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1. Introduction 

 

Among nano composites, the polymeric nano 

composites have been intense interest among researchers. 

One of the reasons for the development of polymeric nano 

composites is unique mechanical, chemical and physical 

properties. Polymeric nano composites usually have high 

strength, low weight, high thermal stability, high electrical 

conductivity and high chemical resistance. By adding a few 

percent of the nanoparticles to a pure polymer, Tensile 

strength, yield strength and yang modulus increase 

significantly. For example, by adding only 0.04% of the 

volume of Mica (a type of silicate) with a dimension of 50 

nm to Epoxy, the modulus Yang will increase the 58% 

Buckling behavior of sandwich panels with a core that is 

flexible in the out-of-plane direction, also denoted as “soft” 

core including high-order effects, was presented by Frostig 

(2003). Propagation of flexural and shear waves in an 

unbounded sandwich beam were considered by Sorokin and 

Grishina (2004). An elementary theory for non-linear 

vibrations of viscoelastic sandwich beams was presented by 

Daya et al. (2004). An efficient new coupled zigzag theory 

was developed by Kapuria et al. (2005) for dynamics of 

piezoelectric composite and sandwich beams with damping. 

The dynamic response of a fully clamped metallic sandwich 

beam subjected to impulsive loading was theoretically 

investigated by Qin and Wang (2009). Liu et al. (2012) 

presented a new Fourier-related double scale analysis to 

study instability phenomena of sandwich structures. Using 

the membrane factor method, we obtained the analytical 

solutions for the dynamic response of the sandwich beam. 
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An analytical model for face wrinkling failure under 

dynamic compression of corrugated core sandwich columns 

was investigated by Lim and Bart-Smith (2015). Sandwich 

panels were produced by Lakreb et al. (2015) using wood 

veneer of Aleppo pine as face sheets and cork agglomerate 

as core, including multilayered designs, for use in 

construction. A new refined hyperbolic shear and normal 

deformation beam theory was developed by Bennai et al. 

(2015) to study the free vibration and buckling of 

functionally graded (FG) sandwich beams under various 

boundary conditions. Vibration analysis of embedded 

functionally graded (FG)-carbon nanotubes (CNT)-

reinforced piezoelectric cylindrical shell subjected to 

uniform and non-uniform temperature distributions were 

presented by Madani et al. (2016). Eltaher et al. (2016) 

investigated the effects of both size-dependency and 

material-dependency on the nonlinear static behavior of 

carbon nanotubes (CNTs). The nonlinear eigen frequency 

response of the functionally graded single-walled carbon 

nanotube reinforced sandwich structure was investigated by 

Mehar et al. (2017) numerically considering the Green-

Lagrange nonlinear strain under uniform thermal 

environment. Smyczynski and Magnucka-Blandzi (2018) 

devoted to the stability analysis of a simply supported five 

layer sandwich beam. Agglomeration phenomenon of CNTs 

was experimentally observed and then it was analytically 

modeled by Zeinedini et al. (2018). Using a base wash 

procedure, oxygen functional groups have been removed 

the graphene oxide (GO) flakes, and the prepare the base-

washed GO (BwGO) flakes obtained have been 

Incorporated into a PVA matrix to make a nano composite 

was studied by Li et al. (2018). Shokravi (2018) presented 

forced vibration of micro cylindrical shell reinforced by 

functionally graded carbon nanotubes (FGCNTs). Safaei et 

al. (2018) investigated the effect of thermal gradient load on 

natural frequencies of sandwich plates with polymer-based 
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nanocomposite face sheets reinforced by functionally 

graded (FG) single-walled carbon nano tubes (SWCNTs) 

agglomerations. Critical comparison of different mean field 

homogenization approaches for CNT-reinforced polymer 

composites with waviness and agglomeration effects was 

presented by García-Macías and Castro-Triguero  (2018). 

The study of composite and nanocomposite paltes was 

presented by Duc et al. (Duc and Minh 2010, Duc 2014a, b, 

2016, Duc et al. 2013, 2015, 2018). Chung et al. (2013) 

investigated Polymeric Composite Films Using Modified 

TiO2 Nanoparticles. Large amplitude vibration problem of 

laminated composite spherical shell panel under combined 

temperature and moisture environment was analyzed by 

Mahapatra and Panda (2016). The nonlinear free vibration 

behaviour of laminated composite spherical shell panel 

under the elevated hygrothermal environment was 

investigated by Mahapatra et al. (2016a). Mahapatra et al. 

(2016b) studied the geometrically nonlinear transverse 

bending behavior of the shear deformable laminated 

composite spherical shell panel under hygro-thermo-

mechanical loading. Nonlinear free vibration behavior of 

laminated composite curved panel under hygrothermal 

environment was investigated by Mahapatra et al. (2016c). 

The flexural behaviour of the laminated composite plate 

embedded with two different smart materials (piezoelectric 

and magnetostrictive) and subsequent deflection 

suppression were investigated by Dutta et al. (2017). Suman 

et al. (2017) studied static bending and strength behaviour 

of the laminated composite plate embedded with 

magnetostrictive (MS) material numerically using 

commercial finite element tool. Vibration and nonlinear 

dynamic response of eccentrically stiffened functionally 

graded composite truncated conical shells in thermal 

environments were presented by Chan et al. (2018). 

Nonlinear response and buckling analysis of eccentrically 

stiffened FGM toroidal shell segments in thermal 

environment were studied by Vuong and Duc (2018). In this 

work, buckling analyses of composite concrete plate 

reinforced by Piezoelectric nanoparticles is studied. 

In this paper, vibration of sandwich beams with flexible 

core and nanocomposite facesheets is presented. The top 

and bottom layers are reinforced with CNTs considering the 

agglomeration effects. The sandwich structure is modeled 

by Frostig theory for core and Euler-Bernoulli model for 

facesheets. Applying Hamilton’s principle, the motion 

equations are derived and based on Navier method, the 

frequency of the structure is calculated. The effect of 

agglomeration and CNTs volume percent for different 

parameter such as damping of structure, thickens and spring 

constant of elastic medium are presented on the frequency 

of the composite structure. 

 

 

2. Kinematics of different theories 
 

Fig. 1 shows a sandwich beam including top and bottom 

beams reinforced with CNTs and flexible core resting on 

elastic medium with length of L, core thickness of c and top 

and bottom layers thickness dt and db, respectively. 

