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1. Introduction 

 

In many engineering applications such as civil, 

mechanical, structural, aerospace, and automotive, it is 

expected that the structural components are to be safety, 

functional, long lasting, aesthetic, and economical. The use 

of nonuniform, laminated, sandwiched, nonhomogeneous 

and reinforced elements with composite and alloy materials 

may be efficacious to maintain the desired characteristics as 

lighter, durable, cheaper, and more efficient. 

A most recent example on the use of composite 

materials in aviation is Boeing 787 Dreamliner. Boeing 787 

Dreamliner represents a new generation of carbon 

composite airliners. The chief breakthrough material 

technology on this airplane is the increased use of 

composites. The 787 is 50 percent composite by weight. A 

majority of the primary structure is made of composite 

materials, most notably the fuselage. Composite materials 

in aircrafts have many advantages. They allow a lighter, 

simpler structure, and more economical which increases 

airplane efficiency, reduces fuel consumption and reduces 

weight-based maintenance and fees. They do not fatigue or 

corrode, which reduces scheduled maintenance and 

increases productive time. Composites resist impacts better 

and are designed for easy visual inspection (Boeing 2019). 

There are various types of composites. As one of them, 

the conventional layered composites consist of individual 

layers with different material properties. As a disadvantage 
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of them, delamination may occur due to undesired high 

stresses between two adjacent layers. As a relatively new 

kind of composites, called as functionally graded materials 

(FGMs), which consist of at least two materials with 

different properties that the properties are changed 

gradually and continuously throughout one or more 

directions. The concept of FGMs was firstly introduced by 

Japanese scientists during a spacecraft project as a thermal 

barrier material for propulsion and airframe structural 

systems of the spacecraft in 1984. 

As stated before, the material properties of FGMs vary 

gradually along the length and thickness or both of them. 

Consequently, structural elements made of FGMs are 

widely used in space transportation, nuclear reactors, 

defense industries, biomedical, enhanced sports equipment, 

and chemical plants. For this reason, it is crucial to 

determine the mechanical behaviors of structures made of 

FGMs. Consequently, many theoretical studies have been 

performed on this topic (Li et al. 2006, Aydogdu 2008, 

Sahraee and Saidi 2009, Anandrao et al. 2010, Kiani and 

Eslami 2010, Atmane et al. 2011, Hamzehkolaei et al. 2011, 

Wattanasakulpong et al. 2011, Kocaturk and Akbas 2013, 

Saidi et al. 2013, Atmane et al. 2015, Bennai et al. 2015, 

Hamidi et al. 2015, Nguyen et al. 2015, Tagrara et al. 2015, 

Mahmoud and Tounsi 2017, Avcar 2019). 

Due to rapid developments in technology, the small-

sized structures, in which the characteristics dimensions of 

them are on the order of microns and sub-microns, have 

been extensively used in nano-and micro-electro 

mechanical systems (NEMS and MEMS) (Younis et al. 

2003, Li et al. 2004, He et al. 2009). Microbeam or 

microcolumn is one of the essential structures frequently 

used in MEMS/NEMS such as atomic force microscopes 
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(Lee and Chang 2009, Payam and Fathipour 2009), micro-

resonators (He et al. 2009), micro-switches (Gusso et al. 

2019), micro-actuators (Ak et al. 2017). Size influence on 

the mechanical deformation behaviors of such structures 

has been experimentally proved (Lam and Chong 2001, 

Lam et al. 2003, Lei et al. 2016, Li et al. 2018). 

It is considerable that continuum mechanics approaches 

may be an efficient way to predict the mechanical responses 

of micro-and nano-sized structures instead of expensive and 

laborious experiments and time consuming and limited 

atomistic modeling as molecular dynamic simulation. 

