.30 242.96 105.93 124.42 105.20 

0.1 351.97 363.64 351.05 316.44 327.84 315.77 339.71 351.78 339.08 207.59 218.07 206.97 

0.15 461.65 472.15 461.17 421.26 431.08 420.96 443.91 454.66 443.66 304.08 311.92 303.53 

FGMII (a=1/b=0.5/c=2/p) 

1 

0.05 504.09 358.03 352.48 501.13 317.75 240.42 501.43 354.96 348.90 20.92 156.09 18.67 

0.1 515.39 390.07 387.06 507.76 346.77 276.27 508.02 383.02 379.46 30.15 177.35 25.94 

0.15 530.25 415.44 413.40 514.58 367.52 298.13 516.83 403.21 400.60 38.77 190.23 33.32 

2 

0.05 321.34 299.60 294.54 296.93 265.23 262.93 313.80 293.32 288.03 45.50 122.77 43.45 

0.1 357.08 348.06 340.57 324.51 308.05 303.87 339.59 332.65 324.70 85.99 145.35 83.72 

0.15 401.99 397.60 389.48 360.57 349.84 345.18 374.26 372.16 363.52 124.62 172.39 122.40 

3 

0.05 250.21 262.60 247.44 218.95 231.90 216.49 240.56 253.63 238.24 105.25 123.82 104.52 

0.1 349.80 361.45 348.87 314.94 326.29 314.24 330.85 342.86 330.26 205.00 215.56 204.38 

0.15 456.88 467.32 456.39 417.56 427.29 417.23 431.17 441.68 430.92 298.62 306.51 298.07 
 

   

(a) n = 1; m = 1 (b) n = 1; m = 2 (c) n = 1; m = 3 

   

(d) n = 2; m = 1 (e) n = 2; m = 2 (f) n = 2; m = 3 

   

(g) n = 3; m = 1 (h) n = 3; m = 2 (i) n = 3; m = 3 

Fig. 7 Mode shapes of uniform FG circular cylindrical shell (BC: C–C) 
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(a) n = 1; m = 1 (b) n = 1; m = 2 (c) n = 1; m = 3 

   

(d) n = 2; m = 1 (e) n = 2; m = 2 (f) n = 2; m = 3 

   

(g) n = 3; m = 1 (h) n = 3; m = 2 (i) n = 3; m = 3 

Fig. 8 Mode shapes of uniform FG circular cylindrical shell (BC: C–F) 

   
(a) n = 1; m = 1 (b) n = 1; m = 2 (c) n = 1; m = 3 

   
(d) n = 2; m = 1 (e) n = 2; m = 2 (f) n = 2; m = 3 

   
(g) n = 3; m = 1 (h) n = 3; m = 2 (i) n = 3; m = 3 

Fig. 9 Mode shapes of uniform FG circular cylindrical shell (BC: SD–SD) 
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Fig. 10 shows the frequency parameter Ω of 

FGMI(a=1/b=0.5/c=2/p=5) cylindrical shell with various scale 

ratios. We can see that the results are mainly affected by the 

geometric dimensions L and R, and the value of L and R is 

obviously different when the ratio of L/R is chosen as the 

different value. 

 

 

 

 

 

 

 

3.3 Free vibration behaviors of stepped FG 
cylindrical shell structure 

 

Table 7 shows the accuracy of presented method in 

solving free vibration characteristics of stepped FG 

cylindrical shell subject to classical boundary conditions, 

and all the results are compared with those obtained by 

FEM. The geometrical and material parameters of FEM are 

  

  

Fig. 10 Frequency parameters Ω for different dimensions in uniform FG circular cylindrical shell (BC: C–C) 

