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Abstract. The present paper addresses a refined plate theoryin order to describe the response of anti-symmetric cross-ply
laminated plates subjected to a uniformlydistributed nonlinear thermo-mechanical loading. In the present theory, the undetermined
integral terms are used and the variables number is reduced to four instead of five or more in other higher-order theories. The
boundary conditions on the top and the bottom surfaces of the plate are satisfied; hence the use of the transverse shear correction
factors isavoided. The principle of virtual work is used to obtain governing equations and boundary conditions. Navier solution for
simply supported plates is used to derive analytical solutions. For the validation of the present theory, numerical results for
displacements and stressesare compared with those of classical, first-order, higher-order and trigonometricshear theories reported in

the literature.
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1. Introduction

Composite materials are widely used in structures
subjected to severe thermal environment owing to their
excellent mechanical and thermal properties such as high
specific strength, high stiffness, corrosion resistance, light
damping, temperature resistance and low thermal
coefficient of expansion. In order to describe the correct
thermo-mechanical behavior of laminated plate there is a
necessity for the deployment of new refined theories.

Using the classical plate theory, thermal stresses in
isotropic plate are given by Boley and Weiner (1960),
whereas thermal stresses analysis of laminated plates under
thermal loading is presented by Jones (1999), Reddy
(1997), Wu and Tauchert (1980). This theory, however,
gives inaccurate results for the laminated plates. This
inaccuracy is due to the neglect of transverse stresses in the
laminates. Reddy (1997) used the first order theory (FSDT)
to analyze thermal stresses in laminated plates, this theory
includes the transverse shear deformation in the governing
equations, but it gives a constant transverses shear stresses
through the thickness. To satisfy the boundary conditions on
the top and the bottom surface of the plate, the FSDT uses a
shear correction factor K, this factor depends on lamina
properties and laminations scheme. However, the higher-
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order shear deformation theories (HSDT) don’t require the
employment of the shear correction factors. Khdeir and
Reddy (1991) developed an exact analytical solution of
refined plate theories, stresses and deflections of laminated
plate subjected to a single sinusoidal thermal loading are
presented. The global-local higher theory has been simply
derived by Zhen and Chen (2006) in order to obtain an
efficient higher-order theory and finite element for
laminated plates under sinusoidal thermal loading. Shinde et
al. (2013) used the hyperbolic shear deformation theory to
investigate the thermal bending of isotropic plates under
uniformly distributed thermal loading. Thermal flexural
analysis of cross-ply laminated plates subjected to a
nonlinear sinusoidal thermal loading using trigonometric
shear deformation theory has been presented by Ghugal and
Kulkarni (2013a). Various plate theories have been used by
Sayyad et al. (2014) to carry out a thermo-elastic analysis
of cross-ply laminated plates under linear sinusoidal
thermal loading. Thermal displacements and stresses of
laminated plates subjected to a sinusoidally distributed
linear thermal loading using a four-variable plate theory
have been presented by Sayyad et al. (2015). In another
article Sayyad et al. (2016) presented a thermal stress
analysis of cross-ply laminated plate subjected to linear
thermal load using an exponential shear deformation theory.
Gandhe et al. (2018) have recently presented three variables
trigonometric shear deformation theory to analyze flexural
behavior of isotropic plates subjected to a single sinusoidal
thermal loading.
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Many first and higher-order theories have been
developed or extended to study the behaviour of laminated
plates under thermo-mechanical loading. To start with
Reddy and Hsu (1980) who suggested a finite element
formulation of governing equations of laminated plates
subjected to mechanical/thermal loading. (Fares and
Zenkour 1999, and Fares et al. 2000) presented a mixed
variational formula for the analysis of generally layered
composite structures subjected to sinusoidal thermo-
mechanical single loading. Han et al. (2017) proposed an
enhanced first order shear deformation theory including the
transverse normal strain effect for the analysis of the
thermo-mechanical response of laminated composite and
sandwich plates. By the use of a unified shear deformation
plate theory, Zenkour (2004) investigated the static thermo-
elastic response of symmetric and anti-symmetric cross-ply
laminated plates under non-uniform sinusoidal mechanical
and/or thermal loading. An equivalent single layer shear
deformation theory has been presented by Ghugal and
Kulkarni (2012, 2013b, c¢) using a trigonometric shear
deformation theory in order to analyze displacements and
stresses of cross ply laminated plates under uniformly
distributed linear and non-linear thermo-mechanical
loading. Chattibi et al. (2015) developed a four variable
sinusoidal to investigate the thermo-mechanical bending
response of anti-symmetric cross-ply composite plates.
Based on the layer-wise displacement field of Reddy,
Cetkovic (2015) proposed a mathematical model using
small deflexion linear-elasticity theory to analyze the
thermo-mechanical bending of laminated composites and
sandwich plates subjected to a uniform or a single
sinusoidally distributed gradient temperature along with
sinusoidal mechanical loadings. Zen and Xiaohui (2016)
proposed a new modal to analyze the thermo-mechanical
behavior of multilayered composite plates under thermo-
mechanical combined loading based on Reddy-type higher
order theory. An analytical model of laminated composite
plates based on an inverse hyperbolic shear deformation
theory (IHSDT) has been proposed by Joshan et al. (2017),
the thermo-mechanical response of cross-ply and angle-ply
laminated composite plates has been investigated.

