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Abstract.

In this paper, free vibration of sandwich beam with flexible core resting on orthotropic Pasternak is investigated. The

top and bottom layers are reinforced by carbon nanotubes (CNTSs). This sandwich structural is modeled by Euler and Frostig
theories. The effect of agglomeration using Mori-Tanaka model is considered. The Eringen’s theory is applied for size effect. The
structural damping is investigated by Kelvin-voigt model. The motion equations are calculated by Hamilton’s principle and energy
method. Using analytical method, the frequency of the structure is obtained. The effect of agglomeration and CNTs volume percent
for different parameter such as damping of structure, thickens and spring constant of elastic medium are presented on the frequency
of the composite structure. Results show that with increasing CNTs agglomeration, frequency is decreased.
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1. Introduction

Among nano composites, the polymeric nano
composites have been intense interest among researchers.
One of the reasons for the development of polymeric nano
composites is unique mechanical, chemical and physical
properties. Polymeric nano composites usually have high
strength, low weight, high thermal stability, high electrical
conductivity and high chemical resistance. By adding a few
percent of the nanoparticles to a pure polymer, Tensile
strength, yield strength and yang modulus increase
significantly. For example, by adding only 0.04% of the
volume of Mica (a type of silicate) with a dimension of 50
nm to Epoxy, the modulus Yang will increase the 58%

Buckling behavior of sandwich panels with a core that is
flexible in the out-of-plane direction, also denoted as “soft”
core including high-order effects, was presented by Frostig
(2003). Propagation of flexural and shear waves in an
unbounded sandwich beam were considered by Sorokin and
Grishina (2004). An elementary theory for non-linear
vibrations of viscoelastic sandwich beams was presented by
Daya et al. (2004). An efficient new coupled zigzag theory
was developed by Kapuria et al. (2005) for dynamics of
piezoelectric composite and sandwich beams with damping.
The dynamic response of a fully clamped metallic sandwich
beam subjected to impulsive loading was theoretically
investigated by Qin and Wang (2009). Liu et al. (2012)
presented a new Fourier-related double scale analysis to
study instability phenomena of sandwich structures. Using
the membrane factor method, we obtained the analytical
solutions for the dynamic response of the sandwich beam.
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An analytical model for face wrinkling failure under
dynamic compression of corrugated core sandwich columns
was investigated by Lim and Bart-Smith (2015). Sandwich
panels were produced by Lakreb et al. (2015) using wood
veneer of Aleppo pine as face sheets and cork agglomerate
as core, including multilayered designs, for use in
construction. A new refined hyperbolic shear and normal
deformation beam theory was developed by Bennai et al.
(2015) to study the free vibration and buckling of
functionally graded (FG) sandwich beams under various
boundary conditions. Vibration analysis of embedded
functionally graded (FG)-carbon nanotubes (CNT)-
reinforced piezoelectric cylindrical shell subjected to
uniform and non-uniform temperature distributions were
presented by Madani et al. (2016). Eltaher et al. (2016)
investigated the effects of both size-dependency and
material-dependency on the nonlinear static behavior of
carbon nanotubes (CNTS). The nonlinear eigen frequency
response of the functionally graded single-walled carbon
nanotube reinforced sandwich structure was investigated by
Mehar et al. (2017) numerically considering the Green-
Lagrange nonlinear strain under uniform thermal
environment. Smyczynski and Magnucka-Blandzi (2018)
devoted to the stability analysis of a simply supported five
layer sandwich beam. Agglomeration phenomenon of CNTs
was experimentally observed and then it was analytically
modeled by Zeinedini et al. (2018). Using a base wash
procedure, oxygen functional groups have been removed
the graphene oxide (GO) flakes, and the prepare the base-
washed GO (BwGO) flakes obtained have been
Incorporated into a PVA matrix to make a nano composite
was studied by Li et al. (2018). Shokravi (2018) presented
forced vibration of micro cylindrical shell reinforced by
functionally graded carbon nanotubes (FGCNTSs). Safaei et
al. (2018) investigated the effect of thermal gradient load on
natural frequencies of sandwich plates with polymer-based
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nanocomposite face sheets reinforced by functionally
graded (FG) single-walled carbon nano tubes (SWCNTSs)
agglomerations. Critical comparison of different mean field
homogenization approaches for CNT-reinforced polymer
composites with waviness and agglomeration effects was
presented by Garci-Macias and Castro-Triguero (2018).

