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1. Introduction 
 

The theory of elasticity is concerned with the study of 

elastic properties of a material having the property that once 

the deformation forces are removed, the material recovers 

back its original shape and size. The deformations arising 

due to both mechanical and thermal causes were the reasons 

for the development of the subject of thermoelasticity. The 

nonlocal theory of thermoelasticity considers that the 

various physical quantities defined at a  point are not just a 

function of the values of independent constitutive variables 

at that point only but a function of their values over the 

whole body. So the nonlocal stress forces can be termed as 

remote action forces. The nonlocal theory can be termed as 

a generalization of the classical field theory in two  respects: 

(i) the energy balance law is valid for the whole body, and 

(ii) the state of the body at a material point is considered to 

be attracted by all points of the body. Nonlocal effects are 

dominant in nature. If the effects of strains at points other 

than the reference point are neglected, classical theory is 

recovered. 

In the theory of thermoelasticity with two temperatures, 

the heat conduction depends upon the variations on two 

distinct temperatures termed as the conductive temperature 

and the thermodynamic temperature. In case of t ime-

independent problems, the difference of these temperatures 

is proportionally equivalent to the heat supplied to the body 

but the conductive temperature and the thermodynamic 
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temperature are the same if the body is not supplied any 

heat. In case of time dependent situations, regardless of the 

heat supply, the two temperatures are generally different. 

The theory of nonlocal thermoelasticity was developed 

due to combined contribution of many researchers. Kroner 

(1967) developed a continuum theory for long range 

cohesive forces in elastic materials. He explained how the 

range effects can be important in materials having Vander 

Waals interactions as local theory gave a zero force. Edelen 

and Law (1971) discussed a theory of nonlocal interactions 

and agreed to the concept of nonlocality as suggested by 

Kroner. Edelen et al. (1971) discussed the consequences of 

global postulate of energy balance and obtained the 

constitutive equations for the nonlinear theory. They called 

this nonlinear theory of nonlocal elasticity as protoelasticity. 

The nonlocal elasticity theory was developed by Eringen 

and Edelen (1972) by making use of the global balance laws 

and the second law of thermodynamics. They proved that 

the stress field at a  particular point is affected due to the 

strain at all the other point of the body also. Wang and 

Dhaliwal (1993) established a reciprocity relation and 

addressed certain issues addressing nonlocal thermo-

elasticity. They extended the concept of nonlocality further 

to other fields. It was Artan (1996), who proved the 

superiority of the nonlocal theory by comparing the results 

of local and nonlocal elasticity theories to d ifferentiate 

between the stress distributions of the local and the nonlocal 

theories. Marin (1996) derived the generalized so lutions in 

elasticity and discussed their contributions on uniqueness in 

thermoelastodynamics. 

Polizzotto (2001) assumed an attenuation function and 

used it to further refine the Eringen model of nonlocal 

elasticity theory. The attenuation function assumed by him 

was supposed to be dependent on the geodetical distance 
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and not on the Eucledian distance between material 

particles. Eringen (2002) developed nonlocal continuum 

field theories for prevalent nonlocal intermolecular 

attractions in material bodies. He presented a unified 

approach to the development of the basic field equations for 

nonlocal continuum field theories. Sharma and Ganti (2003) 

described the size dependent elastic stress state of 

inclusions in nonlocal media. Paola et al. (2010) presented a 

mechanical based approach to three dimensional nonlocal 

elasticity theory and proved the high dependence of the 

results on the size. The model proposed by them yielded 

that the equilibrium is not attained just by contact forces at 

adjacent elements but also by long range forces due to non-

adjacent elements. Simsek (2011) conducted a detailed 

parametric study for studying the influences of the nonlocal 

parameter of an embedded single walled carbon nanotube. 

Khurana and Tomar (2013) studied the propagation of 

plane longitudinal waves through an isotropic nonlocal 

micropolar elastic medium and showed that four dispersive 

waves and two sets of coupled transverse waves may 

propagate. Belkorissat et al. (2015) presented a new 

nonlocal hyperbolic refined plate model for free vibration 

properties of functionally graded plates. Salehipour et al. 

(2015) gave a modified nonlocal elasticity theory stating 

that the strain tensor at all the neighbouring points 

contribute to the imaginary nonlocal strain tensor at a 

particular point. They used a nonlocal strain tensor for 

obtaining the nonlocal stress tensor. Th is assumed strain 

tensor was very similar to the strain tensor as used by 

Eringen in his nonlocal theory. Then, Vasiliev and Lurie 

(2016) developed a new nonlocal generalized theory. Using 

a variational approach, they developed a new variant of 

nonlocal elasticity theory for generalized stresses by 

introducing high gradient equilibrium equations. Marin and 

Nicaise (2016) derived existence and stability resu lts for 

thermoelastic dipolar bodies with double porosity. 

Khetir et al. (2017) proposed a new nonlocal 

trigonometric shear deformation theory. Khurana and Tomar 

(2017) studied the propagation of Rayleigh surface waves 

and explored the conditions for their existence. Bellifa et al. 