 

 

Fig. 1 A schematic of sandwich beam with nanocomposite 

facesheets resting on elastic medium 

 

 

2.1 Strain-stress relations 
 

The strain-stress relations for the facesheets can be 

given as follows 
 

𝜎𝑥𝑥
𝑡 = 𝐸𝑡𝜀𝑥𝑥

𝑡 , (1) 

 

𝜎𝑥𝑥
𝑏 = 𝐸𝑏𝜀𝑥𝑥

𝑏 , (2) 

 

where, parameters 𝐸𝑡and 𝐸𝑏are Young modulus of upper 

and lower beam, respectively. The strain-stress relations for 

core can be given 
 

𝑇 = 𝐺𝑐𝛾, (3) 

 

𝜎𝑧𝑧 = 𝐸𝑐
𝜕

𝜕𝑧
𝑤𝑐 , (4) 

 

where, parameters 𝐺𝑐and 𝐸𝑐are shear modulus and Young 

modulus of the core, respectively. Based on the refined first 

order Forstig theory, the strains can be written as 

 

𝛾𝑐 =
𝜕

𝜕𝑧
𝑢𝑐 − 𝑧

𝜕

𝜕𝑥
𝑤𝑐 , (5) 

 

𝜀𝑧𝑧 =
𝜕

𝜕𝑧
𝑤𝑐 , (6) 

 

The kinematic unknown parameters of the refined first 

order Forstig theory are 𝑢𝑐and 𝑤𝑐 which are the axial and 

transverse core displacements, respectively. 

 

2.2 Euler–Bernoulli model 
 

Based on Euler–Bernoulli beam model, the orthogonal 

components of the displacement vector can be written as 

 

𝑢(𝑥, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑡) − 𝑧
𝜕𝑤0(𝑥, 𝑡)

𝜕𝑥
, (7) 

 

𝑤(𝑥, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑡), (8) 

 

The strain–displacement relations for the facesheets can 

be express as 
 

𝜀𝑥𝑥
𝑡 =

𝜕

𝜕𝑥
𝑢𝑜𝑡 − 𝑧

𝜕2

𝜕𝑥2
𝑤𝑏, (9) 
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𝜀𝑥𝑥
𝑏 =

𝜕

𝜕𝑥
𝑢𝑜𝑏 − 𝑧

𝜕2

𝜕𝑥2
𝑤𝑏 , (10) 

 

where the superscripts (t, b) are used to denote quantities 

corresponding to the upper and lower beam, respectively. 
 

2.3 Variation of potential energy 
 

The variation of potential energy for beams and flexible 

core can be written as 
 

𝛿𝑈 = ∫ 𝜎𝑥𝑥𝛿𝜀𝑥𝑥𝑑𝑢 +
𝑢𝑡𝑜𝑝

∫ 𝜎𝑥𝑥𝛿𝜀𝑥𝑥𝑑𝑢 +
𝑢𝑏𝑜𝑡

 

∫ 𝜏𝑐𝛿𝛾𝑐𝑑𝑢
𝑢𝑐𝑜𝑟𝑒

+∫ 𝜎𝑧𝑧𝛿𝜀𝑧𝑧𝑑𝑢
𝑢𝑐𝑜𝑟𝑒

 

(11) 

 

where, the force and moment resultants can be defined as 
 

𝑁𝑡𝑥𝑥 = ∫ 𝜎𝑥𝑥
𝑡

𝐴𝑡
𝑑𝐴 = −𝐸𝑡𝐴𝑡

𝜕

𝜕𝑥
𝑢𝑜𝑡 , (12) 

 

𝑁𝑏𝑥𝑥 = ∫ 𝜎𝑥𝑥
𝑏

𝐴𝑏
𝑑𝐴 = −𝐸𝑏𝐴𝑏

𝜕

𝜕𝑥
𝑢𝑜𝑏, (13) 

 

𝑀𝑡𝑥𝑥 = ∫ 𝜎𝑥𝑥
𝑡 𝑧

𝐴𝑡
𝑑𝐴 = −𝐸𝑡𝐼𝑡

𝜕2

𝜕𝑥2
𝑤𝑡 , (14) 

 

𝑀𝑏𝑥𝑥 = ∫ 𝜎𝑥𝑥
𝑡

𝐴𝑏
𝑧𝑑𝐴 = −𝐸𝑏𝐼𝑏

𝜕2

𝜕𝑥2
𝑤𝑏, (15) 

 

2.4 Variation of kinematic energy 
 

The variation of kinematic can be given as follows 
 

𝛿𝐾 = ∫

[
 
 
 
 
 
 ∫ 𝑚𝑡(�̇�𝑜𝑡𝛿�̇�𝑜𝑡 + �̇�𝑡𝛿�̇�𝑡)

𝐿

0

𝑑𝑥

+∫ 𝑚𝑏(�̇�𝑜𝑏𝛿�̇�𝑜𝑏 + �̇�𝑏𝛿�̇�𝑏)
𝐿

0

𝑑𝑥

+∫ 𝜌𝑐�̇�𝑐𝛿�̇�𝑐𝑑𝑣 + ∫ 𝜌𝑐�̇�𝑐𝛿�̇�𝑐𝑑𝑣
𝑣𝑐𝑜𝑟𝑒𝑣𝑐𝑜𝑟𝑒 ]

 
 
 
 
 
 

𝑡2

𝑡1

𝑑𝑡 (16) 

 

2.5 Variation of external work 
 

The variation of external work, due to elastic medium 

load simulated by orthotropic Pasternak model can be 

express as (Kutlu et al. 2012) 
 

𝛿𝑊 = ∫

(

 
𝑘𝑔1 𝑐𝑜𝑠

2( 𝜃)
𝜕2

𝜕𝑥2
𝑤𝑏 +

𝑘𝑔2 𝑠 𝑖 𝑛
2(𝜃)

𝜕2

𝜕𝑥2
𝑤𝑏 − 𝑘𝑤𝑤𝑏)

 𝑑𝑥 (17) 

 

2.6 Motion equation 
 

For driving the motion equation, the Hamilton principle 

is used as follows 
 

) 0U W K dt  − − =  
(18) 

where 𝛿 is variation, 𝛿𝑈is variation of potential energy, 

𝛿𝑊 is variation of kinematic energy and 𝛿𝐾 is variation 

of external work. 