However, the continuum models elaborated by classical 

(macro) elasticity theory fail to take into account this size 

effect on the mechanical characteristics of such structures 

due to the lack of any additional material length scale 

parameters. After that, various non-classical continuum 

theories have been developed like couple stress theory 

(Mindlin and Tiersten 1962, Koiter 1964, Toupin 1964), 

micro polar theory (Eringen 1967), nonlocal elasticity 

theory (Eringen 1972, 1983), strain gradient theories (Fleck 

and Hutchinson 1993, 2001, Vardoulakis and Sulem 1995, 

Aifantis 1999), and nonlocal strain gradient theory (Lim et 

al. 2015). 

Modified couple stress theory (MCST) is a popular 

higher-order continuum theory which is evolved by Yang et 

al. (2002). This theory can be defined as a special case of 

modified strain gradient theory (MSGT). This simpler and 

useful theory contains only one length scale parameter. 

MCST has been widely used to investigate static and 

dynamic responses of microbeams (Park and Gao 2006, Ma 

et al. 2008, 2010, Akgöz and Civalek 2011, Nateghi et al. 

2012, Salamat-Talab et al. 2012, Simsek and Reddy 2013, 

Al-Basyouni et al. 2015, Jahangiri et al. 2015, Khorshidi et 

al. 2016, Park et al. 2016, Ehyaei and Akbarizadeh 2017, 

Amar et al. 2018, Hadi et al. 2018, Jia et al. 2018, Khaniki 

and Rajasekaran 2018, Rahmani et al. 2018b, Ebrahimi and 

Mahmoodi 2019, Thanh et al. 2019). On the other hand, 

nonlocal and strain gradient theories have also been utilized 

to model the small-sized structures (Simsek 2011, Nguyen 

et al. 2014, Belkorissat et al. 2015, She et al. 2017, 2018, 

Arefi 2018, Houari et al. 2018, Karami et al. 2018, 

Nazemnezhad and Kamali 2018, Rahmani et al. 2018a, 

Shafiei and She 2018). 

As stated before, size-dependent continuum modeling of 

such structures has attracted much interest from researchers 

over the last two decades. However, most of these 

researches are related to the investigation mechanical 

characteristics of micro-/nano-sized homogeneous and 

prismatic structures with constant cross-section. Researches 

on the static and dynamic responses of axially functionally 

graded (AFG) tapered small-sized structures have relatively 

been limited (Simsek 2012, Akgöz and Civalek 2013a, b, 

Marques et al. 2014, Shafiei et al. 2016a, b, c, 2019, 

Ghayesh et al. 2017, Shafiei and Kazemi 2017, Shafiei et 

al. 2017, Ghayesh 2018a, b, c, d, 2019, Ghayesh and 

Farokhi 2018a, b, Nguyen and Tran 2018, Rezaiee-Pajand 

et al. 2018). 

The aim of the present study is to perform the size-

dependent stability analysis of AFG tapered micro columns 

based on modified couple stress and Euler-Bernoulli beam 

theories. It is assumed that the micro column is made of 

axially functionally graded materials and the material 

properties and the cross section of it change continuously 

and smoothly throughout the longitudinal direction. 

Rayleigh-Ritz method is utilized to obtain the critical 

buckling loads for different boundary conditions. A detailed 

parametric study is performed to peruse the influences of 

various parameters like taper ratio, variation type, length 

scale parameter-to-thickness ratio, boundary conditions, 

material property variation on the critical buckling loads of 

AFG tapered micro columns. 

 

 

2. Formulation 
 

The strain energy 𝑈  in a linear elastic isotropic 

material based on the modified couple stress theory can be 

written by (Yang et al. 2002, Park and Gao 2006) 
 

𝑈 =
1

2
∫ ∫ (𝜎𝑖𝑗𝜀𝑖𝑗 + 𝑚𝑖𝑗

𝑠 𝜒𝑖𝑗
𝑠 )

A

𝑑𝐴 𝑑𝑥
𝐿

0

 (1) 

 

𝜀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) (2) 

 

𝜒𝑖𝑗
𝑠 =

1

2
(𝜃𝑖,𝑗 + 𝜃𝑗,𝑖) (3) 

 

𝜃𝑖 =
1

2
𝑒𝑖𝑗𝑘𝑢𝑘,𝑗 (4) 

 

where 𝑢𝑖, 𝜃𝑖, 𝜀𝑖𝑗, and 𝜒𝑖𝑗
𝑠  denote the components of the 

displacement vector u, the rotation vector θ, the strain 

tensor ε, and the symmetric rotation gradient tensor χs, 

respectively. Also, 𝑒𝑖𝑗𝑘 is the permutation symbol. 