The study of composite and nanocomposite paltes was
presented by Duc et al. (Duc and Minh 2010, Duc 20144, b,
2016, Duc et al. 2013, 2015, 2018). Chung et al. (2013)
investigated Polymeric Composite Films Using Modified
TiO2 Nanoparticles. Large amplitude vibration problem of
laminated composite spherical shell panel under combined
temperature and moisture environment was analyzed by
Mahapatra and Panda (2016). The nonlinear free vibration
behaviour of laminated composite spherical shell panel
under the elevated hygrothermal environment was
investigated by Mahapatra et al. (2016a). Mahapatra et al.
(2016b) studied the geometrically nonlinear transverse
bending behavior of the shear deformable laminated
composite spherical shell panel under hygro-thermo-
mechanical loading. Nonlinear free vibration behavior of
laminated composite curved panel under hygrothermal
environment was investigated by Mahapatra et al. (2016c).
The flexural behaviour of the laminated composite plate
embedded with two different smart materials (piezoelectric
and  magnetostrictive) and  subsequent  deflection
suppression were investigated by Dutta et al. (2017). Suman
et al. (2017) studied static bending and strength behaviour
of the laminated composite plate embedded with
magnetostrictive  (MS) material numerically  using
commercial finite element tool. Vibration and nonlinear
dynamic response of eccentrically stiffened functionally
graded composite truncated conical shells in thermal
environments were presented by Chan et al. (2018).
Nonlinear response and buckling analysis of eccentrically
stiffened FGM toroidal shell segments in thermal
environment were studied by Vuong and Duc (2018). In this
work, buckling analyses of composite concrete plate
reinforced by Piezoelectric nanoparticles is studied.

In this paper, vibration of sandwich beams with flexible
core and nanocomposite facesheets is presented. The top
and bottom layers are reinforced with CNTs considering the
agglomeration effects. The sandwich structure is modeled
by Frostig theory for core and Euler-Bernoulli model for
facesheets. Applying Hamilton’s principle, the motion
equations are derived and based on Navier method, the
frequency of the structure is calculated. The effect of
agglomeration and CNTs volume percent for different
parameter such as damping of structure, thickens and spring
constant of elastic medium are presented on the frequency
of the composite structure.

2. Kinematics of different theories

Fig. 1 shows a sandwich beam including top and bottom
beams reinforced with CNTs and flexible core resting on
elastic medium with length of L, core thickness of ¢ and top
and bottom layers thickness d; and dy, respectively.

L

A

Top facesheet d,

CNTs
c

Bottom facesheet d,

Fig. 1 A schematic of sandwich beam with nanocomposite
facesheets resting on elastic medium

2.1 Strain-stress relations

The strain-stress relations for the facesheets can be
given as follows

Gagx = Et‘gix: (1)
o0 = EPely, 2
where, parameters Etand EPare Young modulus of upper

and lower beam, respectively. The strain-stress relations for
core can be given

T =Gy, (3)
d
Ozz = Ecgwc' 4)

where, parameters G.and E.are shear modulus and Young
modulus of the core, respectively. Based on the refined first
order Forstig theory, the strains can be written as

0 0
=y —z— 5
Ve =5 Uc = Z5-We, 5)
a
- 6
&7 EP we, (6)

The kinematic unknown parameters of the refined first
order Forstig theory are u.and w, which are the axial and
transverse core displacements, respectively.

2.2 Euler—Bernoulli model

Based on Euler—Bernoulli beam model, the orthogonal
components of the displacement vector can be written as

dwy(x, t)

ox ' )

u(x,z,t) = uy(x,t) —z

w(x, z,t) = wy(x,t), (8)

The strain—displacement relations for the facesheets can
be express as

d 0?2
gJEx = auot - Zﬁwb: 9)
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0 92

gzlc)x = auob - meb; (10)

where the superscripts (t, b) are used to denote quantities
corresponding to the upper and lower beam, respectively.

2.3 Variation of potential energy

The variation of potential energy for beams and flexible
core can be written as

ouU =f Oy O ExcdU +f Oy 0 Exdu +
Utop Upot (11)
f T.0Y.du +f 0,,08,,du

Ucore Ucore

where, the force and moment resultants can be defined as

0
Nixx = fto-ysx dA = _EtAtauot: (12)
A
b b a
Npx = baxx dA = —E°A auob' (13)
A
82
My = fto'ﬁxz dA = —Etltﬁwt, (14)
A
62
bex = jbo—xtx ZdA = —Eblb Wwb, (15)
A