Using the Hamilton principle and partial integral, the 

governing equations are computed 

 

Equation 1: 

 

𝜕𝑁𝑡𝑥𝑥
𝜕𝑥

+ 𝜏𝑏 −𝑚𝑡

𝜕2

𝜕𝑡2
𝑢𝑜𝑡 −

𝑚𝑐

3

𝜕2

𝜕𝑡2
𝑢𝑜𝑡 

−
𝑚𝑐

6

𝜕2

𝜕𝑡2
𝑢𝑜𝑏 +

𝑚𝑐𝑑𝑡
6

𝜕3

𝜕𝑡2𝜕𝑥
𝑤𝑡 

+
𝑚𝑐𝑑𝑏
12

𝜕3

𝜕𝑡2𝜕𝑥
𝑤𝑏 +𝑚1𝑡

𝜕3

𝜕𝑡2𝜕𝑥
𝑤𝑡 = 0, 

(19) 

 

Equation 2: 

 

𝜕𝑁𝑏𝑥𝑥
𝜕𝑥

− 𝜏𝑏 −𝑚𝑏

𝜕2

𝜕𝑡2
𝑢𝑜𝑡 −

𝑚𝑐

6

𝜕2

𝜕𝑡2
𝑢𝑜𝑡 

−
𝑚𝑐

3

𝜕2

𝜕𝑡2
𝑢𝑜𝑏 +

𝑚𝑐𝑑𝑡
12

𝜕3

𝜕𝑡2𝜕𝑥
𝑤𝑡 

−
𝑚𝑐𝑑𝑏
6

𝜕3

𝜕𝑡2𝜕𝑥
𝑤𝑏 +𝑚1𝑏

𝜕3

𝜕𝑡2𝜕𝑥
𝑤𝑏 = 0, 

(20) 

 

Equation 3: 

 

𝜕2𝑀𝑡𝑥𝑥

𝜕𝑥2
+
𝑏𝑑𝑡
2

𝜕𝜏

𝜕𝑥
+ (

𝐸𝑐 . (𝑤𝑏 − 𝑤𝑡)

𝑐
+
𝑐

2

𝜕𝜏

𝜕𝑥
) 𝑏 

−𝑚𝑡

𝜕2

𝜕𝑡2
𝑤𝑡 −

𝑚𝑐𝑑𝑡
6

𝜕3

𝜕𝑡2𝜕𝑥
𝑢𝑜𝑡 −

𝑚𝑐𝑑𝑏
12

𝜕3

𝜕𝑡2𝜕𝑥
𝑢𝑜𝑏 

+
𝑚𝑐𝑑𝑡

2

12

𝜕3

𝜕𝑡2𝜕𝑥
𝑤𝑡 −

𝑚𝑐𝑑𝑏𝑑𝑡
24

𝜕3

𝜕𝑡2𝜕𝑥
𝑤𝑏

−𝑚1𝑡

𝜕3

𝜕𝑡2𝜕𝑥
𝑢𝑜𝑡 

+𝑚2𝑡

𝜕4

𝜕𝑡2𝜕𝑥2
𝑤𝑡 −

𝑚𝑐

6

𝜕2

𝜕𝑡2
𝑤𝑏 −

𝑚𝑐

3

𝜕2

𝜕𝑡2
𝑤𝑡 = 0, 

(21) 

 

Equation 4: 

 

𝜕2𝑀𝑏𝑥𝑥

𝜕𝑥2
+
𝑏𝑑𝑏
2

𝜕𝜏

𝜕𝑥
− (

𝐸𝑐(𝑤𝑏 −𝑤𝑡)

𝑐
−
𝑐

2

𝜕𝜏

𝜕𝑥
)𝑏 

−𝑚𝑏

𝜕2

𝜕𝑡2
𝑤𝑏 +

𝑚𝑐𝑑𝑏
12

𝜕3

𝜕𝑡2𝜕𝑥
𝑢𝑜𝑡 +

𝑚𝑐𝑑𝑏
6

𝜕3

𝜕𝑡2𝜕𝑥
𝑢𝑜𝑏 

+
𝑚𝑐𝑑𝑏

2

12

𝜕3

𝜕𝑡2𝜕𝑥
𝑤𝑏 −

𝑚𝑐𝑑𝑏𝑑𝑡
24

𝜕3

𝜕𝑡2𝜕𝑥
𝑤𝑡 

(22) 

−𝑚1𝑏

𝜕3

𝜕𝑡2𝜕𝑥
𝑢𝑜𝑏 +𝑚2𝑏

𝜕4

𝜕𝑡2𝜕𝑥2
𝑤𝑏 −

𝑚𝑐

6

𝜕2

𝜕𝑡2
𝑤𝑡  

−
𝑚𝑐

3

𝜕2

𝜕𝑡2
𝑤𝑏 − 𝑘𝑔1 𝑐𝑜𝑠

2( 𝜃)
𝜕2

𝜕𝑥2
𝑤𝑏 

+𝑘𝑔2 𝑠 𝑖 𝑛
2(𝜃)

𝜕2

𝜕𝑥2
𝑤𝑏 − 𝑘𝑤𝑤𝑏 = 0, 

 

Equation 5: 

 

𝑢0𝑡𝑏 − 𝑢0𝑏𝑏 −
𝑏(𝑐 − 𝑑𝑡)

2

𝜕𝑤𝑡
𝜕𝑥

−
𝑏(𝑐 − 𝑑𝑏)

2

𝜕𝑤𝑏
𝜕𝑥

 

−
𝑏𝑐3

12𝐸𝑐

𝜕2𝜏

𝜕𝑥2
−
𝜏𝑏𝑐

𝐺𝑐
= 0, 

(23) 
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2.7 Viscoelastic theory 
 

Viscoelastic is composed of visco and elastic 

parameters. The material properties of system are assumed 

viscoelastic using Kelvin–Voigt model. So the elastic 

parameters of core and facesheets can be given as (Kolahchi 

2017) 

𝐸𝑡 = 𝐸𝑡 (1 + 𝑔
𝜕

𝜕𝑡
)  , (24) 

 

𝐸𝑏 = 𝐸𝑏 (1 + 𝑔
𝜕

𝜕𝑡
)  , (25) 

 

𝐸𝑐 = 𝐸𝑐 (1 + 𝑔
𝜕

𝜕𝑡
)  , (26) 

 

2.8 Mori-Tanaka Model and agglomeration effects 
 

In this section, the effective modulus of the composite 

shell reinforced by CNTs is developed. Different methods 

are available to estimate the overall properties of a 

composite. Due to its simplicity and accuracy even at high 

volume fractions of the inclusions, the Mori-Tanaka method 

is employed in this section. To begin with, the CNTs are 

assumed to be aligned and straight with the dispersion of 

uniform in the polymer. The matrix is assumed to be elastic 

and isotropic, with the Young’s modulus 𝐸𝑚  and the 

Poisson’s ratio𝜐𝑚. The constitutive relations for a layer of 

the composite with the principal axes parallel to the r, θ and 

z directions are (Mori and Tanaka 1973) 
 

{
 
 

 
 
𝜎11
𝜎22
𝜎33
𝜎23
𝜎13
𝜎12}
 
 

 
 

=

[
 
 
 
 
 
𝑘 + 𝑚 𝑙 𝑘 −𝑚 0 0 0
𝑙 𝑛 𝑙 0 0 0

𝑘 − 𝑚 𝑙 𝑘 +𝑚 0 0 0
0 0 0 𝑝 0 0
0 0 0 0 𝑚 0
0 0 0 0 0 𝑝]

 
 
 
 
 

{
 
 

 
 
𝜀11
𝜀22
𝜀33
𝛾23
𝛾13
𝛾12}
 
 

 
 

 (27) 

 