(2017) developed a nonlocal zeroth-order shear deformation 

theory. Singh et al. (2017) studied the propagation of plane 

harmonic waves and derived the governing relations in 

nonlocal elastic so lid with voids. Marin et al. (2017) 

discussed various results and problems for elastic dipolar 

bodies. Othman and Marin (2017) studied the effect of 

thermal loading due to laser pulse on thermoelastic porous 

medium under G-N theory. Kaur et al. (2018) derived 

dispersion relation and investigated the propagation of 

Rayleigh type surface wave in nonlocal elastic solid. 

Bachher and Sarkar (2018) postulated a new nonlocal 

theory of thermoelasticity, which is based on Eringen’s 

nonlocal elasticity theory for thermoelastic materials with 

voids. A material is needed to be classified by its fractional 

and elastic nonlocality parameter according to this theory. 

Arefi (2018) studied nonlocal free v ibration analysis of a 

doubly piezoelectric nanoshell. He employed nonlocal 

elasticity theory to derive govern ing equations. Karami et 

al. (2018) developed a three dimensional elasticity theory in 

conjunction with nonlocal strain gradient theory. Lata 

(2018a, b) studied the plane waves in a layered medium of 

two semi-infinite nonlocal solids with anisotropic 

thermoelasic medium. She also  depicted the nonlocal 

parameter effects graphically. Benahmed et al. (2019) 

presented an efficient higher order nonlocal beam theory for 

the crit ical buckling of functionally graded nanobeams with 

porosities. Soleimani et al. (2019) investigated the effects of 

inevitable out of plane defects on the postbuckling behavior 

of single layered graphene sheets under in-plane loadings 

based on nonlocal first order shear deformation theory. 

Chen and Gurtin (1968) developed a theory of heat 

conduction. They suggested that in case of bodies being 

deformable the said theory is dependent on two 

temperatures. Two dist inct temperatures are known as: the 

thermodynamic temperature and the conductive 

temperature. Chen et al. (1969) suggested tha t the heat 

supplied is direct ly proportional to the difference between 

the thermodynamic temperature and the conductive 

temperature. A generalized  two temperature theory was 

developed by Youssef (2005). He obtained the uniqueness 

theorem for equations of two temperature generalized 

thermoelasticity. Youssef and Al-Lehaibi (2007), after 

investigating various problems, gave an indication that the 

two temperature generalized thermoelasticity is more 

realistic in describing the state of an elastic body as 

compared to one temperature. Said and Othman (2016) 

applied a general model of equations of the two-temperature 

theory of generalized thermoelasticity to study the wave 

propagation in a fibre reinforced magneto-thermoelastic 

medium. Kumar et al. (2016a, b) studied the disturbances in 

a homogeneous transversely iosotropic thermoelastic 

rotating medium with two temperatures, in the presence of 

Hall currents and magnetic field due to thermomechanical 

sources. Sharma et al. (2015) carried the investigation 

regarding the two dimensional deformation in a transversely 

isotropic medium with two temperatures. The disturbances 

due to inclined load were studied along with graphical 

representations of the effects of two temperatures. 
 

 

2. Basic equations 

 

Following Youssef (2005) and Eringen (2002), the 

equations of motion and the constitutive relations in a 

homogeneous non local thermoelastic solid with two 

temperatures are given by 
 

(λ + 2𝜇)∇(∇. 𝒖) − 𝜇 (∇ × ∇ × 𝒖) − 𝛽∇𝜃  

= (1 − 𝜖2∇2)𝜌
𝜕2𝒖

𝜕𝑡2
, 

(1) 

 

𝐾∗∇2𝜑 =  𝜌 𝐶∗
𝜕𝜃

𝜕𝑡
+  𝛽𝜃0

𝜕

𝜕𝑡
(∇. 𝑢) , (2) 

 

where 
 

𝜃 = (1 − 𝑎∇2) 𝜑, (3) 

 

𝑡𝑖𝑗 = 𝜆𝑢𝑘,𝑘𝛿𝑖𝑗 + 𝜇(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) −  𝛽𝜃𝛿𝑖𝑗 . (4) 

 

where 𝜆, 𝜇 are material constants, 𝜖  is the nonlocal  
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parameter, 𝜌 is the mass density, 𝑢 = (𝑢1,0, 𝑢3)  is the 

displacement vector, 𝝋 is the conductive temperature, 𝑎 

is two temperature parameter, 𝜃 is absolute temperature 

and 𝜃0  is reference temperature, 𝐾∗ is the coefficient of 

the thermal conductivity, 𝐶 ∗ the specific heat at constant 

strain, 𝛽 = (3λ + 2μ)α , where α  is coefficient of liner 

thermal expansion, 𝑒𝑖𝑗  are components of strain tensor, 

𝑒𝑘𝑘 is the dilatation, 𝛿𝑖𝑗 is the Kronecker delta, 𝑡𝑖𝑗  are the 

components of stress tensor. 

