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1. Introduction 

 

Composite materials are widely used in structures 

subjected to severe thermal environment owing to their 

excellent mechanical and thermal properties such as high 

specific strength, high stiffness, corrosion resistance, light 

damping, temperature resistance and low thermal 

coefficient of expansion. In order to describe the correct 

thermo-mechanical behavior of laminated plate there is a 

necessity for the deployment of new refined theories. 

Using the classical plate theory, thermal stresses in 

isotropic plate are given by Boley and Weiner (1960), 

whereas thermal stresses analysis of laminated plates under 

thermal loading is presented by Jones (1999), Reddy 

(1997), Wu and Tauchert (1980). This theory, however, 

gives inaccurate results for the laminated plates. This 

inaccuracy is due to the neglect of transverse stresses in the 

laminates. Reddy (1997) used the first order theory (FSDT) 

to analyze thermal stresses in laminated plates, this theory 

includes the transverse shear deformation in the governing 

equations, but it gives a constant transverses shear stresses 

through the thickness. To satisfy the boundary conditions on 

the top and the bottom surface of the plate, the FSDT uses a 

shear correction factor K, this factor depends on lamina 

properties and laminations scheme. However, the higher- 
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order shear deformation theories (HSDT) don’t require the 

employment of the shear correction factors. Khdeir and 

Reddy (1991) developed an exact analytical solution of 

refined plate theories, stresses and deflections of laminated 

plate subjected to a single sinusoidal thermal loading are 

presented. The global-local higher theory has been simply 

derived by Zhen and Chen (2006) in order to obtain an 

efficient higher-order theory and finite element for 

laminated plates under sinusoidal thermal loading. Shinde et 

al. (2013) used the hyperbolic shear deformation theory to 

investigate the thermal bending of isotropic plates under 

uniformly distributed thermal loading. Thermal flexural 

analysis of cross-ply laminated plates subjected to a 

nonlinear sinusoidal thermal loading using trigonometric 

shear deformation theory has been presented by Ghugal and 

Kulkarni (2013a). Various plate theories have been used by 

Sayyad et al. (2014) to carry out a thermo-elastic analysis 

of cross-ply laminated plates under linear sinusoidal 

thermal loading. Thermal displacements and stresses of 

laminated plates subjected to a sinusoidally distributed 

linear thermal loading using a four-variable plate theory 

have been presented by Sayyad et al. (2015). In another 

article Sayyad et al. (2016) presented a thermal stress 

analysis of cross-ply laminated plate subjected to linear 

thermal load using an exponential shear deformation theory. 

Gandhe et al. (2018) have recently presented three variables 

trigonometric shear deformation theory to analyze flexural 

behavior of isotropic plates subjected to a single sinusoidal 

thermal loading. 

 
 
 

Bending analysis of anti-symmetric cross-ply laminated plates 
under nonlinear thermal and mechanical loadings 

 

Nasrine Belbachir1, Kada Draich 1,2, Abdelmoumen Anis Bousahla 1,3, 

Mohamed Bourada 1, Abdelouahed Tounsi 1,4 and M. Mohammadimehr 5 
 

1 Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes, Algeria 
2 Département de Génie Civil, Université Ibn Khaldoun Tiaret, BP 78Zaaroura, 1400 Tiaret, Algérie 

3 Centre Universitaire Ahmed Zabana de Relizane, Algeria 
4 Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals, 

31261 Dhahran, Eastern Province, Saudi Arabia 
5 Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box 87317-51167, Kashan, Iran 

 
 

(Received January 10, 2019, Revised September 25, 2019, Accepted September 29, 2019) 

 
Abstract.  The present paper addresses a refined plate theoryin order to describe the response of anti-symmetric cross-ply 

laminated plates subjected to a uniformlydistributed nonlinear thermo-mechanical loading. In the present theory, the undetermined 

integral terms are used and the variables number is reduced to four instead of five or more in other higher-order theories. The 

boundary conditions on the top and the bottom surfaces of the plate are satisfied; hence the use of the transverse shear correction 

factors isavoided. The principle of virtual work is used to obtain governing equations and boundary conditions. Navier solution for 

simply supported plates is used to derive analytical solutions. For the validation of the present theory, numerical results for 

displacements and stressesare compared with those of classical, first-order, higher-order and trigonometricshear theories reported in 

the literature. 
 

Keywords:  anti-symmetric laminated plates; nonlinear thermo-mechanical loading; displacements; stresses 

 

81



 

Nasrine Belbachir et al. 

Many first and higher-order theories have been 

developed or extended to study the behaviour of laminated 

plates under thermo-mechanical loading. To start with 

Reddy and Hsu (1980) who suggested a finite element 

formulation of governing equations of laminated plates 

subjected to mechanical/thermal loading. (Fares and 
Zenkour 1999, and Fares et al. 2000) presented a mixed 

variational formula for the analysis of generally layered 

composite structures subjected to sinusoidal thermo-

mechanical single loading. Han et al. (2017) proposed an 

enhanced first order shear deformation theory including the 

transverse normal strain effect for the analysis of the 

thermo-mechanical response of laminated composite and 

sandwich plates. By the use of a unified shear deformation 

plate theory, Zenkour (2004) investigated the static thermo-

elastic response of symmetric and anti-symmetric cross-ply 

laminated plates under non-uniform sinusoidal mechanical 

and/or thermal loading. An equivalent single layer shear 

deformation theory has been presented by Ghugal and 

Kulkarni (2012, 2013b, c) using a trigonometric shear 

deformation theory in order to analyze displacements and 

stresses of cross ply laminated plates under uniformly 

distributed linear and non-linear thermo-mechanical 

loading. Chattibi et al. (2015) developed a four variable 

sinusoidal to investigate the thermo-mechanical bending 

response of anti-symmetric cross-ply composite plates. 

Based on the layer-wise displacement field of Reddy, 

Cetkovic (2015) proposed a mathematical model using 

small deflexion linear-elasticity theory to analyze the 

thermo-mechanical bending of laminated composites and 

sandwich plates subjected to a uniform or a single 

sinusoidally distributed gradient temperature along with 

sinusoidal mechanical loadings. Zen and Xiaohui (2016) 

proposed a new modal to analyze the thermo-mechanical 

behavior of multilayered composite plates under thermo-

mechanical combined loading based on Reddy-type higher 

order theory. An analytical model of laminated composite 

plates based on an inverse hyperbolic shear deformation 

theory (IHSDT) has been proposed by Joshan et al. (2017), 

the thermo-mechanical response of cross-ply and angle-ply 

laminated composite plates has been investigated. 

Several investigations delved on the study of the thermal 

or thermo-mechanical behaviour of functionally graded 

plates; various refined theories have been presented by 

(Zenkour and Alghamdi 2008, Bourada et al. 2012, Saidi et 

al. 2013, Kar et al. 2015, Mahapatra and Panda 2016, 

Mahapatra et al. 2016a, b, c, 2017a, b, Kolahchi and Moniri 

Bidgoli 2016, Singh et al. 2016, Hirwani and Panda 2018, 

Hirwani et al. 2017, 2018aa, b, c, d, e, Dutta et al. 2017, 

Kolahchi et al. 2017a, Sahoo et al. 2017a, b, Bachiri et al. 

2018, Mehar et al. 2017, 2018, Bisen et al. 2018, Katariya 

et al. 2018a, b, Dash et al. 2019, Mehar et al. 2019, Sharma 

et al. 2019). 