Where 𝜎𝑖𝑗 , 𝜀𝑖𝑗 , 𝛾𝑖𝑗 , 𝑘, 𝑚, 𝑛, 𝑙, 𝑝  are the stress 

components, the strain components and the stiffness 

coefficients respectively. According to the Mori-Tanaka 

method the stiffness coefficients are given by 

 
𝑘 = 

   
𝐸𝑚{𝐸𝑚𝑐𝑚 + 2𝑘𝑟(1 + 𝜈𝑚)[1 + 𝑐𝑟(1 − 2𝜈𝑚)]}

2(1 + 𝜈𝑚)[𝐸𝑚(1 + 𝑐𝑟 − 2𝜈𝑚) + 2𝑐𝑚𝑘𝑟(1 − 𝜈𝑚 − 2𝜈𝑚
2 )]

 

 

𝑙 = 

   
𝐸𝑚{𝑐𝑚𝜈𝑚[𝐸𝑚 + 2𝑘𝑟(1 + 𝜈𝑚)] + 2𝑐𝑟𝑙𝑟(1 − 𝜈𝑚

2 )]}

(1 + 𝜈𝑚)[𝐸𝑚(1 + 𝑐𝑟 − 2𝜈𝑚) + 2𝑐𝑚𝑘𝑟(1 − 𝜈𝑚 − 2𝜈𝑚
2 )]

 

 

𝑛 = 

   
𝐸𝑚
2 𝑐𝑚(1 + 𝑐𝑟 − 𝑐𝑚𝜈𝑚) + 2𝑐𝑚𝑐𝑟(𝑘𝑟𝑛𝑟 − 𝑙𝑟

2)(1 + 𝜈𝑚)
2(1 − 2𝜈𝑚)

(1 + 𝜈𝑚)[𝐸𝑚(1 + 𝑐𝑟 − 2𝜈𝑚) + 2𝑐𝑚𝑘𝑟(1 − 𝜈𝑚 − 2𝜈𝑚
2 )]

 

(28) 

+
𝐸𝑚[2𝑐𝑚

2 𝑘𝑟(1 − 𝜈𝑚) + 𝑐𝑟𝑛𝑟(1 + 𝑐𝑟 − 2𝜈𝑚) − 4𝑐𝑚𝑙𝑟𝜈𝑚]

𝐸𝑚(1 + 𝑐𝑟 − 2𝜈𝑚) + 2𝑐𝑚𝑘𝑟(1 − 𝜈𝑚 − 2𝜈𝑚
2 )

 

 

𝑝 =
𝐸𝑚[𝐸𝑚𝑐𝑚 + 2𝑝𝑟(1 + 𝜈𝑚)(1 + 𝑐𝑟)]

2(1 + 𝜈𝑚)[𝐸𝑚(1 + 𝑐𝑟) + 2𝑐𝑚𝑝𝑟(1 + 𝜈𝑚)]
 

 

𝑚 = 

   
𝐸𝑚[𝐸𝑚𝑐𝑚 + 2𝑚𝑟(1 + 𝜈𝑚)(3 + 𝑐𝑟 − 4𝜈𝑚)]

2(1 + 𝜈𝑚){𝐸𝑚[𝑐𝑚 + 4𝑐𝑟(1 − 𝜈𝑚)] + 2𝑐𝑚𝑚𝑟(3 − 𝜈𝑚 − 4𝜈𝑚
2 )}

 

(28) 

Where 𝐶𝑚  and 𝐶𝑟  are the volume fractions of the 

matrix and the CNTs respectively and kr, lr, nr, pr, mr are 

the Hills elastic modulus for the CNTs (Loghman and 

Cheraghbak 2016). The experimental results show that the 

most of CNTs are bent and centralized in one area of the 

polymer. These regions with concentrated CNTs are 

assumed in this section to have spherical shapes, and are 

considered as ‘‘inclusions’’ with different elastic properties 

from the surrounding material. The total volume 𝑉𝑟  of 

CNTs can be divided into the following two parts 

 

𝑉𝑟 = 𝑉𝑟
𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛 + 𝑉𝑟

𝑚 (29) 

 

Where 𝑉𝑟
𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛  and 𝑉𝑟

𝑚  are the volumes of CNTs 

dispersed in the inclusions ~concentrated regions! and in 

the matrix, respectively. Introduce two parameters 𝜉 and 𝜁 

describe the agglomeration of CNTs 
 

𝜉 =
𝑉𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛

𝑉
, (30) 

 

𝜁 =
𝑉𝑟
𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛

𝑉𝑟
. (31) 

 

However, the average volume fraction 𝑐𝑟 of CNTs in 

the composite is 
 

𝐶𝑟 =
𝑉𝑟
𝑉
. (33) 

 

Assume that all the orientations of the CNTs are 

completely random. Hence, the effective bulk modulus (K) 

and effective shear modulus (G) may be written as 
 

𝐾 = 𝐾𝑜𝑢𝑡 [1 +
𝜉 (

𝐾𝑖𝑛

𝐾𝑜𝑢𝑡
− 1)

1 + 𝛼(1 − 𝜉) (
𝐾𝑖𝑛

𝐾𝑜𝑢𝑡
− 1)

], (33) 

 

𝐺 = 𝐺𝑜𝑢𝑡 [1 +
𝜉 (

𝐺𝑖𝑛

𝐺𝑜𝑢𝑡
− 1)

1 + 𝛽(1 − 𝜉) (
𝐺𝑖𝑛

𝐺𝑜𝑢𝑡
− 1)

], (34) 

 

Where 
 

𝐾𝑖𝑛 = 𝐾𝑚 +
(𝛿𝑟 − 3𝐾𝑚𝜒𝑟)𝐶𝑟𝜁

3(𝜉 − 𝐶𝑟𝜁 + 𝐶𝑟𝜁𝜒𝑟)
, (35) 

 

𝐾𝑜𝑢𝑡 = 𝐾𝑚 +
𝐶𝑟(𝛿𝑟 − 3𝐾𝑚𝜒𝑟)(1 − 𝜁)

3[1 − 𝜉 − 𝐶𝑟(1 − 𝜁) + 𝐶𝑟𝜒𝑟(1 − 𝜁)]
, (36) 

 

𝐺𝑖𝑛 = 𝐺𝑚 +
(𝜂𝑟 − 3𝐺𝑚𝛽𝑟)𝐶𝑟𝜁

2(𝜉 − 𝐶𝑟𝜁 + 𝐶𝑟𝜁𝛽𝑟)
, (37) 

 

𝐺𝑜𝑢𝑡 = 𝐺𝑚 +
𝐶𝑟(𝜂𝑟 − 3𝐺𝑚𝛽𝑟)(1 − 𝜁)

2[1 − 𝜉 − 𝐶𝑟(1 − 𝜁) + 𝐶𝑟𝛽𝑟(1 − 𝜁)]
, (38) 

 