 

 

3. Formulation of the problem 

 

We consider a homogeneous non local isotropic 

thermoelastic solid in  an initially undeformed state at 

temperature 𝜃0 . For two dimensional problem, we take 
 

𝒖 = (𝑢1,0, 𝑢3). (5) 
 

Using Eq. (5) in Eqs. (1)-(2), yields 

 

(𝜆 + 𝜇)
𝜕𝑒

𝜕𝑥1
+ 𝜇 ∇2𝑢1− 𝛽

𝜕𝜃

𝜕𝑥1
= (1 − 𝜖2∇2) 𝜌

𝜕2𝑢1

𝜕𝑡2
, (6) 

 

(𝜆 + 𝜇)
𝜕𝑒

𝜕𝑥3
+ 𝜇 ∇2𝑢3 − 𝛽

𝜕𝜃

𝜕𝑥3
= (1 − 𝜖2∇2) 𝜌

𝜕2𝑢3

𝜕𝑡2
, (7) 

 

𝐾∗∇2𝜑 =  𝜌 𝐶 ∗
𝜕𝜃

𝜕𝑡
+  𝛽𝜃0

𝜕𝑒

𝜕𝑡
. (8) 

 

where 

𝑒 =
𝜕𝑢1

𝜕𝑥1
+
𝜕𝑢3

𝜕𝑥3
,     ∇2=

𝜕2

𝜕𝑥1
2 +

𝜕2

𝜕𝑥3
2 . 

 

we define the following dimensionless quantities 
 

(𝑥1
′ ,𝑥3

′ ) =
𝜔1

𝑐2
(𝑥1,𝑥3),(𝑢1

′ ,𝑢3
′ ) =

𝜔1

𝑐2
(𝑢1,𝑢3), 

𝑡𝑖𝑗
′ =

𝑡𝑖𝑗

𝛽𝑇0
, 𝑡′ = 𝜔1𝑡, 𝑎

′ =
𝜔1
2

𝑐2
2 𝑎, K𝑛

′ =
𝑐2

𝜆𝜔1
𝐾𝑛 , 

𝐹1
′ =  

𝐹1

𝛽𝑇0
and𝐹2

′ =  
𝐹2

𝛽𝑇0
. 

(9) 

 

where 
 

𝑐2
2 =

𝜇

𝜌
     and     𝜔1 =  

𝜌 𝐶 ∗𝑐2
2

𝐾∗
 

 

Upon introducing the quantities defined by Eq. (9) in 

equations Eqs. (6)-(8), and suppressing the primes, yields 
 

(
𝜆 + 2𝜇

𝜇
)
𝜕2𝑢1

𝜕𝑥1
2
+ (

𝜆 + 𝜇

𝜇
)
𝜕2𝑢3

𝜕𝑥1𝜕𝑥3
+
𝜕2𝑢1

𝜕𝑥3
2
− 𝛽

𝜃0

𝜇

𝜕𝜃

𝜕𝑥1
 

= (1 − 𝜖2∇2)
𝜕2𝑢1

𝜕𝑡2
, 

(10) 

 

(
𝜆 + 2𝜇

𝜇
)
𝜕2𝑢3

𝜕𝑥3
2
+ (

𝜆 + 𝜇

𝜇
)
𝜕2𝑢1

𝜕𝑥1𝜕𝑥3
+
𝜕2𝑢3

𝜕𝑥1
2
− 𝛽

𝜃0

𝜇

𝜕𝜃

𝜕𝑥3
 

= (1 − 𝜖2∇2)
𝜕2𝑢3

𝜕𝑡2
, 

(11) 

Also 
 

𝐾∗∇2𝜑 =  𝜌 𝐶 ∗
𝜕𝜃

𝜕𝑡
+  𝛽𝜃0

𝜕𝑒

𝜕𝑡
. 

⇒ ∇2𝜑 −
𝜌 𝐶 ∗𝑐2

2

𝐾∗𝜔1

𝜕

𝜕𝑡
(1 − 𝑎∇2) 𝜑 

=  
𝛽𝑐2

2

𝐾∗𝜔1
2

𝜕

𝜕𝑡
(
𝜕u1

𝜕𝑥1
+
𝜕𝑢3

𝜕𝑥3
) 

(12) 

 

Introducing potential functions defined by 
 

𝑢1 =
𝜕q

𝜕𝑥1
−
𝜕ψ

𝜕𝑥3
,          𝑢3 =

𝜕q

𝜕𝑥3
+
𝜕ψ

𝜕𝑥1
. (13) 

 

Using Eq. (13) in Eqs. (10)-(12), where q(x1, x3 , t), 
and ψ(x1, x3 , t), are scalar potential functions, we obtain 

 

(
𝜆 + 2𝜇

𝜇
) (

𝜕3𝑞

𝜕𝑥1
3
+

𝜕3𝑞

𝜕𝑥1𝜕𝑥3
2
)−

𝜕3𝜓

𝜕𝑥3
3

 

−
𝜕3𝜓

𝜕𝑥1
2𝜕𝑥3

− 𝛽
𝜃0

𝜇
(1 − 𝑎∇2)