2.4 Variation of kinematic energy

The variation of kinematic can be given as follows

- L

f M (U Oty + W W) dx
0

ts L
0K = f +f my, (Uop0itop + WyWy,) dx dt(16)
t 0

1

pPW W, dv

+f pcuc5ucdv+f

Vcore Vcore

2.5 Variation of external work

The variation of external work, due to elastic medium
load simulated by orthotropic Pasternak model can be
express as (Kutlu et al. 2012)

62
kg, cos?(9) 322" +

SW = dx  (17)

kg, sinz(e)ﬁwb — k,wy

2.6 Motion equation

For driving the motion equation, the Hamilton principle
is used as follows

j U - —5K)dt =0 (18)

where § is variation, §Uis variation of potential energy,
S6W is variation of kinematic energy and &K is variation
of external work.

Using the Hamilton principle and partial integral, the
governing equations are computed

Equation 1:

ONiyx 0%
+T, —my ﬁuot -

m.d, 03
6 atzax:Vf

m, 02
3 gez ot

(19)

med, 03 0

aNbxx_T -m a_zu _
dx b batz ot

N med, 03
12 0t?ox :Vt

m, 02
"6 orz ot

(20)

6 ot2ox " *
Equation 3:

02M,,, bd, dt

O0x? 2 ox
92 m.d, 03

Tzt T T arzox ot
mqd? 03 medpd, 03

12 aczox "t~ 24638t2(3wa
_mlt—atZaxuot

o* m, 02

M2 592" T 6 92" T 3 a2

E..(wp—wy) ¢ 6‘[)
—+—-—1b
( c + 20x
mcdb 83
12 0t2ax b

(21)

Equation 4:

a21Vbex e
0x? 2 0x

—mbﬁwb+
m.d: 93
12 ot2ax "

63

m.dyd, 83

—Myp o2 Uop T Mop 557 7 Wp —
b g¢29y 0P 2b 9292 P

m, 02 5 02
—?wwb—kglCOS (H)Wwb
2

d
+kg, sin?(9) FreA e k,w, =0,

Equation 5:

b(c —d;)ow; b(c—dp)ow,
2 ox 2 ox 23)
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2.7 Viscoelastic theory

Viscoelastic is composed of visco and elastic
parameters. The material properties of system are assumed
viscoelastic using Kelvin—Voigt model. So the elastic
parameters of core and facesheets can be given as (Kolahchi
2017)

]

t gt — 24
E'* =E <1+gat), (24)
E? =E? (1+gi> (25)

at)’
]
Fe=E(1+95). (29)

2.8 Mori-Tanaka Model and agglomeration effects

In this section, the effective modulus of the composite
shell reinforced by CNTs is developed. Different methods
are available to estimate the overall properties of a
composite. Due to its simplicity and accuracy even at high
volume fractions of the inclusions, the Mori-Tanaka method
is employed in this section. To begin with, the CNTs are
assumed to be aligned and straight with the dispersion of
uniform in the polymer. The matrix is assumed to be elastic
and isotropic, with the Young’s modulus E, and the
Poisson’s ratiov,,,. The constitutive relations for a layer of
the composite with the principal axes parallel to the r, 6 and
z directions are (Mori and Tanaka 1973)

011 [k +m | k-m 0 O 0] 11
(pY) l n l 0 0 O0f]é&z
033 _ k—-m | k+m 0 0 0])é&szs (27)
023 0 0 0 p 0 0])7zs
013 0 0 0 0 m O0fV3
012 0 0 0 0 0 pl\rz
Where o, &;, vij, k, m, n, [, p are the stress

components, the strain components and the stiffness
coefficients respectively. According to the Mori-Tanaka
method the stiffness coefficients are given by

k =
Em{EmCm + Zk‘r(l + Vm)[l + Cr(l - va)]}

2(1 + vi)En (1 + ¢ — 2v) + 2¢p k(1 — vy, — 202))]

l —
Em{cmvm[Em + Zkr(l + vm)] + Zcrlr(l - Vrzn)]} (28)
A+ v [Em(1 + ¢ — 2V) + 2¢k- (1 — v, — 2V3)]

n=
E‘rzncm(l + ¢ = CmVm) + 266 (ke — 13)(1 + Vm)z(l — 2Vp)
A+ v )En(1 + ¢ — 2vy) + 2¢ k(1 — vy, — 2V3)]
En[2¢2 k(1 —vp) + ;0. (1 + ¢, — 2v,,) — 4cp vl
En(14c, —2vy) + 2¢c,, k(1 — vy, — 2v3)