Where 𝜒𝑟 , 𝛽𝑟 , 𝛿𝑟 , 𝜂𝑟 may be calculated as 

 

𝜒𝑟 =
3(𝐾𝑚 + 𝐺𝑚) + 𝑘𝑟 − 𝑙𝑟

3(𝑘𝑟 + 𝐺𝑚)
, (39) 
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𝛽𝑟 =
1

5

{
 
 

 
 4𝐺𝑚 + 2𝑘𝑟 + 𝑙𝑟

3(𝑘𝑟 + 𝐺𝑚)
+

4𝐺𝑚
(𝑝𝑟 + 𝐺𝑚)

+
2[𝐺𝑚(3𝐾𝑚 + 𝐺𝑚) + 𝐺𝑚(3𝐾𝑚 + 7𝐺𝑚)]

𝐺𝑚(3𝐾𝑚 + 𝐺𝑚) + 𝑚𝑟(3𝐾𝑚 + 7𝐺𝑚) }
 
 

 
 

, (40) 

 

𝛿𝑟 =
1

3
[𝑛𝑟 + 2𝑙𝑟 +

(2𝑘𝑟 − 𝑙𝑟)(3𝐾𝑚 + 2𝐺𝑚 − 𝑙𝑟)

𝑘𝑟 + 𝐺𝑚
], (41) 

 

𝜂𝑟 =
1

5

[
 
 
 
 
 
 
2

3
(𝑛𝑟 − 𝑙𝑟) +

4𝐺𝑚𝑝𝑟
(𝑝𝑟 + 𝐺𝑚)

+

8𝐺𝑚𝑚𝑟(3𝐾𝑚 + 4𝐺𝑚)

3𝐾𝑚(𝑚𝑟 + 𝐺𝑚) + 𝐺𝑚(7𝑚𝑟 + 𝐺𝑚)

+
2(𝑘𝑟 − 𝑙𝑟)(2𝐺𝑚 + 𝑙𝑟)

3(𝑘𝑟 + 𝐺𝑚) ]
 
 
 
 
 
 

. (42) 

 

Where, Km and Gm are the bulk and shear moduli of the 

matrix which can be written as 

 

𝐾𝑚 =
𝐸𝑚

3(1 − 2𝜐𝑚)
, (43) 

 

𝐺𝑚 =
𝐸𝑚

2(1 + 𝜐𝑚)
. (44) 

 

Furthermore, 𝛽, 𝛼can be obtained from 

 

𝛼 =
(1 + 𝜐𝑜𝑢𝑡)

3(1 − 𝜐𝑜𝑢𝑡)
, (45) 

 

𝛽 =
2(4 − 5𝜐𝑜𝑢𝑡)

15(1 − 𝜐𝑜𝑢𝑡)
, (46) 

 

𝜐𝑜𝑢𝑡 =
3𝐾𝑜𝑢𝑡 − 2𝐺𝑜𝑢𝑡
6𝐾𝑜𝑢𝑡 + 2𝐺𝑜𝑢𝑡

. (47) 

 

Finally, the elastic modulus (E) and poison’s ratio (υ) 

can be calculated as 

 

𝐸 =
9𝐾𝐺

3𝐾 + 𝐺
, (48) 

 

𝜐 =
3𝐾 − 2𝐺

6𝐾 + 2𝐺
. (49) 

 

Therefore, the governing equations of sandwich beam 

can be written as 

 

−𝐸𝑡𝐴𝑡 [
𝜕2

𝜕𝑥2
𝑢𝑜𝑡 + 𝑔.

𝜕3

𝜕𝑥2𝜕𝑡
𝑢𝑜𝑡] + 𝜏𝑏 

−𝑚𝑡

𝜕2

𝜕𝑡2
𝑢𝑜𝑡 −

𝑚𝑐

3

𝜕2

𝜕𝑡2
𝑢𝑜𝑡 −

𝑚𝑐

6

𝜕2

𝜕𝑡2
𝑢𝑜𝑏 

+
𝑚𝑐𝑑𝑡
6

𝜕3

𝜕𝑡2𝜕𝑥
𝑤𝑡 +

𝑚𝑐𝑑𝑏
12

𝜕3

𝜕𝑡2𝜕𝑥
𝑤𝑏 

+𝑚1𝑡

𝜕3

𝜕𝑡2𝜕𝑥
𝑤𝑡 = 0, 

(50) 

 

−𝐸𝑏𝐴𝑏 [
𝜕2

𝜕𝑥2
𝑢𝑜𝑏 + 𝑔.

𝜕3

𝜕𝑥2𝜕𝑡
𝑢𝑜𝑏] − 𝜏𝑏 

−𝑚𝑏

𝜕2

𝜕𝑡2
𝑢𝑜𝑡 −

𝑚𝑐

6

𝜕2

𝜕𝑡2
𝑢𝑜𝑡 −

𝑚𝑐

3

𝜕2

𝜕𝑡2
𝑢𝑜𝑏 

+
𝑚𝑐𝑑𝑡
12

𝜕3

𝜕𝑡2𝜕𝑥
𝑤𝑡 −

𝑚𝑐𝑑𝑏
6

𝜕3

𝜕𝑡2𝜕𝑥
𝑤𝑏 

+𝑚1𝑏

𝜕3

𝜕𝑡2𝜕𝑥
𝑤𝑏 = 0, 

(51) 

 

−𝐸𝑡𝐼𝑡 [
𝜕4

𝜕𝑥4
𝑤𝑡 + 𝑔.

𝜕5

𝜕𝑥4𝜕𝑡
𝑤𝑡] +

𝑏𝑑𝑡
2

𝜕𝜏

𝜕𝑥
 

+(
𝐸𝑐𝑏(𝑤𝑏 −𝑤𝑡)

𝑐
+
𝑔𝐸𝑐𝑏

𝑐
[
𝜕

𝜕𝑡
𝑤𝑏 −

𝜕

𝜕𝑡
𝑤𝑡] +

𝑐

2

𝜕𝜏

𝜕𝑥
) 𝑏 

−𝑚𝑡

𝜕2

𝜕𝑡2
𝑤𝑡 −

𝑚𝑐𝑑𝑡
6

𝜕3

𝜕𝑡2𝜕𝑥
𝑢𝑜𝑡 −

𝑚𝑐𝑑𝑏
12

𝜕3

𝜕𝑡2𝜕𝑥
𝑢𝑜𝑏 

+
𝑚𝑐𝑑𝑡

2

12

𝜕3

𝜕𝑡2𝜕𝑥
𝑤𝑡 −

𝑚𝑐𝑑𝑏𝑑𝑡
24

𝜕3

𝜕𝑡2𝜕𝑥
𝑤𝑏 

−𝑚1𝑡

𝜕3

𝜕𝑡2𝜕𝑥
𝑢𝑜𝑡 +𝑚2𝑡

𝜕4

𝜕𝑡2𝜕𝑥2
𝑤𝑡 

−
𝑚𝑐

6

𝜕2

𝜕𝑡2
𝑤𝑏 −

𝑚𝑐

3

𝜕2

𝜕𝑡2
𝑤𝑡 = 0, 

(52) 

 

−𝐸𝑏𝐼𝑏 [
𝜕4

𝜕𝑥4
𝑤𝑏 + 𝑔.