On the other hand, the components of the classical stress 

tensor σ (conjugated with the strain tensor) and deviatoric 

part of couple stress tensor ms (conjugated with the rotation 

gradient tensor) can be expressed by (Yang et al. 2002, Ma 

et al. 2008) 
 

𝜎𝑖𝑗 = 𝜆𝜀𝑚𝑚𝛿𝑖𝑗 + 2𝐺𝜀𝑖𝑗 (5) 

 

𝑚𝑖𝑗
𝑠 = 2𝐺𝑙2𝜒𝑖𝑗

𝑠  (6) 

 

where 𝛿𝑖𝑗 is Kronecker delta and 𝑙 is material length scale 

parameter related to rotation gradients. Furthermore, 𝜆 and 

𝐺 are the Lamé constants defined as follows 
 

𝜆 =
𝐸𝑣

(1 + 𝑣)(1 − 2𝑣)
,      𝐺 =

𝐸

2(1 + 𝑣)
 (7) 

 

where 𝐸 and 𝑣 are the Young’s modulus and Poisson’s 

ratio, respectively. 

The axial and transverse displacements of any point of 

an initially straight column (see Fig. 1) based on Euler-

Bernoulli beam theory can be respectively described as 
 

𝑢1(𝑥, 𝑧) = −𝑧
d𝑤(𝑥)

d𝑥
,       𝑢3(𝑥, 𝑧) = 𝑤(𝑥) (8) 
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Substituting Eq. (8) into Eq. (2), we obtain the non-zero 

strain component as 
 

𝜀11 = −𝑧
𝑑2𝑤

𝑑𝑥2
 (9) 

 

and the non-zero components of rotation gradient are 

determined by substituting Eq. (9) into Eqs. (3)-(4) 
 

𝜒12
𝑠 = 𝜒21

𝑠 = −
1

2

𝑑2𝑤

𝑑𝑥2
 (10) 

 

The non-zero components of classical and deviatoric 

part of couple stress tensors can be achieved by 

implementing Eqs. (9)-(10) in Eqs. (5)-(6) as (by ignoring 

Poisson effect) 
 

𝜎11 = −𝐸𝑧
𝑑2𝑤

𝑑𝑥2
 (11) 

 

𝑚12
𝑠 = 𝑚21

𝑠 = −𝐺𝑙2
2

𝑑2𝑤

𝑑𝑥2
 (12) 

 

Substituting above equations into Eq. (1) with some 

mathematical manipulations yields an expression for the 

strain energy 𝑈 (Kong et al. 2009, Akgöz and Civalek 

2011) 
 

𝑈 =
1

2
∫ (𝐸𝐼 + 𝐺𝐴𝑙2) (

𝑑2𝑤

𝑑𝑥2
)

2

𝑑𝑥
𝐿

0

 (13) 

 

where 𝐼 and 𝐴 are the moment of inertia and cross section 

area of the microcolumn, respectively. 

 

 

3. Buckling problem of a nonhomogeneous and 
nonuniform micro column 
 

In the present study, it is assumed that the material and 

geometrical properties of micro column change 

continuously and smoothly along the longitudinal direction. 