_ EplEncn +2p,(1+v,)(1 + ¢,)]
T2+ v [En (1 + ) + 20mpr (1 + )] (28)

p

m=
EnlEmcm + 2m,. (1 +vp,)(3 + ¢, — 4vp)]
2(1 + vm){Em[Cm + 4Cr(1 - Vm)] + Zcmmr(3 —Vm — 4'1/72”)}

Where C,, and C, are the volume fractions of the
matrix and the CNTs respectively and kr, I, nr, pr, m, are
the Hills elastic modulus for the CNTs (Loghman and
Cheraghbak 2016). The experimental results show that the
most of CNTs are bent and centralized in one area of the
polymer. These regions with concentrated CNTs are
assumed in this section to have spherical shapes, and are
considered as “inclusions” with different elastic properties
from the surrounding material. The total volume 1, of
CNTs can be divided into the following two parts

Vr — Vrinclusion + Vrm (29)

Where Vinctusion and 7™ are the volumes of CNTs
dispersed in the inclusions ~concentrated regions! and in
the matrix, respectively. Introduce two parameters ¢ and ¢
describe the agglomeration of CNTs

5 — Vinc;l;sion’ (30)
Vinclusion
(=1—— T (31)
r

However, the average volume fraction ¢, of CNTs in
the composite is
|74

v (33)

C, =

Assume that all the orientations of the CNTs are
completely random. Hence, the effective bulk modulus (K)
and effective shear modulus (G) may be written as

Kin _
K =Ky |1+ E(""“f ,i) , (33)
1+a(1—§)(ﬁ— 1)_
Sin _
G =Gy |l+ f(G""‘ i) , (34)
1401 -9 (2= -1)]

Where

(5r - 3Ker)Cr{
= 35
K =K ¥ 3G —C+ C0n )

~ C (8, — 3Ky ) (1 — Q)
Kour = Km + 3[1 . Cr(l — {) + Cr)(r(l - ()]’ (36)

_ (777’ - 3Gmﬁr)cr(
Gin = Om ¥ 3G =00+ C3BY 7

Cr(nr - 3Gmﬁr)(1 - Z)

Gour = G + , (38
e =Gt g —Ga-D+GHA-O O
Where y,, By, 6,, 1, may be calculated as

3Ky + G) + ki — L,
3K + G) )

e Y B
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4Gy, + 2k, + 1, 4G,,
_ 1 3(kr + Gm) (pr + Gm)
ﬁr - T
5] 2[Gn(3Ky + Giy) + Gy (3K + 7G)]
G (BKm + Gp) + My (3K, + 7G) )

, (40)

(Zkr B lr)(3Km + 26y, — lr)

5, =
" k. + G,

n, + 2L +

Wl -

], (41)

2 4G, py

-y — L) +———+

377 T (o +Gy)
8G,,m,(3K,, + 4G,,)

3Kp(m, + G) + G, (Tm, + G,) |

Z(kr B lr)(ZGm + lr)

3(k, + G,

Il
w1l R

Nr (42)

Where, Ky, and G, are the bulk and shear moduli of the
matrix which can be written as

K,, = —m 43
™31 = 2uy,) (43)
En
Furthermore, B, acan be obtained from
(1 + Uout)
a=—>, 45
3(1 - Uout) ( )
2(4 - 5vout)

=— 7 46
‘B 15(1 - Uout)’ ( )

3Kour = 2Goy
= o ‘ (47)

v =
M 6Kour + 2Gout

Finally, the elastic modulus (E) and poison’s ratio ()
can be calculated as

__9KG_ 49)
3K+ G
3K — 26
_oR e 49
VT 6K+ 26 (49)

Therefore, the governing equations of sandwich beam
can be written as

0% a3
ax2 Yot T 955
02 m, 92
_mtﬁuot_
mqd, 03

6 agzaxwt

_EtAt uot + Tb

m, 92

3 A7z Yot — - 37 Uop
3 afncdb 636 at (50)

12 oc2ox P

+my, 320 w =0,

0% 03
W“ob"‘
02 m, 02
My Sl T o a2
med, 03 med, 03
12 at;axwf 6 otZox "

—EbA,

+m1b —6t26x Wy = 0,

o KA | bde ot
ot T 9oy V| T T2 o
E.b(wp, —w;) gECb[B a ] cot
H(E o G 5w +35,)
02 med, 03 mqd, 03
Mo T e aczox "t 12 otzox "t (5
m.d? 03 mqdpd, 93
We — Wp
12 dt20x 24  0t%0x
03 94