𝜕𝜑

𝜕𝑥1
 

= (1 − 𝜖2∇2)
𝜕2

𝜕𝑡2
(
𝜕q

𝜕𝑥1
−
𝜕ψ

𝜕𝑥3
), 

(14) 

 

(
𝜆 + 2𝜇

𝜇
) (

𝜕3𝑞

𝜕𝑥3
3
+

𝜕3𝑞

𝜕𝑥1
2𝜕𝑥3

)+
𝜕3𝜓

𝜕𝑥1
3

 

+
𝜕3𝜓

𝜕𝑥1𝜕𝑥3
2
− 𝛽

𝜃0

𝜇
(1 − 𝑎∇2)

𝜕𝜑

𝜕𝑥3
 

= (1 − 𝜖2∇2)
𝜕2

𝜕𝑡2
(
𝜕q

𝜕𝑥3
+
𝜕ψ

𝜕𝑥1
), 

(15) 

 

∇2𝜑 −
𝜌 𝐶 ∗𝑐2

2

𝐾∗𝜔1

𝜕

𝜕𝑡
(1 − 𝑎∇2) 𝜑  

= 
𝛽𝑐2

2

𝐾∗𝜔1
2

𝜕

𝜕𝑡
(
𝜕2𝑞

𝜕𝑥1
2
+
𝜕2𝑞

𝜕𝑥3
2
). 

(16) 

 

Laplace & Fourier Transforms are defined by 
 

𝑓̅(𝑥1,𝑥3, 𝑠) = ∫ 𝑓(𝑥1,𝑥3 , 𝑡)
∞

0

𝑒−𝑠𝑡𝑑𝑡, (17) 

 

𝑓(𝛏, 𝑥3 , 𝑠) = ∫ 𝑓(̅𝑥1 ,𝑥3,𝒔)
∞

−∞

𝒆𝑖ξ𝑥1𝒅𝑥1 . (18) 

 

Using Laplace and Fourier transforms defined by Eqs. 

(17)-(18), upon Eqs. (14)-(16), we obtain a system of 

equations 
 

[(𝑎1 +𝜖
2𝑠2)

𝑑2

𝑑𝑥3
2 − (𝑎1𝝃

2 + 𝑠2 + 𝜖2𝛏2)] 𝑞 

−𝑎2 [1 + 𝑎𝝃
2− 𝑎

𝑑2

𝑑𝑥3
2
]𝜑 = 0, 

(19) 

 

𝑎2 [1 + 𝑎𝝃
2 − 𝑎

𝑑2

𝑑𝑥3
2
]𝜑 = 0,  

[(1 + 𝜖2s2)
𝑑2

𝑑𝑥3
2 − (s

2+𝝃2+𝜖2s2𝝃2)] ψ̂ = 0. 

(20) 
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{𝑎4𝑠 (−𝝃
2 +

𝑑2

𝑑𝑥3
2
)} 𝑞 

− {(1 + 𝑎𝑎3𝑠)
𝑑2

𝑑𝑥3
2− (𝝃

2 + 𝑎3𝑠 + 𝑎𝑎3𝑠𝝃
2)} 𝜑̂ =  0. 

(21) 

 

From Eqs. (19) and (21), we y ield  a set of homogeneous 

equations which will have a nontrivial solution if 

determinant of coefficient 𝑞  and   𝜑̂ vanishes so as to give 

a characteristic equation as 

 

                    [P
𝑑4

𝑑𝑥3
4 +𝑄

𝑑2

𝑑𝑥3
2 + 𝑅] (𝑞, 𝜑) = 0. 

 

where 
 

P = −[𝑎1+ 𝑎𝑎1𝑎3𝑠 + 𝜖
2𝑠2 

+𝑎𝑎3𝜖
2𝑠3 + 𝑎𝑎2𝑎4𝑠], 

𝑄 = 2𝑎1𝝃
2 + 𝑎2𝑎4𝑠 + 2𝑎𝑎2𝑎4 𝑠𝝃

2 
+𝑎𝑎3𝑠𝜖

2𝛏2(1 + 𝑠2) + 2𝑎𝑎1𝑎3 𝑠𝝃
2 

+𝑎1𝑎3𝑠 + 𝑠
2+ 𝑎𝑎3𝑠

3 
+𝜖2𝛏2(1 + 𝑠2), 

𝑅 = − [(
𝑎1 + 𝑎𝑎3𝑠𝜖

2 + 𝜖2

+𝑎𝑎1𝑎3𝑠 + 𝑎𝑎2𝑎4𝑠
) 𝝃4 

+(
𝑎1𝑎3𝑠 + 𝑠

2 + 𝑎𝑎3𝑠
3

+𝑎3𝑠𝜖
2 + 𝑎2𝑎4 𝑠

) 𝝃2 

+𝑎3𝑠
3 . 

(22) 

 

From Eq. (20) 

 

[𝑃′
𝑑2

𝑑𝑥3
2 − 𝑄

′] ψ̂ = 0. 