Consequently, the strain energy 𝑈  in Eq. (13) can be 

rewritten for AFG tapered micro-columns shown in Fig. 1 

as following 

 

 

𝑈 =
1

2
∫ (𝐸(𝑥)𝐼(𝑥) + 𝐺(𝑥)𝐴(𝑥)𝑙2) (

𝑑2𝑤

𝑑𝑥2
)

2

𝑑𝑥
𝐿

0

 (14) 

 

in which 𝐸(𝑥) , 𝐼(𝑥) , 𝐺(𝑥) , and 𝐴(𝑥)  are the variable 

elasticity modulus, second moment of inertia, shear 

modulus, and cross-section area, respectively. They can be 

expressed by related to 𝑥 as follows 
 

𝐸(𝑥) = 𝐸0 (1 − 𝑓𝑒

𝑥

𝐿
) (15) 

 

𝐺(𝑥) = 𝐺0 (1 − 𝑔𝑒

𝑥

𝐿
) (16) 

 

𝐼(𝑥) = 𝐼0 (1 − 𝑏
𝑥

𝐿
)

𝑎

 (17) 

 

𝐴(𝑥) = 𝐴0 (1 − 𝑏
𝑥

𝐿
)

𝑎

 (18) 

 

 

4. Implementation of Rayleigh-Ritz Method 
 

The total potential energy of the axially functionally 

graded micro columns with variable cross section subjected 

to axial load can be expressed as 
 

Π = 𝑈 + 𝑉 (19) 
 

where 𝑈 is the strain energy of micro column given Eq. 

(14) and 𝑉 is the energy of axial pressure load can be 

defined as 
 

𝑉 = −
𝑃

2
∫ (

𝑑𝑤

𝑑𝑥
)

2

𝑑𝑥
𝐿

0

 (20) 

 

in which 𝑃 is the axial pressure load. Substituting Eqs. 

(14) and (20) in Eq. (19) yields the following relation as 

 

Π =
1

2
∫ (𝐸(𝑥)𝐼(𝑥) + 𝐺(𝑥)𝐴(𝑥)𝑙2) (

𝑑2𝑤

𝑑𝑥2
)

2

𝑑𝑥
𝐿

0

 

−
𝑃

2
∫ (

𝑑𝑤

𝑑𝑥
)

2

𝑑𝑥
𝐿

0

 

(21) 

 

 

 

(a) Linearly tapered (b) Parabolic or exponential tapered 

Fig. 1 Schematic representations of tapered one-dimensional structures 
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Table 1 Values of p and q for four different boundary 

conditions 

Boundary conditions p q 

Simply Supported-Simply Supported (S-S) 1 1 

Clamped-Free (C-F) 2 0 

Clamped-Clamped (C-C) 2 2 

Clamped-Simply Supported (C-S) 2 1 
 

 

 

According to Rayleigh-Ritz method, 𝑤(𝑥)  can be 

described in the polynomial form as 
 

𝑤(𝑥) = ∑ 𝑐𝑖𝜙𝑖(𝑥)

𝑁

𝑖=1

 (22) 

 

where 𝑐𝑖 are unknown constant coefficients and 𝜙𝑖(𝑥) is 

an admissible function that must be satisfy only the 

geometric boundary conditions and N is the number of 

polynomials. In the present study, 𝜙𝑖(𝑥)  is chosen as 

following (Pradhan and Chakraverty 2013) 

 

 

 

 

 

 

 

𝜙𝑖(𝑥) = 𝑥𝑝(𝐿 − 𝑥)𝑞𝑥𝑖−1 , 𝑝, 𝑞 = 0,1,2 
and   𝑖 = 1,2, … , 𝑁 

(23) 

 

Superscripts 𝑝  and 𝑞  are related with boundary 

conditions and the values of them for different boundary 

conditions are presented in Table 1 (Pradhan and 

Chakraverty 2013). 