𝜕5

𝜕𝑥4𝜕𝑡
𝑤𝑏] +

𝑏𝑑𝑏
2

𝜕𝜏

𝜕𝑥
 

−(
𝐸𝑐(𝑤𝑏 − 𝑤𝑡)

𝑐
+
𝐸𝑐𝑔

𝑐
[
𝜕

𝜕𝑡
𝑤𝑏 −

𝜕

𝜕𝑡
𝑤𝑡] −

𝑐

2

𝜕𝜏

𝜕𝑥
) 𝑏 

−𝑚𝑏

𝜕2

𝜕𝑡2
𝑤𝑏 +

𝑚𝑐𝑑𝑏
12

𝜕3

𝜕𝑡2𝜕𝑥
𝑢𝑜𝑡 +

𝑚𝑐𝑑𝑏
6

𝜕3

𝜕𝑡2𝜕𝑥
𝑢𝑜𝑏 

+
𝑚𝑐𝑑𝑏

2

12

𝜕3

𝜕𝑡2𝜕𝑥
𝑤𝑏 −

𝑚𝑐𝑑𝑏𝑑𝑡
24

𝜕3

𝜕𝑡2𝜕𝑥
𝑤𝑡 

−𝑚1𝑏

𝜕3

𝜕𝑡2𝜕𝑥
𝑢𝑜𝑏 +𝑚2𝑏

𝜕4

𝜕𝑡2𝜕𝑥2
𝑤𝑏 −

𝑚𝑐

6

𝜕2

𝜕𝑡2
𝑤𝑡 

−
𝑚𝑐

3

𝜕2

𝜕𝑡2
𝑤𝑏 −+𝑘𝑔1 𝑐𝑜𝑠

2( 𝜃)
𝜕2

𝜕𝑥2
𝑤𝑏 

+𝑘𝑔2 𝑠 𝑖 𝑛
2(𝜃)

𝜕2

𝜕𝑥2
𝑤𝑏 − 𝑘𝑤𝑤𝑏 − 𝑐𝑑 = 0, 

(53) 

 

𝑢0𝑡𝑏 − 𝑢0𝑏𝑏 −
𝑏(𝑐 − 𝑑𝑡)

2

𝜕𝑤𝑡
𝜕𝑥

 

−
𝑏(𝑐 − 𝑑𝑏)

2

𝜕𝑤𝑏
𝜕𝑥

−
𝑏𝑐3

12𝐸𝑐

𝜕2𝜏

𝜕𝑥2
−
𝜏𝑏𝑐

𝐺𝑐
= 0, 

(54) 

 

 

3. Solution method 
 

Base on Navier method, the displacements of the 

sandwich nano beam with simply supported boundary 

condition can be written as (Kutlu et al. 2012) 
 

𝑢0𝑡(𝑥, 𝑡) = 𝑈𝑡 . 𝑐𝑜𝑠 (
𝑛. 𝜋. 𝑥

𝑙
) . 𝑒𝜔.𝑡 (55) 

 

𝑢0𝑏(𝑥, 𝑡) = 𝑈𝑏. 𝑐𝑜𝑠 (
𝑛. 𝜋. 𝑥

𝑙
) . 𝑒𝜔.𝑡 (56) 

 

𝑤𝑏(𝑥, 𝑡) = 𝑊𝑏. 𝑠𝑖𝑛 (
𝑛. 𝜋. 𝑥

𝑙
) . 𝑒𝜔.𝑡 (57) 
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𝑤𝑡(𝑥, 𝑡) = 𝑊𝑡. 𝑠𝑖𝑛 (
𝑛. 𝜋. 𝑥

𝑙
) . 𝑒𝜔.𝑡 (58) 

 

𝜏(𝑥, 𝑡) = 𝜏0. 𝑐𝑜𝑠 (
𝑛. 𝜋. 𝑥

𝑙
) . 𝑒𝜔.𝑡 (59) 

 

where, 𝑛 is vibration mode number and 𝜔 is frequency. 

Substituting Eqs (55)-(59) into Eqs. (50)-(54), the motion 

equations in matrix form can be express as 
 

[
 
 
 
 
𝑚11 𝑚12 𝑚13 𝑚14 𝑚15

𝑚21 𝑚22 𝑚23 𝑚24 𝑚25

𝑚31 𝑚32 𝑚33 𝑚34 𝑚35

𝑚41 𝑚42 𝑚43 𝑚44 𝑚45

𝑚51 𝑚52 𝑚53 𝑚54 𝑚55]
 
 
 
 

�̈� 

+

[
 
 
 
 
𝑐11 𝑐12 𝑐13 𝑐14 𝑐15
𝑐21 𝑐22 𝑐23 𝑐24 𝑐25
𝑐31 𝑐32 𝑐33 𝑐34 𝑐35
𝑐41 𝑐42 𝑐43 𝑐44 𝑐45
𝑐51 𝑐52 𝑐53 𝑐54 𝑐55]

 
 
 
 

�̇� 

+

[
 
 
 
 
𝑘11 𝑘12 𝑘13 𝑘14 𝑘15
𝑘21 𝑘22 𝑘23 𝑘24 𝑘25
𝑘31 𝑘32 𝑘33 𝑘34 𝑘35
𝑘41 𝑘42 𝑘43 𝑘44 𝑘45
𝑘51 𝑘52 𝑘53 𝑘54 𝑘55]

 
 
 
 

𝑋 = 0 

(6) 

 

where 𝑋 = {𝑈𝑡 , 𝑈𝑏,𝑊𝑡 ,𝑊𝑏, 𝑇0}  is dynamic vector, [𝑚𝑖𝑗] 

is mass matrix, [𝑐𝑖𝑗] is damper matrix and [𝑘𝑖𝑗] is matrix 

stiffness which are expanded in Appendix A. 
 

 

4. Numerical result and discussion 
 

In this section, a parametric study is done for the effects 

of different parameters on the linear frequency of the 

sandwich structure. For this purpose, top and bottom beams 

have Young’s modulus of 𝐸𝑡 = 𝐸𝑏 = 210 𝐺𝑃𝑎, Poisson’s 

ratio of 𝜐𝑚 = 0.3 , density of 𝜌𝑡 = 𝜌𝑏 = 2680 𝐾𝑔/𝑚
3 , 

thickness of top and bottom beams is ℎ = 2 𝑐𝑚, the length 

of beams is 𝑙 = 80.4 𝑐𝑚  and Width of beams is 𝑏 =
5.54 𝑐𝑚  which is reinforced by CNTs with Young’s 

modulus of 𝐸𝑟 = 1 𝐺𝑃𝑎, Poisson’s ratio of 𝜐𝑟 = 0.3 and 

density of 𝜌𝑚 = 7800 𝐾𝑔/𝑚3 . The core has Young’s 

modulus of 𝐸𝑐 = 201.74 𝑀𝑃𝑎 , Poisson’s ratio of 𝜐𝑚 =
0.3, density of 𝜌𝑐 = 32.8 𝐾𝑔/𝑚

3 and Thickness of ℎ =
1 𝑐𝑚. 