 

where 
 

𝑃′ = (1 + 𝜖2s2), 
𝑄 ′ = (s2+𝝃2+𝜖2s2𝝃2). 

(23) 

 

The roots are ±𝜆 𝑖(𝑖 = 1,2) and ±𝜆 𝑖(𝑖 = 3)  making 

use of the radiation conditions that 𝑞, 𝜑 → 0 as 𝑥3→ ∞, 
the solutions of Eqs. (22)-(23) may be written as 

 

𝑞 = 𝐴1𝑒
−𝜆1𝑥3 + 𝐴2𝑒

−𝜆2𝑥3 , (24) 

 

𝜑̂ = 𝑑1𝐴1𝑒
−𝜆1𝑥3 + 𝑑2𝐴2𝑒

−𝜆2𝑥3 , (25) 

 

ψ̂ = 𝐴3𝑒
−𝜆3𝑥3 . (26) 

 

where 
 

𝑑𝑖 =
(1 + 𝑎𝑎3𝑠)𝜆 𝑖

2− (𝝃2 + 𝑎3𝑠 + 𝑎𝑎3𝑠𝝃
2)

(𝑎1 + 𝜖
2𝑠2)𝜆 𝑖

2− (𝑎1𝝃
2 + 𝑠2+ 𝜖2𝛏2)

, 

𝑖 = 1,2. 

(27) 

 

3.1 Boundary conditions 
 

We consider a normal line load 𝐹1  per unit length 

acting in the positive 𝑥3 axis on the plane boundary 𝑥3 =
0along the 𝑥2 axis and a tangential load 𝐹2 , per unit length, 

acting at the origin in the positive 𝑥1 axis. The boundary 

conditions are 

 

(1)   𝑡33 (𝑥1,𝑥3, 𝑡) = −𝐹1𝜓1(𝑥)𝐻(𝑡), 

(2)   𝑡31 (𝑥1,𝑥3, 𝑡) = −𝐹2𝜓2(𝑥)𝐻(𝑡), 

(3)    
𝜕

𝜕𝑥3
𝜑(𝑥1,𝑥3 , 𝑡) = 0. 

 

where, 𝐹1  and 𝐹2  are the magnitudes of the forces 

applied, 𝜓1(𝑥) and 𝜓2(𝑥)  specify the vertical and 

horizontal load distribution functions respectively along 𝑥3 
and 𝑥1 axis, H(t) is the Heaviside unit step function. 

Using the dimensionless quantities defined by Eq. (9) 

and substituting values of 𝑞, 𝜑  and  ψ̂ from Eqs. (24)-

(26), and solving, we obtain the components of displace-

ment, normal stress, tangential stress and conductive 

temperature as 

 

𝑞̂̅ =
𝐹1𝜓1̅̅̅̂̅ (𝜉)

sΔ
𝜇(𝜆1𝑑1− 𝜆2𝑑2)(𝜆3

2+ 𝝃2) 

+
𝐹2𝜓2̅̅̅̂̅ (𝜉)

sΔ
𝜄2𝜉𝜆3𝜇(𝜆1𝑑1−𝜆2𝑑2), 

(28) 

 

𝜑̂̅ =
𝐹1𝜓1̅̅̅̂̅ (𝜉)

sΔ
(𝜆1− 𝜆2)𝜇𝑑1𝑑2(𝜆3

2+ 𝝃2)  

+
𝐹2𝜓2̅̅̅̂̅ (𝜉)

sΔ
𝜄2𝜉𝜆3(𝜆1− 𝜆2)𝜇𝑑1𝑑2, 

(29) 

 

𝜓 =
𝐹1𝜓1̅̅̅̂̅ (𝜉)

sΔ
𝜄2𝜇𝜉𝜆1𝜆2 (𝑑1− 𝑑2) 

+
𝐹2𝜓2̅̅̅̂̅ (𝜉)

sΔ

[
 
 
 
 

𝜆𝝃2(𝜆2𝑑2− 𝜆1𝑑1)

+(𝜆 + 2𝜇)𝜆1𝜆2(𝜆2𝑑1− 𝜆1𝑑2)

+𝛽𝑎
𝜃0𝜔1

2

𝑐2
2
(𝜆2− 𝜆1)(𝝃

2+ 𝜆1𝜆2)𝑑1𝑑2]
 
 
 
 

. 

(30) 

 

where 
 

∆= (𝜆3
2+ 𝝃2) 

[
 
 
 
 
 

𝜆𝜇𝝃2(𝜆2𝑑2− 𝜆1𝑑1)

+𝜇(𝜆 + 2𝜇)𝜆1𝜆2(𝜆2𝑑1− 𝜆1𝑑2)

−𝛽𝜇𝑑1𝑑2(𝜆1− 𝜆2)

+𝛽𝑎𝜇
𝜃0𝜔1

2

𝑐2
2
𝑑1𝑑2(𝜆2− 𝜆1)(𝝃

2+ 𝜆1𝜆2)]
 
 
 
 
 

 

−4𝜇2𝝃2𝜆1𝜆2𝜆3(𝑑1− 𝑑2). 