The stationary points of total potential energy can be 

expressed by taking partial derivative of total potential 

energy in Eq. (21) with respect to the unknown constant 

coefficients as 
 

𝜕Π

𝜕𝑐𝑖
= 0,     𝑖 = 1,2, … , 𝑁 (24) 

 

 

5. Numerical results and discussion 
 

In order to demonstrate the validity and sensitivity of the 

present analysis, the non-dimensional critical buckling 

loads of homogeneous tapered columns obtained based on 

classical theory are compared with those of the previous 

 

 

 

 

 

 

Table 2 Comparison of dimensionless critical buckling loads for homogeneous columns with linear 

variation of flexural rigidity for 𝑎 = 1 

b 
C–F S–S C–S C–C 

Exact Present Exact Present Exact Present Exact Present 

0.1 2.393 2.3928 9.372 9.3716 19.17 19.1686 37.48 37.4765 

0.3 2.235 2.2351 8.343 8.3434 17.03 17.0353 33.27 33.2733 

0.5 2.062 2.0621 7.256 7.2556 14.74 14.7394 28.70 28.6970 

0.7 1.865 1.8653 6.069 6.0693 12.18 12.1772 23.48 23.4828 

0.9 1.621 1.6211 4.667 4.6667 9.029 9.0294 16.70 16.7001 
 

Table 3 Comparison of dimensionless critical buckling loads for homogeneous columns with 

quadratic variation of flexural rigidity for 𝑎 = 2 

b 
C–F S–S C–S C–C 

Exact Present Exact Present Exact Present Exact Present 

0.1 2.319 2.3191 8.893 8.8934 18.19 18.1893 35.56 35.5610 

0.3 2.012 2.0115 7.005 7.0048 14.29 14.2915 27.91 27.9067 

0.5 1.683 1.6830 5.198 5.1981 10.53 10.5273 20.48 20.4808 

0.7 1.318 1.3180 3.459 3.4588 6.869 6.8682 13.23 13.2287 

0.9 0.862 0.8616 1.710 1.7106 3.164 3.1647 5.864 5.8640 
 

Table 4 Comparison of dimensionless critical buckling loads for homogeneous columns with cubic 

variation of flexural rigidity for 𝑎 = 3 

b 
C–F S–S C–S C–C 

Exact Present Exact Present Exact Present Exact Present 

0.1 2.246 2.2464 8.436 8.4344 17.25 17.2517 33.73 33.7289 

0.3 1.798 1.7977 5.840 5.8404 11.92 11.9231 23.29 23.2913 

0.5 1.336 1.3364 3.628 3.6278 7.362 7.3622 14.35 14.3485 

0.7 0.853 0.8533 1.821 1.8208 3.634 3.6344 7.045 7.0449 

0.9 0.321 0.3215 0.467 0.4686 0.875 0.8790 1.670 1.6711 
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work for different values of 𝑎 as 1, 2, and 3 in Tables 2-4, 

respectively. It is clearly seen from the tables that there is an 

excellent agreement between the exact (Wang et al. 2005) 

and present results for all boundary conditions, taper ratios, 

and variation types of cross section. It is notable that the 

number of polynomials is chosen as ten (𝑁 = 10) in the 

present analysis. 

Tables 5-7 show the variation of non-dimensional 

classical and non-classical critical buckling loads for axially 

functionally graded micro columns with linear, quadratic, 

and cubic variation of flexural rigidity with respect to 

various taper ratios, respectively. It is found from the tables 

that an increase in taper ratio gives rise to a decrement in 

the critical buckling loads. It is also observed that the 

critical buckling loads obtained based on modified couple 

stress theory (MCST) are always greater than those 

predicted by classical theory (CT). The reason of 

differences between the dimensionless critical buckling 

loads based on CT and MCST can be explained as an 

increment in the bending rigidity of the structure due to size 

effect for non-classical model. In addition, it is seen from 

these tables that the critical buckling loads for 𝑎 = 1 are 

 

 

 

 

 

 

bigger than those for 𝑎 = 2 and 𝑎 = 3. This situation can 

be explained as the decrease in cross section as well as 

second moment of inertia for linear variation type is less 

than those of quadratic and cubic variation types. It should 

be indicated that the results of CT are calculated by letting 

𝑙 = 0 in the related formulations. 