Several investigations delved on the study of the thermal
or thermo-mechanical behaviour of functionally graded
plates; various refined theories have been presented by
(Zenkour and Alghamdi 2008, Bourada et al. 2012, Saidi et
al. 2013, Kar et al. 2015, Mahapatra and Panda 2016,
Mahapatra et al. 20164, b, ¢, 20173, b, Kolahchi and Moniri
Bidgoli 2016, Singh et al. 2016, Hirwani and Panda 2018,
Hirwani et al. 2017, 2018aa, b, c, d, e, Dutta et al. 2017,
Kolahchi et al. 2017a, Sahoo et al. 2017a, b, Bachiri et al.
2018, Mehar et al. 2017, 2018, Bisen et al. 2018, Katariya
et al. 2018a, b, Dash et al. 2019, Mehar et al. 2019, Sharma
et al. 2019).

Based on the above-mentioned references, it is noticed
that most studiesinvestigated the response of laminated
plate under single sinusoidally distributed linear thermal
and/or mechanical loadings. The present research
accordingly attempts to provide a refined higher-order
theory for the analysis of the response of laminated plates
under combined uniformly distributed nonlinear thermo-
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Fig. 1 Plaque geometry and coordinate system

mechanical loading. In this theory, the unknown number is
reduced to four instead of five or more as suggested in the
other theories. The obtained results are discussed and
compared with those of classical, first-order, trigonometric
and higher-order shear theories.

2. Theoretical formulation

Consider a rectangular cross-ply laminated plate total
thickness h composed of n orthotropic layers (see Fig. 1),
which are perfectly bonded together. The material of each
layer is assumed to posses on plane of elastic symmetry
parallel to x-y plane. The upper surface of the plate is
subjected to a mechanical load g (x,y) and thermal load
T(X,y,2).

2.1 Kinematics

The displacement field of the conventional HSDT at a
point in the laminated plate is expressed as

ow,

u(x,y,2) = o (,y) = 27>+ f(@)x (x,)

d
VY2 =v@y) -~z 5+ f@ewy) O

w(x,y,2) = wo(x,)

Up, Vo, Wo, @x and ¢, are the five unknown
displacements of a point on the mid-plane of the plate,
supposing that ¢, = [8(x,y)dx and @, = [08(x,y)dy,
the displacement field mentioned above can be written in a
simple form as

ow,

UG, 7) = U0 ) — 2 5+ K f(2) [ 0Cx)dx

adw,
V(0 ,2) = Vo) = 20+ kaf @) [ 0o y)ay
W(X,y,Z) = WO(x'y)

@
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The integrals terms defined in the above equations shall
be resolved by using Navier type method and the
displacement field can be written as follows

dw, a6
u(6,y,2) = (5y) 25" + kA f (D) -

_ aw, + kB 20 (3)
v(y,2) = vo(ny) — 25 + kB f(2) o

w(x,y,2) = wo(x,y)