(31) 

 

Using Laplace and Fourier transform as defined by Eqs. 

(17)-(18) in Eq. (13), then using Eqs. (28) and (30) and 

Using Eq. (29) in Eq. (3), yields 

 

𝑢1̅̅ ̅̂ =
𝐹1𝜓1̅̅̅̂̅ (𝜉)

sΔ
[
 𝜄𝜉𝜇(𝜆1𝑑1−𝜆2𝑑2)(𝜆3

2+ 𝝃2)

+2𝜆1𝜆2 (𝑑1−𝑑2)
] 

+
𝐹2𝜓2̅̅̅̂̅ (𝜉)

sΔ

[
 
 
 
 

𝝃2(𝜆 + 2𝜇𝜆3)(𝜆2𝑑2− 𝜆1𝑑1)

+(𝜆 + 2𝜇)𝜆1𝜆2(𝜆2𝑑1− 𝜆1𝑑2)

+𝛽𝑎
𝜃0𝜔1

2

𝑐2
2
(𝜆2− 𝜆1)(𝝃

2+ 𝜆1𝜆2)𝑑1𝑑2]
 
 
 
 

, 

(32) 

 

𝑢3̅̅ ̅̂ =
𝐹1𝜓1̅̅ ̅̂̅ (𝜉)

sΔ
𝜇𝜆1𝜆2(𝑑2 − 𝑑1)(𝜆3

2 +3𝝃2) 

 

(33) 
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+
𝐹2𝜓2̅̅ ̅̂̅ (𝜉)

sΔ

[
 
 
 
 
 

𝜄2𝜇𝜉𝜆1𝜆2𝜆3(𝑑2 − 𝑑1)

+𝜄𝜆𝝃3(𝜆2𝑑2 − 𝜆1𝑑1)

+𝜄𝜉(𝜆 +2𝜇)𝜆1𝜆2(𝜆2𝑑1− 𝜆1𝑑2)

+𝜄𝜉𝛽𝑎
𝜃0𝜔1

2

𝑐2
2 (𝜆2 −𝜆1)(𝝃

2 + 𝜆1𝜆2)𝑑1𝑑2]
 
 
 
 
 

, (33) 

 

𝜃̂̅ =
𝐹1𝜓1̅̅ ̅̂̅ (𝜉)

sΔ
(𝜆3

2 + 𝝃2) 

[

(1 +𝑎𝝃2)𝑑1𝑑2 − 𝑎𝜆1𝜆2(𝜆2𝑑1 −𝜆1𝑑2)]

+
𝐹2𝜓2̅̅ ̅̂̅ (𝜉)

sΔ
[𝜄2𝜉𝜆3(𝜆1 −𝜆2)𝜇𝑑1𝑑2(1 +𝑎𝝃

2 +𝑎𝜆1𝜆2)
], 

(34) 

 

𝑡33̅̅ ̅̂̅ =
𝐹1𝜓1̅̅̅̂̅ (𝜉)

sΔ

{
 
 

 
 
𝜇(𝜆3

2 + 𝝃2)[
𝝃2(𝜆2𝑑2 − 𝜆1𝑑1)

+𝜆1𝜆2(𝜆 + 2𝜇)(𝜆2𝑑1 − 𝜆1𝑑2)

+𝛽(𝜆2− 𝜆1)(1 + 𝑎𝝃
2+ 𝑎𝜆1𝜆2𝜆3)𝑑1𝑑2

]

−2𝜉𝜆1𝜆2(𝑑2 − 𝑑1)(𝜄 + 𝜇𝜉𝜆𝜆3+ 2𝜇
2𝜉𝜆3) }

 
 

 
 

 

−
𝐹2𝜓2̅̅ ̅̂̅ (𝜉)

sΔ

{
 
 

 
 𝜄𝝃3(𝜆 + 2𝜇𝜆3 − 𝜆

2𝜆3− 2𝜇𝜆𝜆3)(𝜆2𝑑2 − 𝜆1𝑑1)

+𝜄𝜉𝜆1𝜆2(𝜆 + 2𝜇) (1 − 𝜆𝜆3)(𝜆2𝑑1− 𝜆1𝑑2)

+𝜄𝜉𝛽𝑎
𝜃0𝜔1

2

𝑐2
2
(𝜆2− 𝜆1)(𝝃

2+ 𝜆1𝜆2)(1 − 2𝜇𝜆3 − 𝜆𝜆3)𝑑1𝑑2

+𝜄2𝜇𝜆3𝜉𝛽(𝜆2 − 𝜆1)(1+ 𝑎𝝃
2+ 𝑎𝜆1𝜆2)𝑑1𝑑2 }

 
 

 
 

, 

(35) 

 

𝑡31̅̅ ̅̂̅ = 𝑡13̅̅̅̂̅ =
𝐹1𝜓1
̅̅̅̂̅ (𝜉)

sΔ
[4𝜄𝜉𝜇2𝜆1𝜆2(𝑑2 −𝑑1)(𝜆3

2
+𝝃2)] 