 

 

 

Fig. 2 Influence of length scale parameter-to-thickness ratio 

on the dimensionless critical buckling loads of the 

micro column for 𝑓𝑒 = 𝑔𝑒 = 0.25, 𝑎 = 1, 𝑏 = 0.5 
 

Table 5 Dimensionless critical buckling loads for axially functionally graded micro columns with 

linear variation of flexural rigidity for 𝑎 = 1, 𝑓𝑒 = 𝑔𝑒 = 0.5, 𝑙 = 0.5ℎ0 

b 
C–F S–S C–S C–C 

CT MCST CT MCST CT MCST CT MCST 

0.1 1.9924 4.2913 6.8625 14.7809 13.9478 30.0413 27.1659 58.5113 

0.3 1.8449 3.9737 6.0525 13.0362 12.2982 26.4885 23.9588 51.6036 

0.5 1.6830 3.6249 5.1981 11.1958 10.5273 22.6742 20.4808 44.1126 

0.7 1.4980 3.2265 4.2692 9.1952 8.5567 18.4299 16.5405 35.6258 

0.9 1.2658 2.7263 3.1735 6.8353 6.1413 13.2274 11.4677 24.6996 
 

Table 6 Dimensionless critical buckling loads for axially functionally graded micro columns with 

quadratic variation of flexural rigidity for 𝑎 = 2, 𝑓𝑒 = 𝑔𝑒 = 0.5, 𝑙 = 0.5ℎ0 

b 
C–F S–S C–S C–C 

CT MCST CT MCST CT MCST CT MCST 

0.1 1.9238 4.1435 6.4868 13.9716 13.1924 28.4145 25.7056 55.3658 

0.3 1.6384 3.5289 5.0139 10.7993 10.2055 21.9810 19.9048 42.8718 

0.5 1.3364 2.8785 3.6278 7.8137 7.3622 15.8571 14.3485 30.9044 

0.7 1.0057 2.1661 2.3242 5.0060 4.6549 10.0259 9.0209 19.4296 

0.9 0.6034 1.2996 1.0664 2.2969 2.0127 4.3350 3.7846 8.1514 
 

Table 7 Dimensionless critical buckling loads for axially functionally graded micro columns with 

cubic variation of flexural rigidity for 𝑎 = 3, 𝑓𝑒 = 𝑔𝑒 = 0.5, 𝑙 = 0.5ℎ0 

b 
C–F S–S C–S C–C 

CT MCST CT MCST CT MCST CT MCST 

0.1 1.8563 3.9982 6.1280 13.1987 12.4723 26.8633 24.3133 52.3670 

0.3 1.4435 3.1091 4.1251 8.8848 8.4242 18.1445 16.4561 35.4440 

0.5 1.0290 2.2162 2.4674 5.3144 5.0477 10.8719 9.8696 21.2576 

0.7 0.6127 1.3197 1.1713 2.5228 2.3859 5.1388 4.6565 10.0293 

0.9 0.1987 0.4280 0.2723 0.5864 0.5343 1.1507 1.0225 2.2023 
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Fig. 3 Influence of length scale parameter-to-thickness ratio 

on the dimensionless critical buckling load of the 

micro column for 𝑓𝑒 = 𝑔𝑒 = 0.5, 𝑎 = 1, 𝑏 = 0.5 

 

 

 

Fig. 4 Influence of length scale parameter-to-thickness ratio 

on the dimensionless critical buckling loads of the 

micro column for 𝑓𝑒 = 𝑔𝑒 = 0.75, 𝑎 = 1, 𝑏 = 0.5 

 

 

 

Fig. 5 Influence of length scale parameter-to-thickness ratio 

on the dimensionless critical buckling load of the 

micro column for 𝑓𝑒 = 𝑔𝑒 = 0.25, 𝑎 = 2, 𝑏 = 0.5 
 

 

 