—_mM———Uu +myy ——w
1 9t29x Ot 2tat2zgx2 Tt

m, 02 me 0% 0

6 9c2"b " 3 g2t T
o) a* s FE | bdy 0t
b1oxr "o T I Gxrac | TS o

(Ec(wb —wy) 4 E.g [6 d ] c a‘r)

c c lot Wb ot We 20x

02 mcdb 63 mcdb 83
"M T aezax ot Y 6 arzax Lo

med; 93 mqd,d, 03 (53)
Wp — W
12 0t%ox 24 0dt?dx
3 64 m, 62
b geagx tor T Grage o T g ger ™
m, 02 5 02
—?ﬁwb - +12cg1 cos (B)Wwb
0
+kg, sinz(G)WWb —k,w, —cd =0,
b(c —d;)ow,
Ugeh — Ugpb — g_t
2 dx (54)
_b(c—dy)ow, bc3 6_2‘[_2_
2 ox 12E.0x* G,

3. Solution method

Base on Navier method, the displacements of the
sandwich nano beam with simply supported boundary
condition can be written as (Kutlu et al. 2012)

_u nTX\ . -
Upe (x, 1) r-cos(——).e (55)

7). evt (56)

n.m
Ugp(x, t) = Ub.cos( ;

_ My
wy(x,t) = Wy.sin i .e (57)
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_ o MTXy
w(x,t) = W,.sin )€ (58)

n.mx

(x,t) = 1. cos( ).ew't (59)
l

where, n is vibration mode number and w is frequency.

Substituting Eqgs (55)-(59) into Egs. (50)-(54), the motion

equations in matrix form can be express as

My My Mgz Myy Mg
Mp1 Mpy Mp3z Mpy Mps
M31 Mgy M3z Mgzy
My Myy; Myz My Mys

Ca1 Caz C43 Chg Cys

€51 Cs2 €53 Csg Css

(k11 kiz kis ks kls]

ka1 kay ks ks kos
kss|X=0
kai Kkaz kaz kas Kys

ks, ksy kss ksy  kss

where X = {U,, Uy, W,, W, To} is dynamic vector, [my;]
is mass matrix, [c;;] is damper matrix and [k;;] is matrix
stiffness which are expanded in Appendix A.

4. Numerical result and discussion

In this section, a parametric study is done for the effects
of different parameters on the linear frequency of the
sandwich structure. For this purpose, top and bottom beams
have Young’s modulus of E, = E, = 210 GPa, Poisson’s
ratio of v,, = 0.3, density of p, = p, = 2680 Kg/m3,
thickness of top and bottom beams is h = 2 c¢m, the length
of beams is [ =80.4cm and Width of beams is b =
5.54 ¢cm which is reinforced by CNTs with Young’s
modulus of E, =1 GPa, Poisson’s ratio of v, = 0.3 and
density of p,, = 7800 Kg/m3. The core has Young’s
modulus of E, = 201.74 MPa, Poisson’s ratio of v, =
0.3, density of p. = 32.8 Kg/m3 and Thickness of h =
1cm.

4.1 Validation

For validating, the structure frequency of this paper
without considering viscoelastic parameters, Agglomeration
effect and Pasternak orthotropic medium, is compared with
Frostig (2003) and Khalili et al. (2013).

Considering mechanical properties and geometrical
parameter the same as Frostig (2003) and Khalili et al.
(2013), frequency of sandwich nano beam for five vibration
modes is calculated and shown in Table 1.

4.2 Effect of different parameters

Figs. 2 and 3 show the effect of different viscoelastic
parameter of medium and damping structure on the

frequency versus volume percent of CNTSs, respectively .As
it is inferred with increasing viscoelastic parameter of
medium and damper of structure, the system frequency has
reduction. It is because with increasing damper of
structure, the energy depreciation of the structure will be
increased and it can be found that considering with
viscoelastic parameter, frequency is decreased. In addition,
increasing volume percent of CNTSs, frequency is increased.
It is because Increase of CNTSs leads to higher stiffness.