Where
ki =u%k,=2%4, = B ! 4
1_#1 2 = )4 = = 2 P1 _/,17 (a)
And
_mm A_nn ab
p=—, = (4b)

In the present article the shape function f(z)is given as
follows

F@) = msin”? ©)

The normal and shear strains associated with the
displacement field (3) are as follows

&x & k3 kx
& p=1¢&) v+z{kd t+f(2)k) ¢; (6a)
Vxy Yy kféy K3y
yyz}_ {yyz}
=g(z 6b
{YXZ g( ) YXZ ( )
Where
du, _ 0w
0 ox b 0x?
2’8_%.’;’2_62%.6
Jl/; - ay ) Z - ay ) ( C)
Yxy lauo avoJ kxy az
dy  0Ox 6x0y
aZ
s klAla 2
kx aZ
k)Sf = sz1
kS, 0y*
l(klAl + szl) J (6d)
6
{yysz}_ {szla
Yz a6
U‘lAla J
And

o) = L2 (60

2.2 Constitutive equations

The stress-strain relationships, accounting for transverse
shear deformation and thermal effects for a layer can be
expressed as

Ox Qi1 Qiz Qus]( &x — T
Oy ¢ =012 Q22 Q2 &y — ayT ; (7a)
Txy Q16 Q26 Q66 ny - axyT

Tyz Qaa Q45] {Vyz}
= 7b
{sz} Qus  Qsslyy, (7b)
Where Q;; are the plane stress-reduced stiffnesses that
are expressed as follows

E; V1B
Q= 1 =050, Gz = 1 =050,
P 8)
Q22 1= U100, Qss 12
Qss = Gy3; Qss = Gy3

And E; are Young’s moduli, v;; are Poisson’s rations,
Gy are shear moduli, ay and «, are the coefficients of
linear thermal expansion in x and y directions respectively,
and T =T (x,y,z) isthe temperature distribution.

The constitutive equations of each lamina are
transformed to the plate coordinates (x, y, z) and the stress-
strain relationships in the plate coordinate system for thek™
layer is expressed as

Oy Q11 Q12 Q16 Ex — (ZXT
O'y = le sz Q26 gy - ayTT ) (9&)
=" = —a
Txy ® Qle 026 Q66 © Vxy v ) (i
{Tyz} _ [044 Q45] {yyz} (9b)
Txz (k) Q45 QSS 0 Yxz )

Where Qi]- are the transformed elastic coefficient given
by Reddy (1997).

2.3 Governing equations

The principle of virtual work is used in order to
determine the governing equations as follows

E b a
fhf f (0,6, + ay6ey + Tyz6yyz + T3z 0Vsz
70 -0 (10)

b ra
+Txy6yxy)dxdydz—J; fo qgéwdxdy =0

By substituting Egs. (6)-(9) into Eg. (10) and integrating
through the thickness, Eq. (10) can be expressed as
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66u0 , 026w, . 02586
J- f (Nx x x2 +k1A1M T

325w, 9250

(11)

9256 . 856
+(k1A1 + kZBl) xy a ay klA]_S e

350
+kyBy S5, —— —

3y qéwy)dxdy =0

The resulting stresses and moments are obtained by
integrating Eq. (9) over the thickness, and are expressed as

N A B BS NT
MPy=|B D DS[JkPIHIMPT L S=A%Y (12
MS BS DS kS MST
Where
N ={N,,N, Ny}
MP = {ME, MD, MP } (13a)
M = {Mg, M3, Msy}
= (NI,NI,NLY, t
T T T T
m" = {m" Myt My} (13b)
T T T ¢
ms" = {M; M5 ,M;y}
t
€= {82, &V}
= {kL, kb, kl’y} (13¢)
kS = {ks ks ksy}
All A12 A16 Bll BlZ B16
A=A, Ay Ax|, B=|Biz Bz By,
A16 A26 A66 Bl6 B26 B66 (13d)
11 D12 16
D =|Di; Dy Dy
D16 D26 D66
B, B, Bi] Di; Di, Dis
BS = B1sz stz sts , D°= sz Dzsz Dzse ’
|Bis BSs Bl Dis Dio Diol (15
Hf; H{, His
HS = H12 stz H26
H16 H296 H66

s gs t s _ [A4a Ais
S = {SyZ' SXZ} ’ y = {Vyz; ]/XZ} ’ A = s As ] (13f)
45 55

Where the stiffness components are defined as

(AU’ ijy ij) =
Zk+1 _( )