Based on the above-mentioned references, it is noticed 

that most studiesinvestigated the response of laminated 

plate under single sinusoidally distributed linear thermal 

and/or mechanical loadings. The present research 

accordingly attempts to provide a refined higher-order 

theory for the analysis of the response of laminated plates 

under combined uniformly distributed nonlinear thermo- 

 

Fig. 1 Plaque geometry and coordinate system 

 

 

mechanical loading. In this theory, the unknown number is 

reduced to four instead of five or more as suggested in the 

other theories. The obtained results are discussed and 

compared with those of classical, first-order, trigonometric 

and higher-order shear theories. 

 

 

2. Theoretical formulation 
 

Consider a rectangular cross-ply laminated plate total 

thickness h composed of n orthotropic layers (see Fig. 1), 

which are perfectly bonded together. The material of each 

layer is assumed to posses on plane of elastic symmetry 

parallel to x-y plane. The upper surface of the plate is 

subjected to a mechanical load q (x,y) and thermal load 

T(x,y,z). 

 

2.1 Kinematics 
 

The displacement field of the conventional HSDT at a 

point in the laminated plate is expressed as 

 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) − 𝑧
𝜕𝑤0
𝜕𝑥

+ 𝑓(𝑧)𝜑𝑥(𝑥, 𝑦) 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) − 𝑧
𝜕𝑤0
𝜕𝑦

+ 𝑓(𝑧)𝜑𝑦(𝑥, 𝑦) 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦) 

(1) 

 

u0,  v0, w0, φx  and φy are the five unknown 

displacements of a point on the mid-plane of the plate, 

supposing that φx = ∫θ(x, y)dx  and φy = ∫θ(x, y)dy , 

the displacement field mentioned above can be written in a 

simple form as 

 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) − 𝑧
𝜕𝑤0
𝜕𝑥

+ 𝑘1𝑓(𝑧)∫𝜃(𝑥, 𝑦)𝑑𝑥 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) − 𝑧
𝜕𝑤0
𝜕𝑦

+ 𝑘2𝑓(𝑧)∫𝜃(𝑥, 𝑦)𝑑𝑦 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦) 

(2) 
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The integrals terms defined in the above equations shall 

be resolved by using Navier type method and the 

displacement field can be written as follows 

 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) − 𝑧
𝜕𝑤0
𝜕𝑥

+ 𝑘1𝐴1𝑓(𝑧)
𝜕𝜃

𝜕𝑥
 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) − 𝑧
𝜕𝑤0
𝜕𝑦

+ 𝑘2𝐵1𝑓(𝑧)
𝜕𝜃

𝜕𝑦
 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦) 

(3) 

 

Where 

 

𝑘1 = 𝜇
2, 𝑘2 = 𝜆

2, 𝐴1 = −
1

𝜇2
, 𝐵1 = −

1

𝜆2
 (4a) 

 

And 

 

𝜇 =
𝑚𝜋

𝑎
, 𝜆 =

𝑛𝜋

𝑏
 (4b) 

 

In the present article the shape function 𝑓(𝑧)is given as 

follows 

 

𝑓(𝑧) =
ℎ

𝜋
𝑠𝑖𝑛

𝜋𝑧

ℎ
 (5) 

 

The normal and shear strains associated with the 

displacement field (3) are as follows 

 

{

휀𝑥
휀𝑦
𝛾𝑥𝑦

} = {

휀𝑥
0

휀𝑦
0

𝛾𝑥𝑦
0

} + 𝑧 {

𝑘𝑥
𝑏

𝑘𝑦
𝑏

𝑘𝑥𝑦
𝑏

} + 𝑓(𝑧) {

𝑘𝑥
𝑠

𝑘𝑦
𝑏

𝑘𝑥𝑦
𝑠

} ; (6a) 

 

{
𝛾𝑦𝑧
𝛾𝑥𝑧
} = 𝑔(𝑧) {

𝛾𝑦𝑧
𝑠

𝛾𝑥𝑧
𝑠 } (6b) 

 

Where 

 

{

휀𝑥
0

휀𝑦
0

𝛾𝑥𝑦
0

} =

{
  
 

  
 

𝜕𝑢0
𝜕𝑥
𝜕𝑣0
𝜕𝑦

𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥 }
  
 

  
 

;     {

𝑘𝑥
𝑏

𝑘𝑦
𝑏

𝑘𝑥𝑦
𝑏

} =

{
  
 

  
 −

𝜕2𝑤0
𝜕𝑥2

−
𝜕2𝑤0
𝜕𝑦2

−2
𝜕2𝑤0
𝜕𝑥𝜕𝑦}

  
 

  
 

; (6c) 

 

{

𝑘𝑥
𝑠

𝑘𝑦
𝑠

𝑘𝑥𝑦
𝑠
} =

{
  
 

  
 𝑘1𝐴1

𝜕2𝜃

𝜕𝑥2

𝑘2𝐵1
𝜕2𝜃

𝜕𝑦2

(𝑘1𝐴1 + 𝑘2𝐵1)
𝜕2𝜃

𝜕𝑥𝜕𝑦}
  
 

  
 

; 

{
𝛾𝑦𝑧
𝑠

𝛾𝑥𝑧
𝑠 } =

{
 

 𝑘2𝐵1
𝜕𝜃

𝜕𝑦

𝑘1𝐴1
𝜕𝜃

𝜕𝑥}
 

 
 

(6d) 

 

And 

𝑔(𝑧) =
𝑑𝑓(𝑧)

𝑑𝑧
 (6e) 

 

2.2 Constitutive equations 
 

The stress-strain relationships, accounting for transverse 

shear deformation and thermal effects for a layer can be 

expressed as 

 

{

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

} = [

𝑄11 𝑄12 𝑄16
𝑄12 𝑄22 𝑄26
𝑄16 𝑄26 𝑄66

] {

휀𝑋 − 𝛼𝑥𝑇
휀𝑦 − 𝛼𝑦𝑇

𝛾𝑥𝑦 − 𝛼𝑥𝑦𝑇
} ; (7a) 

 

{
𝜏𝑦𝑧
𝜏𝑥𝑧
} = [

𝑄44 𝑄45
𝑄45 𝑄55

] {
𝛾𝑦𝑧
𝛾𝑥𝑧
} (7b) 

 

Where Qij are the plane stress-reduced stiffnesses that 

are expressed as follows 
 

𝑄11 =
𝐸1

1 − 𝜐12𝜐21
;      𝑄12 =

𝜐12𝐸2
1 − 𝜐12𝜐21

; 

𝑄22 =
𝐸2

1 − 𝜐12𝜐21
;      𝑄66 = 𝐺12; 

𝑄44 = 𝐺23;                    𝑄55 = 𝐺13 

(8) 

 

And Ei are Young’s moduli, νij are Poisson’s rations, 

Gij are shear moduli, αx and αy are the coefficients of 

linear thermal expansion in x and y directions respectively, 

and T = T (x, y, z) is the temperature distribution. 

The constitutive equations of each lamina are 

transformed to the plate coordinates (x, y, z) and the stress-

strain relationships in the plate coordinate system for thekth 

layer is expressed as 
 

{

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

}

(𝑘)

= [

𝑄11 𝑄12 𝑄16

𝑄12 𝑄22 𝑄26

𝑄16 𝑄26 𝑄66

]

(𝑘)

{

휀𝑋 − 𝛼𝑥𝑇
휀𝑦 − 𝛼𝑦𝑇

𝛾𝑥𝑦 − 𝛼𝑥𝑦𝑇
}

(𝑘)

, (9a) 

 

{
𝜏𝑦𝑧
𝜏𝑥𝑧
}
(𝑘)
= [

𝑄44 𝑄45

𝑄45 𝑄55
]

(𝑘)

{
𝛾𝑦𝑧
𝛾𝑥𝑧
}
(𝑘)

 (9b) 

 

Where Q̅ij are the transformed elastic coefficient given 

by Reddy (1997). 
 