 

4.1 Validation 
 

For validating, the structure frequency of this paper 

without considering viscoelastic parameters, Agglomeration 

effect and Pasternak orthotropic medium, is compared with 

Frostig (2003) and Khalili et al. (2013). 

Considering mechanical properties and geometrical 

parameter the same as Frostig (2003) and Khalili et al. 

(2013), frequency of sandwich nano beam for five vibration 

modes is calculated and shown in Table 1. 
 

4.2 Effect of different parameters 
 

Figs. 2 and 3 show the effect of different viscoelastic 

parameter of medium and damping structure on the 

frequency versus volume percent of CNTs, respectively .As 

it is inferred with increasing viscoelastic parameter of 

medium and damper of structure, the system frequency has 

reduction . It is because with increasing damper of 

structure, the energy depreciation of the structure will be 

increased and it can be found that considering with 

viscoelastic parameter, frequency is decreased. In addition, 

increasing volume percent of CNTs, frequency is increased. 

It is because Increase of  CNTs leads to higher stiffness. 

 

 

Table 1 Comparison of frequency of sandwich beam with 

Frostig (2003) and Khalili et al. (2013) 

Frequencies 

(Hz) 

Present 

model 

Frostig 

(2003) 

Khalili et al. 

(2013) 

Mode 1 250.7717 263 251 

Mode 2 534.3375 - 537 

Mode 3 866.5572 889 874 

Mode 4 1265.4 1289 1282 

Mode 5 1742.5 1774 1771 
 

 

 

 

Fig. 2 frequency versus volume percent of CNTs for 

different damping of structure 

 

 

 

Fig. 3 The effect of viscoelastic parameter on the 

frequency versus CNTs volume percent 
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Fig. 4 The effect thickens on the frequency versus 

CNTs volume percent 

 

 
Fig. 5 indicates the effect of spring constant of elastic 

medium on the frequency with respect to CNTs volume 

percent. It is observed that with increasing spring constant 

of elastic medium, the frequency is increased. It is because 

stiffness of system is increased with enhancing spring 

constant of elastic medium. 

 
 

 

Fig. 5 The effect of spring constant of elastic medium 

on the frequency versus CNTs volume percent 
 

 

Fig. 6 The effect of agglomeration on the frequency as 

function of CNTs volume percent 

 

 

 

Fig. 7 Frequency versus agglomeration for different 

damping of elastic medium 

 

 

The effect of agglomeration on the frequency as 

function of CNTs volume percent is shown in Fig. 6. With 

increasing agglomeration effect, frequency decreases. It is 

because stiffness of structure is decreased. 

Fig. 7 shows frequency versus agglomeration for 

different damping of elastic medium. As can be seen, the 

frequency of micro sandwich structure with increasing 

damping of elastic medium is decreased. It is because with 

increasing damping of elastic medium, the energy 

depreciation of the structure will be increased. In addition, 

increasing agglomeration, frequency is decreased. It is 

because increase of CNTs agglomeration leads to lower 

stiffness. 

The effect of CNTs volume percent on the frequency 

versus agglomeration is shown in Fig. 8. It is found that 

with increasing the CNTs volume percent, the frequency is 

increased due to the enhance in the stiffness of the structure. 

Fig. 9 The effect of top and bottom thickens of the 

structure on the frequency versus CNTs agglomeration. As 

can be seen, with increasing the thickens, the frequency is 

increased. It is since with increasing the thickens, the 

stiffness is increased. 
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Fig. 8 The effect of CNTs volume percent on the 

frequency versus agglomeration 
 

 

 

Fig. 9 The effect of thickens on the frequency versus 

agglomeration 
 

 

 

Fig. 10 The effect of spring constant of elastic medium 

on the frequency versus agglomeration 
 

 

Fig. 10 indicates the effect of spring constant of elastic 

medium on the frequency with respect to agglomeration. It 

is observed that with increasing spring constant of elastic 

medium, the frequency is increased. It is because stiffness 

of system is increased with enhancing spring constant of 

elastic medium. 

 

 

5. Conclusions 
 

In this work, free vibration of the sandwich structures 

reinforced with CNTs considering agglomeration effect 

resting on orthotropic Pasternak was presented. The Mori-

Tanaka model for considering effect of agglomeration was 

used. The size effect applying Eringen’s theory was 

investigated. The Kelvin-voigt model for utilizing structural 

damping was assumed. The motion equations were 

calculated by Hamilton’s principle and energy method. 

Using analytical method, the frequency of the structure was 

obtained. Increasing volume percent of CNTs, frequency 

was increased. Increasing spring constant of elastic 

medium, the frequency was increased. With increasing 

agglomeration effect, frequency decreases. The increasing 

of CNTs volume percent, frequency was increased. 
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Appendix A 
 

𝑀11 = −𝑚𝑡. 𝑙𝑛𝑒2 − (1/3).𝑚𝑐. 𝑙𝑛𝑒2 (A1) 

 
𝑀12 = −(1/6).𝑚𝑐. 𝑙𝑛𝑒2 (A2) 

 
𝑀13 = (1/6).𝑚𝑐. 𝑑𝑡. 𝑛. 𝑃𝑖. 12/𝐿 + 𝑚1𝑡. 𝑛. 𝑃𝑖. 12/𝐿 (A3) 

 
𝑀14 = −(1/12).𝑚𝑐. 𝑑𝑏. 𝑛. 𝑃𝑖. 𝑙𝑛𝑒2/𝐿 (A4) 

 
M15=0 (A5) 

 
𝑀21 = −(1/6).𝑚𝑐. 𝑙𝑛𝑒2 (A6) 

 
𝑀22 = −𝑚𝑏. 𝑙𝑛𝑒2 − (1/3).𝑚𝑐. 𝑙𝑛𝑒2 (A7) 

 
𝑀23 = (1/12).𝑚𝑐. 𝑑𝑡. 𝑛. 𝑃𝑖. 𝑙𝑛𝑒2/𝐿 (A8) 

 
𝑀24 = −(1/6).𝑚𝑐. 𝑑𝑏. 𝑛. 𝑃𝑖. 12/𝐿 + 𝑚1𝑏. 𝑛. 𝑃𝑖. 12/𝐿 (A9) 

 
M25=0 (A10) 