Zf Y (L2,20dz, (i) =126)
zZ

k=1"%k

(14a)

(B3, Dfj, Hj) =
Z [T a @@ e b
(l ] =1,2,6),
ay=> j g s @j=45).  (140)
k=1"%k

In the present article, the thermal loading across the
thickness is supposed to be

f(@)
h

Z
T(x%y,2) = Ti(xy) +3 T(xy) + —=Ts(xy) (15
With the integration by parts of Eqg. (11) alongside
collecting the coefficient of 8u,, 6v,, dw,, 66 we can
obtain the following governing equations

ON, 0N,
duy: o + 3y =0
ON, ON,,
Svgi—— 3y o =0
aZMb aZMb aZMb
dwy: o2 + 3y7 +26 3y 2+q=0 (16)
aS3, 0S5, 0*MS
59k1Ala +k81a kAl(32
2 s aZ s
—kyB1 ——- 3y 2 — (k1A; + k2By) o ay

By substituting Eqg. (12) into Eq. (16), the governing
equations can be written in terms of displacements
(wg, Vo, Wy, 8) as follows

3wy,

3wy,
Bll a 3

B2663_

63 3
_(Blz+2366)a a 2 1

%0 639
+sz1Bzea 5+ k2B, B} 12 555y?

(17a)

336
+(2k,A; + k231)316a 79y
+(k A, + k,B;)BS 0’0 Ny aN"Ty—o

(1 1 2 1) ﬁﬁaxayz ax ay -
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63 639 639

) 639
+hiA1B o +(k1A1 +2k,B)Bs 5 —— 57 (17b)

. 2% NI N,
+(k1A1 + k;B1)Bgg 920y - =

dy dx
3u, o3u 03u, 23u,
B4 553 + By 3y +3Bl6a 26y+ 12 525y 2
3 93v, 93v, 23y,
3B 23y, 93v, 0*wq 0*wy
+ 266 a 2+ 66ax26y 11 ax4 22 ay4_
) 0*wg 0*wq 0*wg
12 9x20y2 16 9x30y 26 9xdy3
9w, %0 )
_4D66W + k1A1D1S1W + kyB1 D3, 8_y4 (17¢c)
4 64
+k;B1Df =5 %2077 + (Bk1Ay + k2B Dig 7= %30y
040 0*0
+(k1Ay + 3k;B) D3 5—=— x0y3 + k1A Df 55— 9x20y7
64 aszT
20y + keB)DSs 555 5~ 5 5
aZM2" 9%MP,
———2-2—2+4q9=0
dy? dxdy
23u, 3u, 23ug
klABllag kBlBZGa3 k2112662
23uq
—(2k,A; + k,B,)B5,
( 1411 + 1) 166 a
3u, 231,
—(k144 +k231)8660 32 —kiA1Big—— 523
231, 231,
—k;B1B3; —— 0y3 — kiA;B 120 29y
. 0%,
—(k14; + ZkZBl)BZGW
231,
—(k1A; + k2B1)Bgg=—=— %20y (17d)
64W 64W0
64W0 . 0'w
+k1A D12 a Zayz + szlDle
0*w,
3k A k,B,)D;
+3k,A; + k;By) 16530y
2*wy
+(k1A; + 3k231)D§6W
2*wy
+2(k1A1 + k Bl)D66a 26 2
S 0*0 s 040
—(kyA1) Hiy 5 — (k2B1) H3 ——
oy o (17¢)
a6 6
+(k1Ar)? Az I + (kzB1)*A%u5— 3y?