2.3 Governing equations 
 

The principle of virtual work is used in order to 

determine the governing equations as follows 

 

∫ ∫ ∫ (𝜎𝑥

𝑎

0

𝑏

0

ℎ

2

−
ℎ

2

𝛿휀𝑥 + 𝜎𝑦𝛿휀𝑦 + 𝜏𝑦𝑧𝛿𝛾𝑦𝑧 + 𝜏𝑥𝑧𝛿𝛾𝑥𝑧 

+𝜏𝑥𝑦𝛿𝛾𝑥𝑦)𝑑𝑥𝑑𝑦𝑑𝑧 − ∫ ∫ 𝑞𝛿𝑤𝑑𝑥𝑑𝑦 = 0
𝑎

0

𝑏

0

 

(10) 

 

By substituting Eqs. (6)-(9) into Eq. (10) and integrating 

through the thickness, Eq. (10) can be expressed as 
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∫ ∫ (𝑁𝑥

𝑎

0

𝑏

0

𝜕𝛿𝑢0
𝜕𝑥

−𝑀𝑥
𝑏
𝜕2𝛿𝑤0
𝜕𝑥2

+ 𝑘1𝐴1𝑀𝑥
𝑠
𝜕2𝛿𝜃

𝜕𝑥2
 

+𝑁𝑦
𝜕𝛿𝑣0
𝜕𝑦

−𝑀𝑦
𝑏
𝜕2𝛿𝑤0
𝜕𝑦2

+ 𝑘2𝐵1𝑀𝑦
𝑠
𝜕2𝛿𝜃

𝜕𝑦2
 

+𝑁𝑥𝑦 (
𝜕𝛿𝑢0
𝜕𝑦

+
𝜕𝛿𝑣0
𝜕𝑥

) − 2𝑀𝑥𝑦
𝑏
𝜕2𝛿𝑤0
𝜕𝑥𝜕𝑦

 

+(𝑘1𝐴1 + 𝑘2𝐵1)𝑀𝑥𝑦
𝑠
𝜕2𝛿𝜃

𝜕𝑥𝜕𝑦
+ 𝑘1𝐴1𝑆𝑥𝑧

𝑠
𝜕𝛿𝜃

𝜕𝑥
 

+𝑘2𝐵1𝑆𝑦𝑧
𝑠
𝜕𝛿𝜃

𝜕𝑦
− 𝑞𝛿𝑤0)𝑑𝑥𝑑𝑦 = 0 

(11) 

 

The resulting stresses and moments are obtained by 

integrating Eq. (9) over the thickness, and are expressed as 

 

{
𝑁
𝑀𝑏

𝑀𝑠
} = [

𝐴 𝐵 𝐵𝑠

𝐵 𝐷 𝐷𝑠

𝐵𝑠 𝐷𝑠 𝐻𝑠
] {
휀
𝑘𝑏

𝑘𝑠
} + {

𝑁𝑇

𝑀𝑏𝑇

𝑀𝑠𝑇

} , 𝑆 = 𝐴𝑠𝛾 (12) 

 

Where 
 

𝑁 = {𝑁𝑥, 𝑁𝑦, 𝑁𝑥𝑦}
𝑡
, 

 𝑀𝑏 = {𝑀𝑥
𝑏, 𝑀𝑦

𝑏, 𝑀𝑥𝑦
𝑏 }

𝑡
, 

𝑀𝑠 = {𝑀𝑥
𝑠, 𝑀𝑦

𝑠, 𝑀𝑥𝑦
𝑠 }

𝑡
 

(13a) 

 

𝑁𝑇 = {𝑁𝑥
𝑇 , 𝑁𝑦

𝑇 , 𝑁𝑥𝑦
𝑇 }

𝑡
, 

 𝑀𝑏𝑇 = {𝑀𝑥
𝑏𝑇 , 𝑀𝑦

𝑏𝑇 , 𝑀𝑥𝑦
𝑏𝑇}

𝑡

, 

𝑀𝑠𝑇 = {𝑀𝑥
𝑠𝑇 , 𝑀𝑦

𝑠𝑇 , 𝑀𝑥𝑦
𝑠𝑇}

𝑡

 

(13b) 

 

휀 = {휀𝑥
0, 휀𝑦

0, 𝛾𝑥𝑦
0 }

𝑡
, 

𝑘𝑏 = {𝑘𝑥
𝑏, 𝑘𝑦

𝑏, 𝑘𝑥𝑦
𝑏 }

𝑡
, 

𝑘𝑠 = {𝑘𝑥
𝑠 , 𝑘𝑦

𝑠 , 𝑘𝑥𝑦
𝑠 }

𝑡
 

(13c) 

 

𝐴 = [

𝐴11 𝐴12 𝐴16
𝐴12 𝐴22 𝐴26
𝐴16 𝐴26 𝐴66

] ,     𝐵 = [

𝐵11 𝐵12 𝐵16
𝐵12 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66

] , 

𝐷 = [

𝐷11 𝐷12 𝐷16
𝐷12 𝐷22 𝐷26
𝐷16 𝐷26 𝐷66

] 

(13d) 

 

𝐵𝑠 = [

𝐵11
𝑠 𝐵12

𝑠 𝐵16
𝑠

𝐵12
𝑠 𝐵22

𝑠 𝐵26
𝑠

𝐵16
𝑠 𝐵26

𝑠 𝐵66
𝑠
],     𝐷𝑠 = [

𝐷11
𝑠 𝐷12

𝑠 𝐷16
𝑠

𝐷12
𝑠 𝐷22

𝑠 𝐷26
𝑠

𝐷16
𝑠 𝐷26

𝑠 𝐷66
𝑠
] , 

𝐻𝑠 = [

𝐻11
𝑠 𝐻12

𝑠 𝐻16
𝑠

𝐻12
𝑠 𝐻22

𝑠 𝐻26
𝑠

𝐻16
𝑠 𝐻26

𝑠 𝐻66
𝑠
] 

(13e) 

 

𝑆 = {𝑆𝑦𝑧
𝑠 , 𝑆𝑥𝑧

𝑠 }
𝑡
,   𝛾 = {𝛾𝑦𝑧, 𝛾𝑥𝑧}

𝑡
,   𝐴𝑠 = [

𝐴44
𝑠 𝐴45

𝑠

𝐴45
𝑠 𝐴55

𝑠 ] (13f) 

 

Where the stiffness components are defined as 

 

(𝐴𝑖𝑗 , 𝐵𝑖𝑗 , 𝐷𝑖𝑗) = 

∑∫ 𝑄𝑖𝑗
(𝑘)
(1, 𝑧, 𝑧2

𝑧𝑘+1

𝑧𝑘

𝑛

𝑘=1

)𝑑𝑧,     (𝑖, 𝑗 = 1,2,6) 
(14a) 

 

(𝐵𝑖𝑗
𝑠 , 𝐷𝑖𝑗

𝑠 , 𝐻𝑖𝑗
𝑠 ) = 

∑∫ 𝑄𝑖𝑗
(𝑘)
(

𝑧𝑘+1

𝑧𝑘

𝑛

𝑘=1

𝑓(𝑧), 𝑧𝑓(𝑧), 𝑓2(𝑧))𝑑𝑧, 

(𝑖, 𝑗 = 1,2,6), 

(14b) 

 

𝐴𝑖𝑗
𝑠 =∑∫ 𝑄𝑖𝑗

(𝑘)
𝑔2

𝑧𝑘+1

𝑧𝑘

𝑛

𝑘=1

(𝑧)𝑑𝑧,    (𝑖, 𝑗 = 4,5). (14c) 

 

In the present article, the thermal loading across the 

thickness is supposed to be 

 

𝑇(𝑥, 𝑦, 𝑧) = 𝑇1(𝑥, 𝑦) +
𝑧

ℎ
𝑇2(𝑥, 𝑦) +

𝑓(𝑧)