Table 7 Comparison of frequency parameter 𝛺 = 𝜔𝑅√
𝜌𝑐

𝐸𝑐
 for stepped FGMI(a/b/c/p=0) circular cylindrical shell 

n m 
C–C C–F SD–SD 

Present FEM Present FEM Present FEM 

1 

1 0.6521 0.6519 0.3776 0.3769 0.5075 0.5068 

2 1.1102 1.1097 0.8401 0.8390 0.6929 0.6960 

3 1.5221 1.5225 1.1435 1.1490 0.9972 1.0002 

2 

1 0.5202 0.5169 0.2515 0.2504 0.4008 0.3991 

2 1.0165 1.0141 0.6605 0.6571 0.8906 0.8862 

3 1.5572 1.5548 1.1085 1.1043 1.3667 1.3725 

3 

1 0.5934 0.5917 0.3401 0.3388 0.5065 0.5046 

2 1.0572 1.0534 0.6916 0.6904 0.9240 0.9194 

3 1.6361 1.6310 1.1555 1.1511 1.4518 1.4484 
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the same as Table 2 except the thickness distribution. From 

Table 7, we can get that the present method has ability to 

investigate the vibration characteristics of stepped FG 

cylindrical shell subject to classical boundary conditions. 

Table 8 shows the frequency parameters Ω of stepped 

FG cylindrical shell with different thickness distribution, 

and the results in Table 8 are contrasted with the single and 

isotropic two stepped cylindrical shell due to the lack of the 

reference data. We can see clearly that the results in Table 8 

closely agree with the published literature for dealing with 

the stepped cylindrical shell. And from Tables 7-8, we can 

conclude that proposed method also has the ability to study 

the vibration characteristics of stepped FG cylindrical shell 

structure. Tables 9-10 show the numerical results for free 

 

 

 

 

vibration characteristics of stepped FG cylindrical shell 

with classical, elastic and classical–elastic restraints, 

respectively. The phenomenon of the results is as same as 

Tables 5-6. 

 

 

4. Conclusions 
 

The paper presents a unified Jacobi–Ritz formulation to 

analyze the free vibration characteristics of uniform and 

stepped FG circular cylindrical shell structures subject to 

complex boundary conditions. The multi -segment 

partitioning strategy and first-order shear deformation 

theory were used to establish analytical model. The 

Table 8 Comparison of frequencies (Hz) for two stepped circular cylindrical shell 

(L/R = 10, R = 1 m, h1:h2 = 0.01:0.005, h1 = 0.01; m = 1) 

n 
SD–SD C–F C–SD C–C 

Present Tang (2017) Present Tang (2017) Present Tang (2017) Present Tang (2017) 

1 307.53 307.52 160.49 160.26 449.03 448.39 532.45 531.19 

2 112.87 112.82 59.22 59.09 174.36 174.03 225.75 224.95 

3 111.77 111.68 70.31 70.19 124.40 124.24 151.21 150.83 

4 158.55 158.44 118.57 118.40 158.56 158.45 183.75 183.39 

5 207.75 207.69 186.70 186.46 207.76 207.70 225.24 224.96 

6 282.80 282.80 272.15 271.84 282.80 282.80 291.64 291.52 

7 380.06 380.11 373.78 373.41 380.06 380.11 384.41 384.41 

8 495.73 495.86 491.25 490.83 495.73 495.86 498.02 498.11 
 

Table 9 Frequencies (Hz) of stepped FGM cylindrical shell with various boundaries and power-law exponents p 

(h/R = 0.1:0.15:0.2:0.25, R = 1 m; m = 1) 

p 
Boundary conditions 

SD–SD C–C C–SD SS–SS C–SS SD–SS E1–E1 E2–E2 E3–E3 E1–E2 E1–E3 

FGMI (a=1/b=0.5/c=2/p) 

0 438.50 563.93 484.94 528.58 535.78 528.22 457.51 348.03 251.28 419.66 376.05 

0.5 435.75 560.72 481.86 526.53 533.72 525.98 455.11 346.48 251.02 417.60 374.56 

1 433.12 557.64 478.93 524.47 531.62 523.72 452.82 344.95 250.70 415.59 373.11 

2 428.49 552.30 473.83 520.55 527.62 519.46 448.83 342.32 250.14 412.08 370.59 

5 420.33 543.19 465.04 512.09 519.21 510.73 441.83 338.52 249.61 406.45 366.47 

10 415.99 538.08 460.43 505.67 512.95 504.61 437.89 336.69 249.45 403.40 364.18 

20 413.61 534.34 457.77 501.12 508.34 500.41 435.37 334.46 248.59 400.56 362.20 

50 411.97 531.05 455.80 497.72 504.72 497.23 433.39 331.77 247.26 397.60 360.21 

FGMII (a=1/b=0.5/c=2/p) 