+2k A k,B1A; 0% — 2k, A k,B,H} 0%
11214—56xa 1 21120 Zayz

046

3ay

4

da*0
—2k;B1(k1A; + kyB,)H3e 9x9y° (17¢)

0*6 azMS
zayz + kA ——— 9x2

—2k1A1(k1Ay + kB H g 55— ax

—(kiAy + kyB,)?Heg =—=— g

ZsT ZsT

3. Analytical solutions for anti-symmetric cross-
ply laminated plates

By using the Navier approach, the closed form solution
of Egs. (17) is determined for simply-supported rectangular
plates.

For anti-symmetric cross-ply laminates, the following
stiffnesses are equal to zero

Ayg = Az = D16 = Dye = Dig = D3

=Hic =H3 =0 (18)
Bi, = Big = Bys = Beg = Bi, = Big
= B3 =Bgs =0

And for anti-symmetric plates, the thermal expansion
coefficient equals zero, ay, = 0.

The boundary condition for simply-supported edges
could be expressed as

a0 b s
v0=w0=—ay=Nx=Mx=Mx=0 at x=0,a (193)

%6 b s 19b
Up=wo==-—=Ny=M)=M;=0 at x=0,b (19)

We assume that the thermal and transverse mechanical
loadings are expanded in double Fourier series as

o0 0 T
= ZZ Tlmn sinuxsinldy (20)
2mn
m=1n=1

Where the coefficients Timn Tomns Tsmn @aNd qmn
are expressed as follows

qmn 4 a b qmn
Tymn f f T; . .

=— sinuxsinAydxd 21
Tymn ( ~ @b )y ), )T 2 ydxdy (21)
T3mn

The coefficients Ty Tomns Tamn @A @mn Can be
evaluated by integrating Eq. (21) as:

Tymn Tomm Tamn = To for m =n =1, and for a single
sinusoidal thermal loading, and Ty Tomn Tamn = :;‘;
for m, n odd, in case of uniformly distributed thermal
loading, where Ty represents the intensity of thermal
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loading.
Gmn =qo for m = n = 1, for a single sinusoidal

mechanical loading, and g, =7:26:1‘; for m, n odd, for
uniformly distributed mechanical loading, where g,
represents the intensity of mechanical loading.

The solution form for (ug, vy, wy,8) to solve the

problem is adopted as follows

o w (Umncos(px)sin(Ay)

_ Z Z Vinn Sin( ux) cos( y) 22)
W sin( ux) cos( y)
MG, sin( ux) cos(Ay)

Where Upnn, Vinns Winn, Omn @re arbitrary parameters to
be determined, substituting Egs. (20)-(22) into governing
Eqg. (17), we obtain the following operator equation

[K1{6} = {F} (23)

Where {6} = {Unns Vi W Omnt @nd  [K] is  the
symmetric matrix given by
Ky Kz Kiz Kig
Ki; Ky Kiz Ko
K| = 24
K=k Koy Koy Kos (24)
Kis Ky Kiu Ky
In which
Kiy = —A11 2% — Agelt?, Kip = —(Ay; + Age) Al
K3 = B11/13' Ky = _B1S1A3k1A1
Kyo = —Apop® — Ae??, Kpz = Byptt®,
K4 = —B3,k,By1i®
Ks3 = —Dy1 A* — 2(Dy; + 2Dg) A2 — Doppu*
Ks4 = Df1kiA1A* + D3y k, Byu* (25)

+D3$,22u* (ki Ay + k,By)
+2Dge A ? (k1 Ay + k3 By)

Ky = _H151(k1A1)2)L4 - ZHfzklAlszl/lzﬂz
—H3,(k,B,)?u* — Hgs (ki Ay + kyBy) A% p?
—S35k1 A1 A% — Siako By pi?

And {F}={F, F, F; F,} is the generalized force
given by

F=2 [(L11 + L) Tyimn + (Pry + P21)T2mn]
+(R11 + R21)T3mn
F,=u [(L12 + Ly2)Timn + (Prg + P22)T2mn]
+(R11 + R22)Tamn
(511 + SZl)Tlmn
F3 = -2 +(Fi1 + F20)Tomn
:+(U11 + U21)T3mn:
(511 + SZZ)Tlmn
+(Fi1 + F22)Tomn | — Gmn
_+(U_11 + Uz2)Tamn | _
V11 + Vo) Timn
Fy = =k A 2 |+ Wiy + Wy ) Tomn
L +(X11 + X21)T3mn J
(Vll + VZZ)Tlmn
+(Wi1 + W) Tomn
| +(X11 + X22)T3mn |

(26)

N

—k,Biu?