ℎ
𝑇3(𝑥, 𝑦) (15) 

 

With the integration by parts of Eq. (11) alongside 

collecting the coefficient of  δu0, δv0, δw0, δθ  we can 

obtain the following governing equations 

 

𝛿𝑢0:
𝜕𝑁𝑥
𝜕𝑥

+
𝜕𝑁𝑥𝑦
𝜕𝑦

= 0 

𝛿𝑣0:
𝜕𝑁𝑦
𝜕𝑦

+
𝜕𝑁𝑥𝑦
𝜕𝑥

= 0 

𝛿𝑤0:
𝜕2𝑀𝑥

𝑏

𝜕𝑥2
+
𝜕2𝑀𝑦

𝑏

𝜕𝑦2
+ 2

𝜕2𝑀𝑥𝑦
𝑏

𝜕𝑥𝜕𝑦
+ 𝑞 = 0 

𝛿𝜃: 𝑘1𝐴1
𝜕𝑆𝑥𝑧

𝑠

𝜕𝑥
+ 𝑘2𝐵1

𝜕𝑆𝑦𝑧
𝑠

𝜕𝑦
− 𝑘1𝐴1

𝜕2𝑀𝑥
𝑠

𝜕𝑥2
 

−𝑘2𝐵1
𝜕2𝑀𝑦

𝑠

𝜕𝑦2
− (𝑘1𝐴1 + 𝑘2𝐵1)

𝜕2𝑀𝑥𝑦
𝑠

𝜕𝑥𝜕𝑦
= 0 

(16) 

 

By substituting Eq. (12) into Eq. (16), the governing 

equations can be written in terms of displacements 

(𝑢0, 𝑣0, 𝑤0, 𝜃) as follows 

 

𝐴11
𝜕2𝑢0
𝜕𝑥2

+ 2𝐴16
𝜕2𝑢0
𝜕𝑥𝜕𝑦

+ 𝐴66
𝜕2𝑢0
𝜕𝑦2

 

+𝐴16
𝜕2𝑣0
𝜕𝑥2

+ 𝐴26
𝜕2𝑣0
𝜕𝑦2

+ (𝐴12 + 𝐴66)
𝜕2𝑣0
𝜕𝑥𝜕𝑦

 

−𝐵11
𝜕3𝑤0
𝜕𝑥3

− 𝐵26
𝜕3𝑤0
𝜕𝑦3

− 3𝐵16
𝜕3𝑤0
𝜕𝑥2𝜕𝑦

 

−(𝐵12 + 2𝐵66)
𝜕3𝑤0
𝜕𝑥𝜕𝑦2

+ 𝑘1𝐴1𝐵11
𝑠
𝜕3𝜃

𝜕𝑥3
 

+𝑘2𝐵1𝐵26
𝑠
𝜕3𝜃

𝜕𝑦3
+ 𝑘2𝐵1𝐵12

𝑠
𝜕3𝜃

𝜕𝑥𝜕𝑦2
 

+(2𝑘1𝐴1 + 𝑘2𝐵1)𝐵16
𝑠

𝜕3𝜃

𝜕𝑥2𝜕𝑦
 

+(𝑘1𝐴1 + 𝑘2𝐵1)𝐵66
𝑠

𝜕3𝜃

𝜕𝑥𝜕𝑦2
−
𝜕𝑁𝑥

𝑇

𝜕𝑥
−
𝜕𝑁𝑥𝑦

𝑇

𝜕𝑦
= 0 

(17a) 

 

𝐴12
𝜕2𝑢0
𝜕𝑥2

+ 𝐴26
𝜕2𝑢0
𝜕𝑦2

+ (𝐴12 + 𝐴66)
𝜕2𝑢0
𝜕𝑥𝜕𝑦

 

+𝐴22
𝜕2𝑣0
𝜕𝑦2

+ 2𝐴26
𝜕2𝑣0
𝜕𝑥𝜕𝑦

+ 𝐴66
𝜕2𝑣0
𝜕𝑥2

 

−𝐵16
𝜕3𝑤0
𝜕𝑥3

− 𝐵22
𝜕3𝑤0
𝜕𝑦3

− 𝐵12
𝜕3𝑤0
𝜕𝑥2𝜕𝑦

− 3𝐵26
𝜕3𝑤0
𝜕𝑥𝜕𝑦2

 

(17b) 
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−2𝐵66
𝜕3𝑤0
𝜕𝑥2𝜕𝑦

+ 𝑘1𝐴1𝐵16
𝑠
𝜕3𝜃

𝜕𝑥3
+ 𝑘2𝐵1𝐵22

𝑠
𝜕3𝜃

𝜕𝑦3
 

+𝑘1𝐴1𝐵12
𝑠

𝜕3𝜃

𝜕𝑥2𝜕𝑦
+ (𝑘1𝐴1 + 2𝑘2𝐵1)𝐵26

𝑠
𝜕3𝜃

𝜕𝑥𝜕𝑦2
 

+(𝑘1𝐴1 + 𝑘2𝐵1)𝐵66
𝑠

𝜕3𝜃

𝜕𝑥2𝜕𝑦
−
𝜕𝑁𝑦

𝑇

𝜕𝑦
−
𝜕𝑁𝑥𝑦

𝑇

𝜕𝑥
= 0 

(17b) 

 

𝐵11
𝜕3𝑢0
𝜕𝑥3

+ 𝐵26
𝜕3𝑢0
𝜕𝑦3

+ 3𝐵16
𝜕3𝑢0
𝜕𝑥2𝜕𝑦

+ 𝐵12
𝜕3𝑢0
𝜕𝑥𝜕𝑦2

 

+2𝐵66
𝜕3𝑢0
𝜕𝑥𝜕𝑦2

+ 𝐵16
𝜕3𝑣0
𝜕𝑥3

+ 𝐵22
𝜕3𝑣0
𝜕𝑦3

+ 𝐵12
𝜕3𝑣0
𝜕𝑥2𝜕𝑦

 

+3𝐵26
𝜕3𝑣0
𝜕𝑥𝜕𝑦2

+ 2𝐵66
𝜕3𝑣0
𝜕𝑥2𝜕𝑦

− 𝐷11
𝜕4𝑤0
𝜕𝑥4

− 𝐷22
𝜕4𝑤0
𝜕𝑦4

 

−2𝐷12
𝜕4𝑤0
𝜕𝑥2𝜕𝑦2

− 4𝐷16
𝜕4𝑤0
𝜕𝑥3𝜕𝑦

− 4𝐷26
𝜕4𝑤0
𝜕𝑥𝜕𝑦3

 

−4𝐷66
𝜕4𝑤0
𝜕𝑥2𝜕𝑦2

+ 𝑘1𝐴1𝐷11
𝑠
𝜕4𝜃

𝜕𝑥4
+ 𝑘2𝐵1𝐷22

𝑠
𝜕4𝜃

𝜕𝑦4
 

+𝑘2𝐵1𝐷12
𝑠

𝜕4𝜃

𝜕𝑥2𝜕𝑦2
+ (3𝑘1𝐴1 + 𝑘2𝐵1)𝐷16

𝑠
𝜕4𝜃

𝜕𝑥3𝜕𝑦
 

+(𝑘1𝐴1 + 3𝑘2𝐵1)𝐷26
𝑠

𝜕4𝜃

𝜕𝑥𝜕𝑦3
+ 𝑘1𝐴1𝐷12

𝑠
𝜕4𝜃

𝜕𝑥2𝜕𝑦2
 

+2(𝑘1𝐴1 + 𝑘2𝐵1)𝐷66
𝑠

𝜕4𝜃

𝜕𝑥2𝜕𝑦2
−
𝜕2𝑀𝑥

𝑏𝑇

𝜕𝑥2
 

−
𝜕2𝑀𝑦

𝑏𝑇

𝜕𝑦2
− 2

𝜕2𝑀𝑥𝑦
𝑏𝑇

𝜕𝑥𝜕𝑦
+ 𝑞 = 0 

(17c) 