Table 1 Comparison of frequency of sandwich beam with
Frostig (2003) and Khalili et al. (2013)

Frequencies Present Frostig Khalili et al.
(H2) model (2003) (2013)
Mode 1 250.7717 263 251
Mode 2 534.3375 - 537
Mode 3 866.5572 889 874
Mode 4 1265.4 1289 1282
Mode 5 1742.5 1774 1771
16.4 i i -
cd=0 N.s/m
16.3 | cd=1200 N.s/m
cd=1400 N.s/m
16.2 | cd=1600 N.s/m

» HD
RN
© o

Frequency,
o o
~ ©

o
o

o
o

0% 041 012 013 014 015 016 017 018 019 0.2
Volume percent of CNTs, C
v

Fig. 2 frequency versus volume percent of CNTs for
different damping of structure

—0—¢=05
——=0.7
£=1 (Without agglomeration)

Dimensionless Frequency, §2
>

10 -8 6 -4 2 0 2 4 6 8 10
Voltage, V0 (volt)

Fig. 3 The effect of viscoelastic parameter on the
frequency versus CNTs volume percent
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Fig. 4 The effect thickens on the frequency versus
CNTs volume percent

Fig. 5 indicates the effect of spring constant of elastic
medium on the frequency with respect to CNTs volume
percent. It is observed that with increasing spring constant
of elastic medium, the frequency is increased. It is because
stiffness of system is increased with enhancing spring
constant of elastic medium.

—8—k =0.0e7 N/im*

—*—k,=0.1e7 N/m*
k =0.267 N/m®
w

—m—k =0.3¢7 N/im®

Frequency, w (Hz)

0.1 0.11 012 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2
Volume percent of CNTs, Cr

Fig. 5 The effect of spring constant of elastic medium
on the frequency versus CNTs volume percent

Frequency, w (Hz)

0.1 0.11 012 0.13 014 0.15 016 0.17 018 019 0.2
Volume percent of CNTs, Cr

Fig. 6 The effect of agglomeration on the frequency as
function of CNTs volume percent

16.6 | —®— cd=0 N.s/m

——— ¢cd=1200 N.s/m
cd=1400 N.s/m

—&— cd=1600 N.s/m

16.4

16.2

Frequency, w (Hz)

05 055 0.6 065 07 075 08 085 09 095
Agglomeration, {

Fig. 7 Frequency versus agglomeration for different
damping of elastic medium

The effect of agglomeration on the frequency as
function of CNTs volume percent is shown in Fig. 6. With
increasing agglomeration effect, frequency decreases. It is
because stiffness of structure is decreased.

Fig. 7 shows frequency versus agglomeration for
different damping of elastic medium. As can be seen, the
frequency of micro sandwich structure with increasing
damping of elastic medium is decreased. It is because with
increasing damping of elastic medium, the energy
depreciation of the structure will be increased. In addition,
increasing agglomeration, frequency is decreased. It is
because increase of CNTs agglomeration leads to lower
stiffness.

The effect of CNTs volume percent on the frequency
versus agglomeration is shown in Fig. 8. It is found that
with increasing the CNTs volume percent, the frequency is
increased due to the enhance in the stiffness of the structure.

Fig. 9 The effect of top and bottom thickens of the
structure on the frequency versus CNTs agglomeration. As
can be seen, with increasing the thickens, the frequency is
increased. It is since with increasing the thickens, the
stiffness is increased.
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Fig. 8 The effect of CNTs volume percent on the
frequency versus agglomeration
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Fig. 10 The effect of spring constant of elastic medium
on the frequency versus agglomeration

Fig. 10 indicates the effect of spring constant of elastic
medium on the frequency with respect to agglomeration. It
is observed that with increasing spring constant of elastic

medium, the frequency is increased. It is because stiffness
of system is increased with enhancing spring constant of
elastic medium.

5. Conclusions

In this work, free vibration of the sandwich structures
reinforced with CNTs considering agglomeration effect
resting on orthotropic Pasternak was presented. The Mori-
Tanaka model for considering effect of agglomeration was
used. The size effect applying Eringen’s theory was
investigated. The Kelvin-voigt model for utilizing structural
damping was assumed. The motion equations were
calculated by Hamilton’s principle and energy method.
Using analytical method, the frequency of the structure was
obtained. Increasing volume percent of CNTs, frequency
was increased. Increasing spring constant of elastic
medium, the frequency was increased. With increasing
agglomeration effect, frequency decreases. The increasing
of CNTs volume percent, frequency was increased.

References

Bennai, R., Ait Atmane, H. and Tounsi, A. (2015), “A new higher-
order shear and normal deformation theory for functionally
graded sandwich beams”, Steel Compos. Struct., Int. J., 19(3),
521-546. https://doi.org/10.12989/scs.2015.19.3.521

Chan, D.Q., Anh, V.T.T. and Duc, N.D. (2018), “Vibration and
nonlinear dynamic response of eccentrically stiffened
functionally graded composite truncated conical shells in thermal
environments”, Acta Mech., 230, 157-178.
https://doi.org/10.1007/s00707-018-2282-4

Chung, D.N., Dinh, N.N., Hui, D., Duc, N.D., Trung, T.Q. and
Chipara, M. (2013), “Investigation of Polymeric Composite
Films Using Modified TiO2 Nanoparticles for Organic Light
Emitting Diodes”, J. Current Nanosci., 9, 14-20.
https://doi.org/10.2174/157341313805118018

Duc, N.D. (2014a), Nonlinear Static and Dynamic Stability of
Functionally Graded Plates and Shells, Vietnam National
University Press, Hanoi, Vietnam.