Where
_ n Zk+1 (k)_() @
(Lij ”’R”)_;fk : O™ (27a)
(i,j =12)
N 5% 22 f(2)z
(8 Tijy U ;Lk ’h' h ) (27b)
(ij =12)
7 z f(2)
CLEOEDY f R CIE T S
(i,j =12)

4. Numerical results and discussion

To verify the accuracy of the present theory, simply-
supported two layers (0°/90°) and four layers (0°/90°/
0°/90°) anti-symmetric laminated plates under uniformly
distributed nonlinear thermo-mechanical loadings are to be
considered. In all cases, the lamina properties are assumed
to be

E;
= =25, G, =0,5E,, G35 = Gy,, Gy3 = 0,2E,,
2

=025 =3
Uiz @

4.1 Two layers (0°/90°) anti-symmetric plat

Dimensionless displacements (i, ¥, w) and stresses
(0x10y, Txy Txz:Ty,) Utilized for two layers (09/90°) anti-
symmetric plate expressed as

LI 1
we 2" 27(qohs3/E,) + (ayTha?)’
—_a 0 h 1

v =G 0D ks B + (@Thad)’

— a 0 100

W= W(Z'Z' )(q0a4/E2h3) + (a,Tya?/10h)’
_ ab 1

9 = 0G5 "D (/D) + ByaiToa®)’
_ ab h 1

0y = 0y(

_I_l+_ )
2°2 2) (qoa?/h?) + (E;a,T;a?)
1

_ h
fay = Txy(0,0, _E) (%az/hzl) + (E;a;Tya?)’

e = 10,5, 0 S T (e ia?)
1

Tyy = TyZ(E' 0,0)

(qoa/h) + (E;a;Tia?)

Numerical results for two layers (0°/90°) anti-symmetric
plates predicted in this work are discussed and compared
with those of the classical, first-order, higher-order and
trigonometric theories obtained by Ghugal and Kulkarni
(2013b).
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Table 1 Normalized displacements and in-plan stresses for square two layers (0°/90°) anti-
symmetric laminated plate subjected to uniformly distributed nonlinear thermo-mechanical

loading for aspect ratios 4 and 10

a/h Theory u v w Oy gy Try
Present 0.0481 0.0788 4.8625 -2.7199 2.7199 0.3183
TSDT* 0.0470 0.0755 4.8397 -2.6430 2.6430 0.4662
4 HSDT 0.0468 0.0756 4.8700 -2.6303 2.6303 0.4695
FSDT* 0.0424 0.0736 5.0904 -2.4166 2.4166 0.4960
CPT* 0.0442 0.0776 3.5430 -2.5043 2.5043 0.3112
Present 0.0204 0.0471 2.2105 -1.3506 1.3506 0.1327
TSDT* 0.0203 0.0468 2.2084 -1.3428 1.3428 0.1505
10 HSDT 0.0202 0.0468 2.2125 -1.3408 1.3408 0.1509
FSDT* 0.0194 0.0465 2.2433 -1.3073 1.3073 0.1525
CPT* 0.0196 0.0468 1.9926 -1.3165 1.3165 0.1300

*Ghugal and Kulkarni (2013)

Table 2 Normalized transverse shear stresses for square two
layer (0°/90°) anti-symmetric laminated plates
subjected to uniformly distributed nonlinear
thermo-mechanical loading for aspect ratios 4 and

10(T1=0)

a’h Theory Tyz Tyz
Present 0.1682 0.1682
TSDT 0.1925 0.1925

4 HSDT 0.1917 0.1917
FSDT 0.1996 0.1996
Present 0.2283 0.2283
TSDT 0.2493 0.2493

10 HSDT 0.2402 0.2402
FSDT 0.2171 0.2171

The results of the in-plan displacements (u, ¥), the
transversenormal displacement (w), the in-plan normal
stresses (oy, oy) and the in-plan shear stress (T,) of two
layers (0°/90°) anti-symmetric laminated plate subjected to
combined uniformly distributed thermo-mechanical loading
for aspect ratios 4 and 10 are reported in Table 1, whereas
the transverse shear stresses (Ty,, Ty,) are shown in Table 2.