 

−𝑘1𝐴1𝐵11
𝑠
𝜕3𝑢0
𝜕𝑥3

− 𝑘2𝐵1𝐵26
𝑠
𝜕3𝑢0
𝜕𝑦3

− 𝑘2𝐵1𝐵12
𝑠
𝜕3𝑢0
𝜕𝑥𝜕𝑦2

 

−(2𝑘1𝐴1 + 𝑘2𝐵1)𝐵16
𝑠
𝜕3𝑢0
𝜕𝑥2𝜕𝑦

 

−(𝑘1𝐴1 + 𝑘2𝐵1)𝐵66
𝑠
𝜕3𝑢0
𝜕𝑥𝜕𝑦2

− 𝑘1𝐴1𝐵16
𝑠
𝜕3𝑣0
𝜕𝑥3

 

−𝑘2𝐵1𝐵22
𝑠
𝜕3𝑣0
𝜕𝑦3

− 𝑘1𝐴1𝐵12
𝑠
𝜕3𝑣0
𝜕𝑥2𝜕𝑦

 

−(𝑘1𝐴1 + 2𝑘2𝐵1)𝐵26
𝑠
𝜕3𝑣0
𝜕𝑥𝜕𝑦2

 

−(𝑘1𝐴1 + 𝑘2𝐵1)𝐵66
𝑠
𝜕3𝑣0
𝜕𝑥2𝜕𝑦

 

+𝑘1𝐴1𝐷11
𝑠
𝜕4𝑤0
𝜕𝑥4

+ 𝑘2𝐵1𝐷22
𝑠
𝜕4𝑤0
𝜕𝑦4

 

+𝑘1𝐴1𝐷12
𝑠

𝜕4𝑤0
𝜕𝑥2𝜕𝑦2

+ 𝑘2𝐵1𝐷12
𝑠

𝜕4𝑤0
𝜕𝑥2𝜕𝑦2

 

+(3𝑘1𝐴1 + 𝑘2𝐵1)𝐷16
𝑠
𝜕4𝑤0
𝜕𝑥3𝜕𝑦

 

+(𝑘1𝐴1 + 3𝑘2𝐵1)𝐷26
𝑠
𝜕4𝑤0
𝜕𝑥𝜕𝑦3

 

+2(𝑘1𝐴1 + 𝑘2𝐵1)𝐷66
𝑠

𝜕4𝑤0
𝜕𝑥2𝜕𝑦2

 

(17d) 

 

−(𝑘1𝐴1)
2𝐻11

𝑠
𝜕4𝜃

𝜕𝑥4
− (𝑘2𝐵1)

2𝐻22
𝑠
𝜕4𝜃

𝜕𝑦4
 

+(𝑘1𝐴1)
2𝐴55

𝑠
𝜕2𝜃

𝜕𝑥2
+ (𝑘2𝐵1)

2𝐴44
𝑠
𝜕2𝜃

𝜕𝑦2
 

(17e) 

+2𝑘1𝐴1𝑘2𝐵1𝐴45
𝑠
𝜕2𝜃

𝜕𝑥𝜕𝑦
− 2𝑘1𝐴1𝑘2𝐵1𝐻12

𝑠
𝜕4𝜃

𝜕𝑥2𝜕𝑦2
 

−2𝑘1𝐴1(𝑘1𝐴1 + 𝑘2𝐵1)𝐻16
𝑠

𝜕4𝜃

𝜕𝑥3𝜕𝑦
 

−2𝑘2𝐵1(𝑘1𝐴1 + 𝑘2𝐵1)𝐻26
𝑠

𝜕4𝜃

𝜕𝑥𝜕𝑦3
 

−(𝑘1𝐴1 + 𝑘2𝐵1)
2𝐻66

𝑠
𝜕4𝜃

𝜕𝑥2𝜕𝑦2
+ 𝑘1𝐴1

𝜕2𝑀𝑥
𝑠𝑇

𝜕𝑥2
 

+𝑘2𝐵1
𝜕2𝑀𝑦

𝑠𝑇

𝜕𝑦2
+ (𝑘1𝐴1 + 𝑘2𝐵1)

𝜕2𝑀𝑥𝑦
𝑠𝑇

𝜕𝑥𝜕𝑦
= 0 

(17e) 

 

 

3. Analytical solutions for anti-symmetric cross-
ply laminated plates 

 

By using the Navier approach, the closed form solution 

of Eqs. (17) is determined for simply-supported rectangular 

plates. 

For anti-symmetric cross-ply laminates, the following 

stiffnesses are equal to zero 
 

𝐴16 = 𝐴26 = 𝐷16 = 𝐷26 = 𝐷16
𝑠 = 𝐷26

𝑠  
= 𝐻16

𝑠 = 𝐻26
𝑠 = 0  

𝐵12 = 𝐵16 = 𝐵26 = 𝐵66 = 𝐵12
𝑠 = 𝐵16

𝑠  
= 𝐵26

𝑠 = 𝐵66
𝑠 = 0 

(18) 

 

And for anti-symmetric plates, the thermal expansion 

coefficient equals zero, αxy = 0 . 

The boundary condition for simply-supported edges 

could be expressed as 
 

𝑣0 = 𝑤0 =
𝜕𝜃

𝜕𝑦
= 𝑁𝑥 = 𝑀𝑥

𝑏 = 𝑀𝑥
𝑠 = 0   𝑎𝑡   𝑥 = 0, 𝑎 (19a) 

 

𝑢0 = 𝑤0 =
𝜕𝜃

𝜕𝑥
= 𝑁𝑦 = 𝑀𝑦

𝑏 = 𝑀𝑦
𝑠 = 0   𝑎𝑡   𝑥 = 0, 𝑏 (19b) 

 

We assume that the thermal and transverse mechanical 

loadings are expanded in double Fourier series as 
 

{

𝑞
𝑇1
𝑇2
𝑇3

} = ∑∑

{
 

 
𝑞𝑚𝑛
𝑇1𝑚𝑛
𝑇2𝑚𝑛
𝑇3𝑚𝑛}

 

 ∞

𝑛=1

∞

𝑚=1

𝑠𝑖𝑛 𝜇 𝑥 𝑠𝑖𝑛 𝜆 𝑦 (20) 

 

Where the coefficients T1mn, T2mn, T3mn  and qmn 

are expressed as follows 
 

{

𝑞𝑚𝑛
𝑇1𝑚𝑛
𝑇2𝑚𝑛
𝑇3𝑚𝑛

} =
4

𝑎𝑏
∫ ∫ {

𝑞𝑚𝑛
𝑇1
𝑇2
𝑇3

}
𝑏

0

𝑎

0

𝑠𝑖𝑛 𝜇 𝑥 𝑠𝑖𝑛 𝜆 𝑦𝑑𝑥𝑑𝑦 (21) 

 

The coefficients 𝑇1𝑚𝑛, 𝑇2𝑚𝑛, 𝑇3𝑚𝑛  and 𝑞𝑚𝑛 can be 

evaluated by integrating Eq. (21) as: 

𝑇1𝑚𝑛, 𝑇2𝑚𝑛, 𝑇3𝑚𝑛 = 𝑇0 for m = n = 1, and for a single 

sinusoidal thermal loading, and 𝑇1𝑚𝑛, 𝑇2𝑚𝑛, 𝑇3𝑚𝑛 =
16𝑇0

𝜋2𝑚𝑛
 

for m, n odd, in case of uniformly distributed thermal 

loading, where T0 represents the intensity of thermal 
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loading. 