Duc, N.D. (2014b), “Nonlinear dynamic response of imperfect
eccentrically stiffened FGM double curved shallow shells on
elastic foundation”, J. Compos. Struct., 99, 88-96.
https://doi.org/10.1016/j.compstruct.2012.11.017

Duc, N.D. (2016), “Nonlinear thermal dynamic analysis of
eccentrically stiffened S-FGM circular cylindrical shells
surrounded on elastic foundations using the Reddy’s third-order
shear deformation shell theory”, Eur. J. Mech. — A/Solids, 58,
10-30. https://doi.org/10.1016/j.euromechsol.2016.01.004

Duc, N.D. and Minh, D.K. (2010), “Bending analysis of three-
phase polymer composite plates reinforced by glass fibers and
Titanium oxide particles”, J. Computat. Mat. Sci., 49, 194-198.
https://doi.org/10.1016/j.commatsci.2010.04.016

Duc, N.D., Quan, T.Q. and Nam, D. (2013), “Nonlinear stability
analysis of imperfect three phase polymer composite plates”, J.
Mech. Compos. Mater., 49, 345-358.
https://doi.org/10.1007/s11029-013-9352-4

Duc, N.D., Hadavinia, H., Thu, P.V. and Quan, T.Q. (2015),
“Vibration and nonlinear dynamic response of imperfect three-
phase polymer nanocomposite panel resting on elastic
foundations under hydrodynamic loads”, Compos. Struct., 131,
229-237. https://doi.org/10.1016/j.compstruct.2015.05.009



Vibration analysis of sandwich beam with nanocomposite facesheets considering structural damping effects 803

Duc, N.D., Khoa, N.D. and Thiem, H.T. (2018), “Nonlinear
thermo-mechanical response of eccentrically stiffened Sigmoid
FGM circular cylindrical shells subjected to compressive and
uniform radial loads using the Reddy’s third-order shear
deformation shell theory”, Mech. Adv. Mater. Struct., 25, 1157-
1167. https://doi.org/10.1080/15376494.2017.1341581

Dutta, G., Panda. S.K., Mahapatra, T.R. and Singh, V.K. (2017),
“Electro-magneto-elastic response of laminated composite plate:
A finite element approach”, Int. J. Appl. Computat. Math., 3,
2573-2592. https://doi.org/10.1007/s40819-016-0256-6

Daya, E.M., Azrar, L. and Potier-Ferry, M. (2004), “An amplitude
equation for the non-linear vibration of viscoelastically damped
sandwich beams”, J. Sound Vib., 271, 789-813.
https://doi.org/10.1016/S0022-460X(03)00754-5

Eltaher, M.A., El-Borgi, S. and Reddy, J.N. (2016), “Nonlinear
analysis of size-dependent and material-dependent nonlocal
CNTs”, Compos. Struct., 153, 902-913.
https://doi.org/10.1016/j.compstruct.2016.07.013

Frostig, Y. (2003), “An efficient higher order zigzag theory for
composite and sandwich beams subjected to thermal loading”,
Int. J. Solids Struct., 40, 6613-6631.
https://doi.org/10.1016/j.ijsolstr.2003.08.014

Garcia-Maciasa, E. and Castro-Triguero, R. (2018), “Coupled
effect of CNT waviness and agglomeration: A case study of
vibrational analysis of CNT/polymer skew plates”, Compos.
Struct., 193, 87-102.
https://doi.org/10.1016/j.compstruct.2018.03.001

Kapuria, S., Ahmed, A. and Dumir, P.C. (2005), “An efficient
coupled zigzag theory for dynamic analysis of piezoelectric
composite and sandwich beams with damping”, J. Sound Vib.,
279, 345-371. https://doi.org/10.1016/j.jsv.2003.11.018

Khalili, S.M.R., Botshekanan Dehkordi, M., Carrera, E. and
Shariyat, M. (2013), “Non-linear dynamic analysis of a sandwich
beam with pseudoelastic SMA hybrid composite faces based on
higher order finite element theory”, Compos. Struct., 96, 243-
255. https://doi.org/10.1016/j.compstruct.2012.08.020