The examination of Table 1 reveals that the in-plan
displacements (i, V) obtained using the present theory for
two anti-symmetric layers plates are in good agreementwith
those provided by the TSDT, HSDT, FSDT, and CPT for
both aspect ratios 4 and 10. The transverse normal
displacements (w) predicted by the present theory are well
converged with those given by the TSDT, HSDT, and FSDT
whereas the results provided by the CPT are under
predicted. Fig. 2 displays the variation of in-plan displace-
ment () through the thickness for a two anti-symmetric
layers plate for aspect ratio 4. The results of the in-plan
normal stresses (G4, G,) Obtained using the present theory
are comparable with those given by the TSDT, HSDT,

—m— Present
—&—TSDT

zh
)

—=—HSDT

N
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Fig. 3 Normalized in-plan normal stress (o) through the
thickness of a two-layer plate for aspect ratio 4

FSDT, and CPT for aspect ratios 4 and 10, and thethrough-
the-thickness variation of the in-plan normal stress (o) as
shown in Fig. 3, it is observed that the results obtained by
the use of the present theory converged very well along the
width with those ofthe TSDT, HSDT, FSDT and CPT
theories.The values of the in-plan stresses 7, are found
lower than those of the TSDT, HSDT,and FSDT, and are
comparable with those provided by the CPT for thick and
thin plates.
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Fig. 4 Normalized transverse shear stress (7,,) through
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Fig. 5 Normalized transverse shear stress (T,,) through
the thickness of a two-layer plate for aspect ratio 10

The results reported in Table 2 show that transverse
shear stresses values estimated by the present theory are
slightly lower than those given by the TSDT and HSDT for
aspect ratios 4 and 10. The FSDT predicts the highest value
for aspect ratio 4 while it gives the lowest values for aspect
ratio 4, and these values are constant through the thickness.
The variation of the transverse shear stresses (T,,) through
the thickness for a two anti-symmetric layers plate for
aspect ratios 4 and 10 is shown in Figs. 4 and 5 respectively.
It is noticed that the stress continuity is not imposed in the
present theories.

4.2 Fourlayers (0°/90°/0°/90°) anti-symmetric plate

Dimensionless displacements (u, ¥, W) and stresses (o,
Gy, Txys Txz Tyz) Utilized for four layers (0°/90°/0°/90°)
anti-symmetric plate

|
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It is to be noticed that the results for four layers
(0°/90°/0°/90°)  anti-symmetric laminated plates under
uniformly  distributed nonlinear  thermo-mechanical
loadingsof the classical, first-order, higher-order, and
trigonometric theories used in the discussions and
comparisons with those predicted by the present theory are
not available in the literature but generated using the
aforementioned theories.

Table 3 reveals that the in-plan displacements (u, ¥)
obtained using the present theory for a four-layersanti-
symmetric plate are found to agree well with theTSDT,
HSDT, and FSDT whereas the CPT underpredicts the in-
plan displacements for aspect ratios 4 and 10. The
transverse normal displacements w for a four anti-
symmetric layers plate are in good agreement with the

Table 3 Normalized displacements and in-plan stresses for square four layers (0°/90°/0°/90°)
antisymmetric laminated plates subjected to uniformly distributed nonlinear thermo-
mechanical loading for aspect ratio 4 and 10 (T1 =0)

a/h Theory u v w Oy ay Try
Present 0.0445 0.0567 4.1670 -2.4421 2.4421 0.2732
TSDT* 0.0423 0.0534 4.1327 -2.2788 2.2788 0.4531
4 HSDT 0.0425 0.0533 4.1536 -2.2853 2.2853 0.4604
FSDT* 0.0405 0.0488 4.0321 -2.2469 2.2469 0.5107
CPT* 0.0206 0.0342 1.7870 -1.5600 1.5600 0.1552
Present 0.0159 0.0232 1.3542 -1.0223 1.0223 0.0846
TSDT* 0.0157 0.0228 1.3501 -1.0033 1.0033 0.1071
10 HSDT 0.0157 0.0228 1.3528 -1.0050 1.0050 0.1079
FSDT* 0.0154 0.0221 1.3308 -1.0030 1.0030 0.1105
CPT* 0.0128 0.0192 0.9665 -0.8749 0.8749 0.0629
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Fig. 8 Normalized in plane shear stress (T, ) through the