𝑞𝑚𝑛 = 𝑞0  for m = n = 1, for a single sinusoidal 

mechanical loading, and 𝑞𝑚𝑛 =
16𝑞0

𝜋2𝑚𝑛
 for m, n odd, for 

uniformly distributed mechanical loading, where 𝑞0 

represents the intensity of mechanical loading. 

The solution form for ( 𝑢0, 𝑣0, 𝑤0, 𝜃 ) to solve the 

problem is adopted as follows 
 

{

𝑢0
𝑣0
𝑤0
𝜃

} = ∑∑{

𝑈𝑚𝑛 𝑐𝑜𝑠( 𝜇𝑥) 𝑠𝑖𝑛( 𝜆𝑦)
𝑉𝑚𝑛 𝑠𝑖𝑛( 𝜇𝑥) 𝑐𝑜𝑠( 𝜆𝑦)
𝑊𝑚𝑛 𝑠𝑖𝑛( 𝜇𝑥) 𝑐𝑜𝑠( 𝜆𝑦)
𝜃𝑚𝑛 𝑠𝑖𝑛( 𝜇𝑥) 𝑐𝑜𝑠( 𝜆𝑦)

}

∞

𝑛=1

∞

𝑚=1

 (22) 

 

Where Umn, Vmn,Wmn, θmn are arbitrary parameters to 

be determined, substituting Eqs. (20)-(22) into governing 

Eq. (17), we obtain the following operator equation 
 

[𝐾]{𝛿} = {𝐹} (23) 
 

Where {𝛿} = {𝑈𝑚𝑛, 𝑉𝑚𝑛,𝑊𝑚𝑛, 𝜃𝑚𝑛} and [K] is the 

symmetric matrix given by 
 

[𝐾] = [

𝐾11 𝐾12 𝐾13 𝐾14
𝐾12 𝐾22 𝐾23 𝐾24
𝐾13 𝐾23 𝐾33 𝐾34
𝐾14 𝐾24 𝐾34 𝐾44

] (24) 

 

In which 
 

𝐾11 = −𝐴11𝜆
2 − 𝐴66𝜇

2,   𝐾12 = −(𝐴12 + 𝐴66)𝜆𝜇 
𝐾13 = 𝐵11𝜆

3,   𝐾14 = −𝐵11
𝑠 𝜆3𝑘1𝐴1 

𝐾22 = −𝐴22𝜇
2 − 𝐴66𝜆

2,   𝐾23 = 𝐵22𝜇
3, 

𝐾24 = −𝐵22
𝑠 𝑘2𝐵1𝜇

3 
𝐾33 = −𝐷11𝜆

4 − 2(𝐷12 + 2𝐷66)𝜆
2𝜇2 − 𝐷22𝜇

4 
𝐾34 = 𝐷11

𝑠 𝑘1𝐴1𝜆
4 + 𝐷22

𝑠 𝑘2𝐵1𝜇
4 

            +𝐷12
𝑠 𝜆2𝜇2(𝑘1𝐴1 + 𝑘2𝐵1) 

            +2𝐷66
𝑠 𝜆2𝜇2(𝑘1𝐴1 + 𝑘2𝐵1) 

𝐾44 = −𝐻11
𝑠 (𝑘1𝐴1)

2𝜆4 − 2𝐻12
𝑠 𝑘1𝐴1𝑘2𝐵1𝜆

2𝜇2 
            −𝐻22

𝑠 (𝑘2𝐵1)
2𝜇4 −𝐻66

𝑠 (𝑘1𝐴1 + 𝑘2𝐵1)𝜆
2𝜇2 

            −𝑆55
𝑠 𝑘1𝐴1𝜆

2 − 𝑆44
𝑠 𝑘2𝐵1𝜇

2 

(25) 

 

And {𝐹} = {𝐹1, 𝐹2, 𝐹3, 𝐹4}  is the generalized force 

given by 
 

𝐹1 = 𝜆 [
(𝐿11 + 𝐿21)𝑇1𝑚𝑛 + (𝑃11 + 𝑃21)𝑇2𝑚𝑛

+(𝑅11 + 𝑅21)𝑇3𝑚𝑛
] 

𝐹2 = 𝜇 [
(𝐿12 + 𝐿22)𝑇1𝑚𝑛 + (𝑃11 + 𝑃22)𝑇2𝑚𝑛

+(𝑅11 + 𝑅22)𝑇3𝑚𝑛
] 

𝐹3 = −𝜆
2 [

(𝑆11 + 𝑆21)𝑇1𝑚𝑛
+(𝐹11 + 𝐹21)𝑇2𝑚𝑛
+(𝑈11 + 𝑈21)𝑇3𝑚𝑛

] 

          −𝜇2 [

(𝑆11 + 𝑆22)𝑇1𝑚𝑛
+(𝐹11 + 𝐹22)𝑇2𝑚𝑛
+(𝑈11 + 𝑈22)𝑇3𝑚𝑛

] − 𝑞𝑚𝑛 

𝐹4 = −𝑘1𝐴1𝜆
2 [

(𝑉11 + 𝑉21)𝑇1𝑚𝑛
+(𝑊11 +𝑊21)𝑇2𝑚𝑛
+(𝑋11 + 𝑋21)𝑇3𝑚𝑛

] 

          −𝑘2𝐵1𝜇
2 [

(𝑉11 + 𝑉22)𝑇1𝑚𝑛
+(𝑊11 +𝑊22)𝑇2𝑚𝑛
+(𝑋11 + 𝑋22)𝑇3𝑚𝑛

] 

(26) 

Where 

 

(𝐿𝑖𝑗 , 𝑃𝑖𝑗 , 𝑅𝑖𝑗) = ∑∫ 𝛼𝑖
(𝑘)
𝑄𝑖𝑗
(𝑘)

𝑧𝑘+1

𝑧𝑘

𝑛

𝑘=1

(1,
𝑧

ℎ
,
𝑓(𝑧)

ℎ
), 

(𝑖, 𝑗 = 1,2) 

(27a) 

 

(𝑆𝑖𝑗 , 𝑇𝑖𝑗 , 𝑈𝑖𝑗) =∑∫ 𝛼𝑖
(𝑘)
𝑄𝑖𝑗
(𝑘)

𝑧𝑘+1

𝑧𝑘

𝑛

𝑘=1

(𝑧,
𝑧2

ℎ
,
𝑓(𝑧)𝑧

ℎ
), 

(𝑖, 𝑗 = 1,2) 

(27b) 

 

(𝑉𝑖𝑗 ,𝑊𝑖𝑗, 𝑋𝑖𝑗) = ∑∫ 𝛼𝑖
(𝑘)
𝑄𝑖𝑗
(𝑘)
𝑓(𝑧)

𝑧𝑘+1

𝑧𝑘

𝑛

𝑘=1

(1,
𝑧

ℎ
,
𝑓(𝑧)

ℎ
), 

(𝑖, 𝑗 = 1,2) 

(27c) 

 

 

4. Numerical results and discussion 
 
To verify the accuracy of the present theory, simply-

supported two layers (0°/90°) and four layers (0°/90°/ 

0°/90°) anti-symmetric laminated plates under uniformly 

distributed nonlinear thermo-mechanical loadings are to be 

considered. In all cases, the lamina properties are assumed 

to be 
 
𝐸1
𝐸2
= 25,   𝐺12 = 0,5𝐸2,   𝐺13 = 𝐺12,   𝐺23 = 0,2𝐸2, 

𝜇12 = 0,25,
𝛼1
𝛼2
= 3 

 