Effects of length scale parameter-to-thickness ratio 

(𝑙/ℎ0) on the dimensionless critical buckling loads of the 

axially functionally graded tapered micro column are 

respectively illustrated in Figs. 2-4 for 𝑓𝑒 = 𝑔𝑒 = 0.25, 0.5 

and 0.75 and 𝑎 = 1, 𝑏 = 0.5. It is notable that the results 

for 𝑙/ℎ0 = 0 represent the classical buckling loads and an 

increase in 𝑙/ℎ0 leads an increment in the critical buckling 

loads. Also, it is clearly seen from the figures that the 

dimensionless critical buckling loads of C-C are the biggest 

while those of C-F are the smallest. Moreover, it can be 

observed that the dimensionless critical buckling loads 

decrease by increasing 𝑓𝑒 and 𝑔𝑒. 

 

 

Fig. 6 Influence of length scale parameter-to-thickness ratio 

on the dimensionless critical buckling load of the 

micro column for 𝑓𝑒 = 𝑔𝑒 = 0.5, 𝑎 = 2, 𝑏 = 0.5 

 

 

 

Fig. 7 Influence of length scale parameter-to-thickness ratio 

on the dimensionless critical buckling load of the 

micro column for 𝑓𝑒 = 𝑔𝑒 = 0.75, 𝑎 = 2, 𝑏 = 0.5 

 

 

 

Fig. 8 Influence of length scale parameter-to-thickness ratio 

on the dimensionless critical buckling load of the 

micro column for 𝑓𝑒 = 𝑔𝑒 = 0.25, 𝑎 = 3, 𝑏 = 0.5 
 

 

 

 

Fig. 9 Influence of length scale parameter-to-thickness ratio 

on the dimensionless critical buckling load of the 

micro column for 𝑓𝑒 = 𝑔𝑒 = 0.5, 𝑎 = 3, 𝑏 = 0.5 
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Fig. 10 Influence of length scale parameter-to-thickness 

ratio on the dimensionless critical buckling load 

of the micro column for 𝑓𝑒 = 𝑔𝑒 = 0.75, 𝑎 =
3, 𝑏 = 0.5 

 

 

 

Figs. 5-7 and Figs. 8-10 depict the variation of 

dimensionless critical buckling loads of the axially 

functionally graded tapered micro column with respect to 

length scale parameter-to-thickness ratio with various 

values of 𝑓𝑒 and 𝑔𝑒 for quadratic (𝑎 = 2) and cubic (𝑎 =
3) variations. Similar interpretations with Figs. 2-4 can be 

made for Figs. 5-7 and Figs. 8-10. Additionally, it is 

observed from the figures that the non-dimensional critical 

buckling loads tend to decrease by increasing the value of 

𝑎.  

 

 

6. Conclusions 
 

In this paper, microstructure-dependent buckling 

behavior of nonuniform nonhomogeneous micro columns is 

examined. It is assumed that the micro column is made of 

axially functionally graded materials and the material 

properties and the cross section of it change continuously 

and smoothly throughout the longitudinal direction. Critical 

buckling loads are obtained by Rayleigh-Ritz method for 

four different boundary conditions. Effects of several 

parameters such as taper ratio, variation type, length scale 

parameter-to-thickness ratio, boundary conditions, material 

property variation on the critical buckling loads of axially 

functionally graded tapered micro columns are investigated 

in detail. Main observations from the numerical results can 

be outlined as following: 

 

● The present critical buckling loads agree very well 

with the previously published exact results in the 

literature. 

● An increase in the taper ratio gives rise to a decrease 

in the critical buckling loads. 

● The size-dependent critical buckling loads are 

always larger than the classical ones. 

● C–C and C–F boundary conditions have the biggest 

and lowest critical buckling loads, respectively. 

● The critical buckling loads decrease as the values of 

𝑎, 𝑓𝑒, and 𝑔𝑒 increase. 

● The benchmark results will be a useful reference for 

the related works in the future. 
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