0 438.50 563.93 484.94 528.58 535.78 528.22 457.51 348.03 251.28 419.66 376.05 

0.5 435.89 560.74 482.21 524.30 531.51 524.08 455.14 346.61 250.94 417.54 374.51 

1 433.39 557.67 479.59 520.41 527.60 520.26 452.89 345.20 250.58 415.48 373.01 

2 428.97 552.33 474.95 513.97 521.10 513.84 448.99 342.72 249.96 411.92 370.42 

5 421.06 543.19 466.57 503.78 510.98 503.63 442.14 339.03 249.44 406.27 366.23 

10 416.60 538.06 461.66 499.31 506.64 499.19 438.17 337.08 249.35 403.26 363.98 

20 413.99 534.33 458.52 497.31 504.56 497.16 435.55 334.69 248.53 400.48 362.08 

50 412.14 531.05 456.13 496.04 503.06 495.81 433.47 331.87 247.24 397.57 360.15 
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displacement functions are handled by the Jacobi 

polynomials along the axial direction and Fourier series 

along the circumferential direction. Based on the penalty 

method and Rayleigh–Ritz method, the free vibration 

characteristics of FG cylindrical shells are analyzed. The 

most important discovery of this paper is the unified Jacobi 

polynomials, which makes the permissible functions very 

easy to select in contrast with other approaches. In addition, 

to test the convergence, the effect of boundary penalty 

parameters, number of shell segments, Jacobi parameters 

and the maximum degree of the permissible displacement 

functions on free vibration characteristics of FG cylindrical 

shell are examined. The stability and accuracy of presented 

approach have been verified by comparing with the results 

of FEM and published literatures. The results of this paper 

may be used as the reference data in future for related 

researches. 
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Appendix A 
 

The generalized mass and stiffness matrix of FG circular 

cylindrical shells used in Eq. (21) are given as 

 

𝑀 = 𝑑𝑖𝑎𝑔[𝑀1, 𝑀2,⋅⋅⋅, 𝑀𝐻] (A1) 

 

𝑀𝑖 = ∫ ∫

[
 
 
 
 
𝑀𝑢𝑢 0 0 𝑀𝑢𝑥 0
0 𝑀𝑣𝑣 0 0 𝑀𝑣𝜃

0 0 𝑀𝑤𝑤 0 0
𝑀𝑢𝑥 0 0 𝑀𝑥𝑥 0
0 𝑀𝑣𝜃 0 0 𝑀𝜃𝜃]

 
 
 
 

2𝜋

0

𝑥𝑖+1

𝑥𝑖

𝐴𝐵𝑑𝑥𝑑𝜃 (A2) 

 

𝑀𝑢𝑢 = 𝐼0𝑈
𝑇𝑈, 𝑀𝑣𝑣 = 𝐼0𝑉

𝑇𝑉, 𝑀𝑤𝑤 
         = 𝐼0𝑊

𝑇𝑊, 𝑀𝑥𝑥 = 𝐼2𝛷
𝑇𝛷 

(A3) 

 

𝑀𝜃𝜃 = 𝐼2𝛩
𝑇𝛩,𝑀𝑢𝑥 = 𝐼1𝑈

𝑇𝛷,𝑀𝑣𝜃 = 𝐼1𝑉
𝑇𝛩 (A4) 

 

𝑈 = 𝑃𝑚⊗𝐶𝑛,     𝑉 = 𝑃𝑚⊗𝑆𝑛, 
𝑊 = 𝑃𝑚⊗𝐶𝑛,     𝛷 = 𝑃𝑚⊗𝐶𝑛,     𝛩 = 𝑃𝑚⊗𝑆𝑛 

(A5) 

 

𝑃𝑚 = [𝑃0
(𝛼,𝛽)