−
𝐹2𝜓2
̅̅̅̂̅ (𝜉)

sΔ
𝜇

{
 
 

 
 

(𝜆3
2
+ 𝝃2)

[
 
 
 
 

𝜆𝝃2(𝜆2𝑑2 −𝜆1𝑑1)

+𝜆1𝜆2(𝜆 +2𝜇)(𝜆2𝑑1− 𝜆1𝑑2)

+𝛽𝑎
𝜃0𝜔1

2

𝑐22
(𝜆2−𝜆1)(𝝃

2+ 𝜆1𝜆2)𝑑1𝑑2]
 
 
 
 

+4𝜇𝜆1𝜆2𝜆3𝜉
2 (𝑑2− 𝑑1) }

 
 

 
 

. 
(36) 

 

Concentrated force: The solution due to concentrated 

normal force on the half space is obtained by setting 

 

𝜓1(𝑥) = 𝛿(𝑥), 𝜓2(𝑥) = 𝛿(𝑥) 
 

where, 𝛿(𝑥)  is dirac delta functions. Applying Laplace and 

Fourier transform, we obtain 

 

𝜓1̂(𝜉) = 1, 𝜓2̂(𝜉) = 1. (37) 

 

Using Eq. (37) in Eq. (29), Eq. (33) and Eqs. (35)-(36), 

we obtain the components of displacement, stress and 

conductive temperature. 

Uniformly distributed force: The solution due to 

uniformly distributed force applied in  the half space is 

obtained by setting 

 

{𝜓1(𝑥) , 𝜓2(𝑥)} = {
1 𝑖𝑓  |𝑥| ≤ 𝑚

0 𝑖𝑓  |𝑥| > 𝑚
 

 

The Laplace and Fourier transforms of 𝜓1(𝑥)  and 

𝜓2(𝑥)  with respect to the pair (x,  𝜉 ) for the case of a 

uniform strip load of non-dimensional width 2 m applied at 

origin of coordinate system 𝑥1= 𝑥3 = 0 is given by 

 

{𝜓1̂(𝜉), 𝜓2̂(𝜉)} = [
2sin(𝜉𝑚)

𝜉⁄ ] 𝜉 ≠ 0. (38) 

 

Using Eq. (38) in Eq. (29), Eq. (33) and Eqs. (35)-(36), 

we obtain the components of displacement, stress and 

conductive temperature. 

 

4. Particular cases 
 

• If a  = 0, then from Eqs. (28)-(36), we obtain the 

corresponding expressions for disp lacements, 

stresses and conductive temperature for nonlocal 

isotropic solid without two temperature. 

• If 𝜖  = 0, then from Eqs. (28)-(36), we obtain the 

corresponding expressions for disp lacements, 

stresses and conductive temperature for isotropic 

solid without nonlocal effects and with two 

temperature. 
 

 

5. Inversion of the transformation 
 

To obtain the solution of the problem in physical 

domain, we must invert the transforms in Eqs. (28)-(36). 

Here the displacement components, normal and tangential 

stresses and conductive temperature are functions of𝑥3, the 

parameters of Laplace and Fourier transforms 𝑠 and  𝜉 

respectively and hence are of the form 𝑓(𝜉, 𝑥3 , 𝑠). To obtain 

the function 𝑓(𝑥1,𝑥3 , 𝑡) in the physical domain, we first 

invert the Fourier transform using 

 

𝑓(̅𝑥1 ,𝑥3, 𝑠) =
1

2𝜋
∫ 𝑒−𝑖𝜉𝑥1
∞

−∞

𝑓(𝜉, 𝑥3, 𝑠)𝑑𝜉 

=
1

2𝜋
∫ |cos(𝜉𝑥1)𝑓𝑒 − 𝑖 sin(𝜉𝑥1)𝑓0 |
∞

−∞

𝑑𝜉. 

(39) 

 

where,𝑓𝑒 and 𝑓0are respectively the odd and even parts of 

𝑓(𝜉, 𝑥3, 𝑠). Thus the Eq. (39) gives the Laplace transform 

𝑓̅(𝑥1,𝑥3, 𝑠) of the function𝑓(𝑥1,𝑥3, 𝑡).  Fo llowing Honig 

and Hirdes (1984), the Laplace transform function 

𝑓̅(𝑥1,𝑥3, 𝑠) can be inverted to 𝑓(𝑥1,𝑥3, 𝑡). The last step is 

to calculate the integral in Eq. (39). The method for 

evaluating this integral is described  in  Press et al. (1986). It 

involves the use of Romberg’s integration with adequate 

step size. The results from successive refinements of the 

extended trapezoidal rule followed by extrapolation of the 

results to the limit when the step size tends to zero are also 

used. 
 