thickness of an anti-symmetric four-layer laminated
plate for aspect ratio 10

TSDT, HSDT, and FSDT whereas the results provided by
the CPT are underestimated. Fig. 6 displays the distribution
of the in-plan displacement (¥) through the thickness for
an anti-symmetric four-layer laminated plate for aspect ratio
4, the results displayed in this figure show that the in-plan
displacements given by the present theory, TSDT, HSDT,
and FSDT are more or less identical along the thickness
whereas those provided by the CPT are underpredicted. The
results of the in-plan normal stresses (G, G,) obtained by
the present theory are comparable withtheTSDT, HSDT,
and FSDT whereas the CPT underestimates the same for
both aspect ratios 4 and 10. The variation of normalized in-
plan normal stress (o) through the thickness of a four anti-

0,50 -

2 ‘
\‘t{\\,,‘ |
o = =) 5
3 '\‘\T\ i ,  —m—Present
S 3
RS *—TSDT
0,25 L EE— —=—HSDT
\\i'\ —e—FSDT
- "
"R
L 4 T
0,00 - ® — -
0,00 035 . 070
@ -
/-‘/l/ E/!‘
025 . 4-4:{/
0,25 4 e
-

/

050+ ‘

Fig. 9 Normalized transverse shear stress (T,,) through

the thickness of an anti-symmetric four-layer
laminated plate for aspect ratio 4
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Fig. 10 Normalized transverse shear stress (T,,) through

the thickness of an anti-symmetric four-layer
laminated plate for aspect ratio 10

symmetric layers laminated plate for aspect ratio 10 is
displayed in Fig. 7, from whichit is noticed that the results
obtained by the use of the present theory are closeto those
given by the TSDT, HSDT, and FSDT whereas the results
provided by the CPT are underestimated. The in-plan
stresses T, show intermediate values between those of the
TSDT, HSDT, FSDT and those of the CPT for thick and
thin plates, the distribution of these stresses for aspect ratio
10 is displayed in Fig. 8.

From Table 4, it is observed that transverse shear
stresses values given by the present theory converged
accurately enough with the other theories; the TSDT,
HSDT, and FSDT. Figs. 9 and10 displayed normalized
transverse shear stress (T,,) through the thickness of an
anti-symmetric four-layer laminated plate for aspect ratios 4
and 10 respectively. It is noticed from the results of the
mentioned figures that the present theory converges well
with the other higher-order theories whereas the FSDT
gives a constant value of transverse shear stress trough the
thickness.

5. Conclusions

The present article delves on the presentation of a
refined four-variable theory for the analysis of the response
of simply supported two layers (0°/90°) and four layers
(0°/90°/0°/90°) anti-symmetric laminated composite plates
subjected to a combined uniformly distributed nonlinear
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thermo-mechanical loading. The concluding remarks are as
follows:

e The present theory does not require the use of a
shear correction factor.

e The number of variables and the governing
equations are reduced to four instead of five or more
in the other theories.

e The results provided using the present theory are
found to converge well with the trigonometric shear
theory along with the higher-order shear one.

An improvement of the present formulation will be
considered in the future work to consider other type of
materials (Arani and Kolahchi 2016, Kolahchi et al. 2016a,
b, 2017b Bilouei et al. 2016, Madani et al. 2016, Zamanian
et al. 2017, Kolahchi and Cheraghbak 2017, Kolahchi 2017,
Hajmohammad et al. 2017, 2018a, b, c, Fakhar and
Kolahchi 2018, Amnieh et al. 2018, Golabchi et al. 2018,
Hosseini and Kolahchi 2018, Alimirzaei et al. 2019).
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