(𝜙), 𝑃1
(𝛼,𝛽)

(𝜙),⋅⋅⋅, 𝑃𝑚
(𝛼,𝛽)

(𝜙),⋅⋅⋅, 𝑃𝑀
(𝛼,𝛽)

(𝜙)] (A6) 

 

𝐶𝑛 = [𝑐𝑜𝑠( 0𝜃), 𝑐𝑜𝑠( 1𝜃),⋅⋅⋅ 𝑐𝑜𝑠( 𝑛𝜃),⋅⋅⋅, 𝑐𝑜𝑠(𝑁𝜃)] (A7) 

 

𝑆𝑛 = [𝑠𝑖𝑛( 0𝜃), 𝑠𝑖𝑛( 1𝜃),⋅⋅⋅ 𝑠𝑖𝑛( 𝑛𝜃),⋅⋅⋅, 𝑠𝑖𝑛(𝑁𝜃)] (A8) 

 

𝐾 = 𝐾𝜉 + 𝐾𝑏 + 𝐾𝑠 (A9) 

 

𝐾𝜉 = 𝑑𝑖𝑎𝑔[𝐾
1, 𝐾2,⋅⋅⋅, 𝐾𝐻] (A10) 

 

𝐾𝑖 = ∫ ∫

[
 
 
 
 
 
𝐾𝑢𝑢 𝐾𝑢𝑣 𝐾𝑢𝑤 𝐾𝑢𝑥 𝐾𝑢𝜃
𝐾𝑢𝑣
𝑇 𝐾𝑣𝑣 𝐾𝑣𝑤 𝐾𝑣𝑥 𝐾𝑣𝜃

𝐾𝑢𝑤
𝑇 𝐾𝑣𝑤

𝑇 𝐾𝑤𝑤 𝐾𝑤𝑥 𝐾𝑤𝜃
𝐾𝑢𝑥
𝑇 𝐾𝑣𝑥

𝑇 𝐾𝑤𝑥
𝑇 𝐾𝑥𝑥 𝐾𝑥𝜃

𝐾𝑢𝜃
𝑇 𝐾𝑣𝜃

𝑇 𝐾𝑤𝜃
𝑇 𝐾𝑥𝜃

𝑇 𝐾𝜃𝜃 ]
 
 
 
 
 

2𝜋

0

𝑥𝑖+1

𝑥𝑖

𝐴𝐵𝑑𝑥𝑑𝜃 (A11) 

 

𝐾𝑏 = 𝑑𝑖𝑎𝑔[𝐾𝑏𝑙 , 0,⋯ , 𝐾𝑏𝑟] (A12) 

 

𝐾𝑏𝑙 = ∫ 𝑑𝑖𝑎𝑔[𝐾𝑏𝑙,𝑢𝑢, 𝐾𝑏𝑙,𝑣𝑣, 𝐾𝑏𝑙,𝑤𝑤, 𝐾𝑏𝑙,𝑥𝑥 , 𝐾𝑏𝑙,𝜃𝜃]
2𝜋

0 𝑥=𝑥0

𝐵𝑑𝜃 (A13) 

 

𝐾𝑏𝑟 = ∫ 𝑑𝑖𝑎𝑔[𝐾𝑏𝑟,𝑢𝑢, 𝐾𝑏𝑟,𝑣𝑣, 𝐾𝑏𝑟,𝑤𝑤 , 𝐾𝑏𝑟,𝑥𝑥 , 𝐾𝑏𝑟,𝜃𝜃]
2𝜋

0 𝑥=𝑥1

𝐵𝑑𝜃 (A14) 

 

𝐾𝑠 = 𝑑𝑖𝑎𝑔[𝐾𝑠
1, 𝐾𝑠

2,⋅⋅⋅, 𝐾𝑠
𝐻] (A15) 

 

𝐾𝑠
𝑖 = ∫ [

𝐾𝑠0 𝐾𝑠1
𝐾𝑠1
𝑇 𝐾𝑠2

]
2𝜋

0

𝐵𝑑𝜃 (A16) 
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