 

6. Numerical results and discussion 
 

Magnesium material is chosen for the purpose of 

numerical calculation which is isotropic and according to 

Dhaliwal and Singh (1980), the physical data for it is given 

as 
 

𝜆 = 9.4 × 1010𝑁𝑚−2, 𝜇 = 3.278 × 1010𝑁𝑚−2 , 
𝐾∗ = 1.7 × 102𝑊𝑚−1𝐾−1, 𝜌 = 1.74 ×  103𝐾𝑔𝑚−3 , 
𝑇0 = 298  𝐾, 𝐶

∗ = 10.4 × 102𝐽𝐾𝑔−1𝑑𝑒𝑔−1, 
𝜔1 = 3.58, 𝑎 = 0.05. 
 

A comparison of values of normal displacement  𝑢3 , 

normal force stress  𝑡33 , tangential stress 𝑡31  and 

conductive temperature 𝜑  for a transversely isotropic 

thermoelasic solid with distance x has been made for local 

and nonlocal parameter 𝜖 = 2.5  and is presented 

graphically at 𝜃 = 450  and 𝜃 = 900  in Figs. 1-8. 
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(1) The blue coloured solid line with circles as 

symbols and small dashed purple line with triangles  

as symbols respectively corresponds to 𝜖 = 0 at 

𝜃 = 450 and 𝜃 = 900 . 

(2) The solid b lack line and small dashed red line 

respectively corresponds to 𝜖 = 2.5 at 𝜃 = 450 

and 𝜃 = 900. 

 

6.1 Concentrated force 
 

From Fig. 1, it is clear that the variation in values of 

normal stress 𝑡33 is h igher due to effects of nonlocality for 

both the angles. In Fig. 2, near the loading surface, the 

value of normal displacement𝑢3 is h igher for 𝜃 = 900  due 

to nonlocal effects a s compared to all the other values but it 

is more oscillatory and for the other values it is lessoscilla -

tory. Also it is ev ident that as the displacement increases the 
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Fig. 1 Variation of normal stress 𝑡33 with displacement x 

(concentrated force) 
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Fig. 2 Variation of normal displacement 𝑢3 with 

displacement x (concentrated force) 
 

 

Fig. 3 Variation of tangential stress 𝑡31 with 

displacement x (concentrated force) 

 
 

 

Fig. 4 Variation of conductive temperature 𝜑 with 

displacement x (concentrated force) 
 

 

value of normal displacement at the other values is 

becoming almost stationary. From Fig.3, for the values of 

tangential stress𝑡31, variation is more when nonlocal effect 

is zero at both angles and is clearly more prominent for 

𝜃 = 900 .The values of conductive temperature 𝜑 increase 

initially for both the angles with more dominance for 𝜃 =
450 and then showing oscillatory behavior with 

comparatively less variations (Fig. 4). But for 5 ≤ 𝑥 ≤ 12, 

the behavior is opposite. Also the effects of local and 

nonlocal parameters are clearly visible at both the angles. 

 

6.2 Uniformly distributed force 
 

Fig. 5 depicts that the variation in the values of normal 

stress 𝑡33 is comparatively less due to the effects of  

nonlocality for both angles but more prominent at 𝜃 = 450  
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Fig. 5 Variation of normal stress 𝑡33 with displacement x 

(uniformly distributed force) 
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Fig. 6 Variation of normal displacement 𝑢3 with 

displacement x (uniformly distributed force) 
 

 
 

as compared to 𝜃 = 900 . For the values of normal 

displacement 𝑢3 (Fig. 6), there is comparatively lesser 

variation due to the effects of nonlocality for both angles 

but it is clearly  more v isib le for 𝜃 = 450 . For the values of 

tangential stress 𝑡31 , variation is more for 𝜃 = 450  at 

initial stages i.e., for 𝑥 < 5 and is showing comparatively 

lesser variation for 𝜃 = 900 (Fig. 7). The values of 

conductive temperature 𝜑 (Fig. 8), is showing lesser 

variations comparatively at 𝜃 = 900  but the variations are 

more visible at 𝜃 = 450  due to nonlocal effects. 

 

Fig. 7 Variation of tangential stress 𝑡31 with 

displacement x (uniformly distributed force) 
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Fig. 8 Variation of conductive temperature 𝜑 with 

displacement x (uniformly distributed force) 

 

 

 

 

7. Conclusions 
 

In the present discussion the numerical results have been 

depicted graphically showing the effects of nonlocal 

parameter on the components of displacements, stresses and 

conductive temperature. From above investigation it is 

observed that there is a sign ificant impact on normal 

displacement, normal stress, tangential stress and 

conductive temperature due to effects of nonlocality. The 

variation of the components is dependent upon the nonlocal 

parameters as well as the variations in  the absolute 

temperature. The amplitude of all the physical quantities 

(discussed above) either increase or decrease with nonlocal 

parameters as well as the angle of inclined load. In presence 
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and absence of nonlocal parameters the stress and 

displacement components follow an oscillatory path with 

respect to x. The inclined load plays a sign ificant role in the 

distribution of all the physical quantities. The results of this 

paper give an insp iration to study nonlocal parameter 

effects at a  higher level. These results will be very useful 

for the researchers working in the field of material science, 

geophysics, acoustics etc. 
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