 
𝑀31 = (1/6).𝑚𝑐. 𝑑𝑡. 𝑛. 𝑃𝑖. 12/𝐿 + 𝑚1𝑡. 𝑛. 𝑃𝑖. 12/𝐿 (A11) 

 
𝑀32 = (1/12).𝑚𝑐. 𝑑𝑏. 𝑛. 𝑃𝑖. 𝑙𝑛𝑒2/𝐿 (A12) 

 
𝑀33 = −𝑚𝑡 − (1/12).𝑚𝑐. 𝑑𝑡2. 𝑛2. 
𝑃𝑖2. 12/𝐿2 −𝑚2𝑡. 𝑛2. 𝑃𝑖2. 12/𝐿2; 

(A13) 

 
M34=(1/24).𝑚𝑐. 𝑑𝑏. 𝑑𝑡. 𝑛2. 𝑃𝑖2. 12/𝐿2

− (1/6).𝑚𝑐. 12 
(A14) 

 
M35=0 (A15) 

 
𝑀41 = −(1/12).𝑚𝑐. 𝑑𝑏. 𝑛. 𝑃𝑖. 𝑙𝑛𝑒2/𝐿 (A16) 

 
𝑀42 = −(1/6).𝑚𝑐. 𝑑𝑏. 𝑛. 𝑃𝑖. 𝑙𝑛𝑒2/𝐿

+ 𝑚1𝑏. 𝑛. 𝑃𝑖. 12/𝐿 
(A17) 

 
M43=(1/24).𝑚𝑐. 𝑑𝑏. 𝑑𝑡. 𝑛2. 𝑃𝑖2. 12/𝐿2

− (1/6).𝑚𝑐. 12 
(A18) 

 
𝑀44 = −𝑚𝑏. 𝑙𝑛𝑒2 − (1/12).𝑚𝑐. 𝑑𝑏2. 𝑛2. 
𝑃𝑖2. 12/𝐿2 −𝑚2𝑏. 𝑛2. 𝑃𝑖2. 12/𝐿2 − (1/3).𝑚𝑐. 12 

(A19) 

 
M45=0 (A20) 

 
M51=0 (A21) 

 
M52=0 (A22) 

 
M53=0 (A23) 

 
M54=0 (A24) 

 
M55=0 (A25) 

 
𝐶11 = 𝐴𝑡. 𝐸. (−𝑔. 𝑛2. 𝑃𝑖2. 𝑙𝑛𝑒/𝐿2) (A26) 

 
C12=0 (A27) 

 
 

C13=0 (A28) 

 
C14=0 (A29) 

 
C15=0 (A30) 

 
C21=0 (A31) 

 
𝐶22 = −(𝑔. 𝑛2. 𝑃𝑖2. 𝑙𝑛𝑒/𝐿2). 𝐸. 𝐴𝑏 (A32) 

 
C23=0 (A33) 

 
C24=0 (A34) 

 
C25=0 (A35) 

 
C31=0 (A36) 

 
C32=0 (A37) 

 
𝐶33 = −𝐸. (+𝑔. 𝑛4. 𝑃𝑖4. 𝑙𝑛𝑒/𝐿4). 𝐼𝑡 
+(𝐸𝑐. (−𝑔. 𝑙𝑛𝑒). 𝑏)/(𝑐) 

(A38) 

 
𝐶34 = 𝐸𝑐. (𝑔. 𝑙𝑛𝑒). 𝑏/𝑐 (A39) 

 
C35=0 (A40) 

 
C41=0 (A41) 

 
C42=0 (A42) 

 
𝐶43 = −𝐸𝑐. (−𝑔. 𝑙𝑛𝑒). 𝑏/𝑐 (A43) 

 
𝐶44 = −𝐸. (+𝑔. 𝑛4. 𝑃𝑖4. 𝑙𝑛𝑒/𝐿4). 𝐼𝑏 
−𝐸𝑐. (𝑔. 𝑙𝑛𝑒). 𝑏/𝑐 − 𝑐𝑑 

(A44) 

 
C45=0 (A45) 

 
C51=0 (A46) 

 
C52=0 (A47) 

 
C53=0 (A48) 

 
C54=0 (A49) 

 
C55=0 (A50) 

 
𝐾11 = −𝑛2. 𝑃𝑖2/𝐿2. 𝐴𝑡. 𝐸 (A51) 

 
K12=0 (A52) 

 
K13=0 (A53) 

 
K14=0 (A54) 

 
K15=b (A55) 
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K21=0 (A56) 

 
𝐾22 = −𝑛2. 𝑃𝑖2/𝐿2. 𝐸. 𝐴𝑏 (A57) 

 
K23=0 (A58) 

 
K24=0 (A59) 

 
K25=-b (A60) 

 
K31=0 (A61) 

 
K32=0 (A62) 

 
𝐾33 = −𝐸. (𝑛4. 𝑃𝑖4/𝐿4). 𝐼𝑡 + (𝐸𝑐. (−1). 𝑏)/(𝑐) (A63) 

 
𝐾34 = 𝐸𝑐. (+1). 𝑏/𝑐 (A64) 

 
K35=-(1/2).n.Pi.b.dt/L-(1/2).C.n.Pi.b/L (A65) 

 
K41=0 (A66) 

 
K42=0 (A67) 

 
𝐾43 = −𝐸𝑐. (−1). 𝑏/𝑐 (A68) 

 
𝐾44 = −𝐸. (𝑛4. 𝑃𝑖4/𝐿4). 𝐼𝑏 − 𝐸𝑐. (+1). 𝑏/𝑐 − 
𝑘𝑔1. 𝑐𝑜𝑠(𝑡ℎ𝑒𝑡𝑎)2. 𝑛2. 𝑃𝑖2/𝐿2

− 𝑘𝑔2. 𝑠𝑖𝑛(𝑡ℎ𝑒𝑡𝑎)2. 𝑛2. 𝑃𝑖2/𝐿2

− 𝐾𝑤 

(A69) 

 
K45=-(1/2).n.Pi.b.db/L-(1/2).C.n.Pi.b/L (A70) 

 
K51=b (A71) 

 
K52=-b (A72) 

 
𝐾53 = −(1/2). 𝑛. 𝑃𝑖. 𝑏. (𝑐 + 𝑑𝑡)/𝐿 
−(1/2). 𝑘. 𝑛3. 𝑃𝑖3. 𝑏. (𝑐 + 𝑑𝑡)/𝐿3 

(A73) 

 
𝐾54 = −(1/2). 𝑛. 𝑃𝑖. 𝑏. (𝑐 + 𝑑𝑏)/𝐿 (A74) 

 
𝐾55 = (1/12). 𝑛2. 𝑃𝑖2. 𝑏. 𝑐3/(𝐿2. 𝐸𝑐) 
+𝑏. 𝑐/𝐺𝑐 

(A75) 
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