4.1 Two layers (0°/90°) anti-symmetric plat 
 

Dimensionless displacements ( �̅�, �̅�, �̅� ) and stresses 

(�̅�𝑥,�̅�𝑦, 𝜏̅𝑥𝑦,𝜏̅𝑥𝑧,𝜏̅𝑦𝑧) utilized for two layers (0°/90°) anti-

symmetric plate expressed as 
 

𝑢 = 𝑢(0,
𝑏

2
,−
ℎ

2
)

1

(𝑞0ℎ𝑠
3/𝐸2) + (𝛼1𝑇1𝑎

2)
, 

𝑣 = 𝑣(
𝑎

2
, 0, −

ℎ

2
)

1

(𝑞0ℎ𝑠
3/𝐸2) + (𝛼1𝑇1𝑎

2)
, 

𝑤 = 𝑤(
𝑎

2
,
𝑏

2
, 0)

100

(𝑞0𝑎
4/𝐸2ℎ

3) + (𝛼1𝑇1𝑎
2/10ℎ)

, 

𝜎𝑥 = 𝜎𝑥(
𝑎

2
,
𝑏

2
, −
ℎ

2
)

1

(𝑞0𝑎
2/ℎ2) + (𝐸2𝛼1𝑇1𝑎

2)
, 

𝜎𝑦 = 𝜎𝑦(
𝑎

2
,
𝑏

2
, +
ℎ

2
)

1

(𝑞0𝑎
2/ℎ2) + (𝐸2𝛼1𝑇1𝑎

2)
, 

𝜏𝑥𝑦 = 𝜏𝑥𝑦(0,0, −
ℎ

2
)

1

(𝑞0𝑎
2/ℎ2) + (𝐸2𝛼1𝑇1𝑎

2)
, 

𝜏𝑥𝑧 = 𝜏𝑥𝑧(0,
𝑏

2
, 0)

1

(𝑞0𝑎/ℎ) + (𝐸2𝛼1𝑇1𝑎
2)
, 

𝜏𝑦𝑧 = 𝜏𝑦𝑧(
𝑎

2
, 0,0)

1

(𝑞0𝑎/ℎ) + (𝐸2𝛼1𝑇1𝑎
2)
. 

 

Numerical results for two layers (0°/90°) anti-symmetric 

plates predicted in this work are discussed and compared 

with those of the classical, first-order, higher-order and 

trigonometric theories obtained by Ghugal and Kulkarni 

(2013b). 
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Table 2 Normalized transverse shear stresses for square two 

layer (0°/90°) anti-symmetric laminated plates 

subjected to uniformly distributed nonlinear 

thermo-mechanical loading for aspect ratios 4 and 

10 (T1 = 0) 

a/h Theory 𝜏̅𝑥𝑧 𝜏̅𝑦𝑧 

4 

Present 0.1682 0.1682 

TSDT 0.1925 0.1925 

HSDT 0.1917 0.1917 

FSDT 0.1996 0.1996 

10 

Present 0.2283 0.2283 

TSDT 0.2493 0.2493 

HSDT 0.2402 0.2402 

FSDT 0.2171 0.2171 
 

 

 

The results of the in-plan displacements (u̅, v̅), the 

transversenormal displacement ( w̅ ), the in-plan normal 

stresses (σ̅x, σ̅y) and the in-plan shear stress (τ̅xy) of two 

layers (0°/90°) anti-symmetric laminated plate subjected to 

combined uniformly distributed thermo-mechanical loading 

for aspect ratios 4 and 10 are reported in Table 1, whereas 

the transverse shear stresses (τ̅xz, τ̅yz) are shown in Table 2. 

The examination of Table 1 reveals that the in-plan 

displacements (u̅, v̅) obtained using the present theory for 

two anti-symmetric layers plates are in good agreementwith 

those provided by the TSDT, HSDT, FSDT, and CPT for 

both aspect ratios 4 and 10. The transverse normal 

displacements (w̅) predicted by the present theory are well 

converged with those given by the TSDT, HSDT, and FSDT 

whereas the results provided by the CPT are under 

predicted. Fig. 2 displays the variation of in-plan displace-

ment (u̅) through the thickness for a two anti-symmetric 

layers plate for aspect ratio 4. The results of the in-plan 

normal stresses (σ̅x, σ̅y) obtained using the present theory 

are comparable with those given by the TSDT, HSDT, 

 

 

 

Fig. 2 Normalized in-plan displacement (�̅�) through the 

thickness for a two-layer laminated plate for aspect 

ratio 4 
 

 

 

Fig. 3 Normalized in-plan normal stress (σ̅x) through the 

thickness of a two-layer plate for aspect ratio 4 
 

 

FSDT, and CPT for aspect ratios 4 and 10, and thethrough-

the-thickness variation of the in-plan normal stress (�̅�𝑥) as 

shown in Fig. 3, it is observed that the results obtained by 

the use of the present theory converged very well along the 

width with those ofthe TSDT, HSDT, FSDT and CPT 

theories.The values of the in-plan stresses 𝜏̅𝑥𝑦 are found 

lower than those of the TSDT, HSDT,and FSDT, and are 

comparable with those provided by the CPT for thick and 

thin plates. 

Table 1 Normalized displacements and in-plan stresses for square two layers (0°/90°) anti-

symmetric laminated plate subjected to uniformly distributed nonlinear thermo-mechanical 

loading for aspect ratios 4 and 10 

a/h Theory �̅� �̅� �̅� �̅�𝑥 �̅�𝑦 𝜏̅𝑥𝑦 

4 

Present 0.0481 0.0788 4.8625 -2.7199 2.7199 0.3183 

TSDT* 0.0470 0.0755 4.8397 -2.6430 2.6430 0.4662 

HSDT 0.0468 0.0756 4.8700 -2.6303 2.6303 0.4695 

FSDT* 0.0424 0.0736 5.0904 -2.4166 2.4166 0.4960 

CPT* 0.0442 0.0776 3.5430 -2.5043 2.5043 0.3112 

10 

Present 0.0204 0.0471 2.2105 -1.3506 1.3506 0.1327 

TSDT* 0.0203 0.0468 2.2084 -1.3428 1.3428 0.1505 

HSDT 0.0202 0.0468 2.2125 -1.3408 1.3408 0.1509 

FSDT* 0.0194 0.0465 2.2433 -1.3073 1.3073 0.1525 

CPT* 0.0196 0.0468 1.9926 -1.3165 1.3165 0.1300 
 

*Ghugal and Kulkarni (2013) 
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Fig. 4 Normalized transverse shear stress (𝜏̅𝑥𝑧) through 

the thickness of a two-layer plate for aspect ratio 4 

 

 

 

Fig. 5 Normalized transverse shear stress (τ̅xz) through 

the thickness of a two-layer plate for aspect ratio 10 
 

 

 

The results reported in Table 2 show that transverse 

shear stresses values estimated by the present theory are 

slightly lower than those given by the TSDT and HSDT for 

aspect ratios 4 and 10. The FSDT predicts the highest value 

for aspect ratio 4 while it gives the lowest values for aspect 

ratio 4, and these values are constant through the thickness. 

The variation of the transverse shear stresses (τ̅xz) through 

the thickness for a two anti-symmetric layers plate for 

aspect ratios 4 and 10 is shown in Figs. 4 and 5 respectively. 

It is noticed that the stress continuity is not imposed in the 

present theories. 
 

 

 

4.2 Fourlayers (0°/90°/0°/90°) anti-symmetric plate 
 

Dimensionless displacements (u̅, v̅, w̅) and stresses (σ̅x,
σ̅y, τ̅xy, τ̅xz, τ̅yz) utilized for four layers (0°/90°/0°/90°) 

anti-symmetric plate 
 

𝑢 = 𝑢 (0,
𝑏

2
, −
ℎ

2
)

1

(
𝑞0ℎ𝑠

3

𝐸2
) + (𝛼1𝑇1𝑎

2)
, 

𝑣 = 𝑣 (
𝑎

2
, 0, −

ℎ

2
)

1

(
𝑞0ℎ𝑠

3

𝐸2
) + (𝛼1𝑇1𝑎

2)
, 

𝑤 = 𝑤(
𝑎

2
,
𝑏

2
, 0)

100

(𝑞0𝑎
4/𝐸2ℎ

3) + (𝛼1𝑇1𝑎
2/10ℎ)

,  

𝜎𝑥 = 𝜎𝑥(
𝑎

2
,
𝑏

2
, −
ℎ

2
)

1

(𝑞0𝑎
2/ℎ2) + (𝐸2𝛼1𝑇1𝑎

2)
, 

𝜎𝑦 = 𝜎𝑦(
𝑎

2
,
𝑏

2
, +
ℎ

2
)

1

(𝑞0𝑎
2/ℎ2) + (𝐸2𝛼1𝑇1𝑎

2)
, 

𝜏𝑥𝑦 = 𝜏𝑥𝑦(0,0, −
ℎ

2
)

1

(𝑞0𝑎
2/ℎ2) + (𝐸2𝛼1𝑇1𝑎

2)
, 

𝜏𝑥𝑧 = 𝜏𝑥𝑧(0,
𝑏

2
, −
ℎ

4
)

1

(𝑞0𝑎/ℎ) + (𝐸2𝛼1𝑇1𝑎
2)
, 

𝜏𝑦𝑧 = 𝜏𝑦𝑧(
𝑎

2
, 0, −

ℎ

4
)

1

(𝑞0𝑎/ℎ) + (𝐸2𝛼1𝑇1𝑎
2)
. 

 

It is to be noticed that the results for four layers 

(0°/90°/0°/90°) anti-symmetric laminated plates under 

uniformly distributed nonlinear thermo-mechanical 

loadingsof the classical, first-order, higher-order, and 

trigonometric theories used in the discussions and 

comparisons with those predicted by the present theory are 

not available in the literature but generated using the 

aforementioned theories. 

Table 3 reveals that the in-plan displacements (u̅, v̅) 

obtained using the present theory for a four-layersanti-

symmetric plate are found to agree well with theTSDT, 

HSDT, and FSDT whereas the CPT underpredicts the in-

plan displacements for aspect ratios 4 and 10. The 

transverse normal displacements w̅ for a four anti- 

symmetric layers plate are in good agreement with the 
 

 

 

 

Table 3 Normalized displacements and in-plan stresses for square four layers (0°/90°/0°/90°) 

antisymmetric laminated plates subjected to uniformly distributed nonlinear thermo-

mechanical loading for aspect ratio 4 and 10 (T1 = 0) 

a/h Theory �̅� �̅� �̅� �̅�𝑥 �̅�𝑦 𝜏̅𝑥𝑦 

4 

Present 0.0445 0.0567 4.1670 -2.4421 2.4421 0.2732 

TSDT* 0.0423 0.0534 4.1327 -2.2788 2.2788 0.4531 

HSDT 0.0425 0.0533 4.1536 -2.2853 2.2853 0.4604 

FSDT* 0.0405 0.0488 4.0321 -2.2469 2.2469 0.5107 

CPT* 0.0206 0.0342 1.7870 -1.5600 1.5600 0.1552 

10 

Present 0.0159 0.0232 1.3542 -1.0223 1.0223 0.0846 

TSDT* 0.0157 0.0228 1.3501 -1.0033 1.0033 0.1071 

HSDT 0.0157 0.0228 1.3528 -1.0050 1.0050 0.1079 

FSDT* 0.0154 0.0221 1.3308 -1.0030 1.0030 0.1105 

CPT* 0.0128 0.0192 0.9665 -0.8749 0.8749 0.0629 
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Fig. 6 Normalized in-plan displacement (v̅) through the 

thickness for an anti-symmetric four-layer laminated 

plate for aspect ratio 4 
 

 

 

Fig. 7 Normalized in-plan normal stress (σ̅x) through the 

thickness of an anti-symmetric four-layer laminated 

plate for aspect ratio 10 
 

 

 

Fig. 8 Normalized in plane shear stress (τ̅xy) through the 

thickness of an anti-symmetric four-layer laminated 

plate for aspect ratio 10 
 

 

TSDT, HSDT, and FSDT whereas the results provided by 

the CPT are underestimated. Fig. 6 displays the distribution 

of the in-plan displacement (v̅) through the thickness for 

an anti-symmetric four-layer laminated plate for aspect ratio 

4, the results displayed in this figure show that the in-plan 

displacements given by the present theory, TSDT, HSDT, 

and FSDT are more or less identical along the thickness 

whereas those provided by the CPT are underpredicted. The 

results of the in-plan normal stresses (σ̅x, σ̅y) obtained by 

the present theory are comparable withtheTSDT, HSDT, 

and FSDT whereas the CPT underestimates the same for 

both aspect ratios 4 and 10. The variation of normalized in-

plan normal stress (σ̅x) through the thickness of a four anti- 

 

Fig. 9 Normalized transverse shear stress (τ̅yz) through 

the thickness of an anti-symmetric four-layer 

laminated plate for aspect ratio 4 
 

 

 

Fig. 10 Normalized transverse shear stress (τ̅yz) through 

the thickness of an anti-symmetric four-layer 

laminated plate for aspect ratio 10 
 

 

symmetric layers laminated plate for aspect ratio 10 is 

displayed in Fig. 7, from whichit is noticed that the results 

obtained by the use of the present theory are closeto those 

given by the TSDT, HSDT, and FSDT whereas the results 

provided by the CPT are underestimated. The in-plan 

stresses 𝜏̅𝑥𝑦 show intermediate values between those of the 

TSDT, HSDT, FSDT and those of the CPT for thick and 

thin plates, the distribution of these stresses for aspect ratio 

10 is displayed in Fig. 8. 

From Table 4, it is observed that transverse shear 

stresses values given by the present theory converged 

accurately enough with the other theories; the TSDT, 

HSDT, and FSDT. Figs. 9 and10 displayed normalized 

transverse shear stress (τ̅yz) through the thickness of an 

anti-symmetric four-layer laminated plate for aspect ratios 4 

and 10 respectively. It is noticed from the results of the 

mentioned figures that the present theory converges well 

with the other higher-order theories whereas the FSDT 

gives a constant value of transverse shear stress trough the 

thickness. 
 

 

5. Conclusions 
 

The present article delves on the presentation of a 

refined four-variable theory for the analysis of the response 

of simply supported two layers (0°/90°) and four layers 

(0°/90°/0°/90°) anti-symmetric laminated composite plates 

subjected to a combined uniformly distributed nonlinear 
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thermo-mechanical loading. The concluding remarks are as 

follows: 
 

● The present theory does not require the use of a 

shear correction factor. 

● The number of variables and the governing 

equations are reduced to four instead of five or more 

in the other theories. 

● The results provided using the present theory are 

found to converge well with the trigonometric shear 

theory along with the higher-order shear one. 
 

An improvement of the present formulation will be 

considered in the future work to consider other type of 

materials (Arani and Kolahchi 2016, Kolahchi et al. 2016a, 

b, 2017b Bilouei et al. 2016, Madani et al. 2016, Zamanian 

et al. 2017, Kolahchi and Cheraghbak 2017, Kolahchi 2017, 

Hajmohammad et al. 2017, 2018a, b, c, Fakhar and 

Kolahchi 2018, Amnieh et al. 2018, Golabchi et al. 2018, 

Hosseini and Kolahchi 2018, Alimirzaei et al. 2019). 
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