Kolahchi, R. (2017), “A comparative study on the bending,
vibration and buckling of viscoelastic sandwich nano-plates
based on different nonlocal theories using DC, HDQ and DQ
methods”, Aerosp. Sci. Technol., 66, 235-248.
https://doi.org/10.1016/j.ast.2017.03.016

Kutlu, A., Ugurlu, B., Omurtag, M.H. and Ergin, A. (2012),
“Dynamic response of Mindlin plates resting on arbitrarily
orthotropic Pasternak foundation and partially in contact with
fluid”, Ocean Eng., 42, 112-125.
https://doi.org/10.1016/j.0oceaneng.2012.01.010

Lakreb, N., Bezzazi, B. and Pereira, H. (2015), “Mechanical
behavior of multilayered sandwich panels of wood veneer and a
core of cork agglomerates”, Mater. Des., 65, 627-636.

Li, Z., Chu, J., Yang, C., Hao, S., Bissett, M.A., Kinloch, I.A. and
Young, R.J. (2018), “Effect of functional groups on the
agglomeration of graphene in Nano composites”, Compos. Sci.
Technol., 163, 116-122.
https://doi.org/10.1016/j.compscitech.2018.05.016

Lim, J.Y. and Bart-Smith, H. (2015), “An analytical model for the
face wrinkling failure prediction of metallic corrugated core
sandwich columns in dynamic compression”, Int. J. Mech. Sci.,
92, 290-303. https://doi.org/10.1016/j.ijmecsci.2015.01.002

Liu, Y., Yu, K., Hu, H., Belouettar, S., Potier-Ferry, M. and Damil,
N. (2012), “A new Fourier-related double scale analysis for
instability phenomena in sandwich structures”, Int. J. Solids
Struct., 49, 3077-3088.
https://doi.org/10.1080/15376494.2015.1085606

Loghman, A. and Cheraghbak, A. (2016), “Agglomeration Effects
on Electro-magnetothermo Elastic Behavior of Nano-composite
Piezoelectric Cylinder”, Polym. Compos., 39(5), 1594-1603.
https://doi.org/10.1002/pc.24104

Madani, H., Hosseini, H. and Shokravi, M. (2016), “Differential
cubature method for vibration analysis of embedded FG-CNT-
reinforced piezoelectric cylindrical shells subjected to uniform
and non-uniform temperature distributions”, Steel Compos.
Struct., Int. J., 22(4), 889-913.
https://doi.org/10.12989/scs.2016.22.4.889

Mahapatra, T.R. and Panda, S.K. (2016), “Nonlinear free vibration
analysis of laminated composite spherical shell panel under
elevated hygrothermal environment: A micromechanical
approach”, Aerosp. Sci. Technol., 49, 276-288.
https://doi.org/10.1016/j.ast.2015.12.018

Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2016a), “Nonlinear
flexural analysis of laminated composite panel under hygro-
thermo-mechanical loading—A micromechanical approach”, Int.
J. Computat. Meth., 13, 1650015.
https://doi.org/10.1142/S0219876216500158

Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2016b), “Nonlinear
hygro-thermo-elastic vibration analysis of doubly curved
composite shell panel using finite element micromechanical
model”, Mech. Advan. Mater. Struct., 23, 1343-1359.
https://doi.org/10.1080/15376494.2015.1085606

Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2016c),
“Geometrically nonlinear flexural analysis of hygro-thermo-
elastic laminated composite doubly curved shell panel”, Int. J.
Mech. Mat. Des., 12, 153-171.
https://doi.org/10.1007/s10999-015-9299-9

Mahi, A., Bedia, E.A.A. and Tounsi, A. (2015), “A new hyperbolic
shear deformation theory for bending and free vibration analysis
of isotropic, functionally graded, sandwich and laminated
composite plates”, Appl. Math. Model., 39, 2489-2508.
https://doi.org/10.1016/j.apm.2014.10.045

Mehar, K. Panda, S.K. and Mahapatra, T.R. (2017),
“Thermoelastic nonlinear frequency analysis of CNT reinforced
functionally graded sandwich structure”, Eur. J. Mech. A/Solids
65, 384-396. https://doi.org/10.1016/j.euromechsol.2017.05.005

Mori, T. and Tanaka, K. (1973), “Average stress in matrix and
average elastic energy of materials with misfitting inclusions”,
Acta Metall. Mater., 21, 571-574.
https://doi.org/10.1016/0001-6160(73)90064-3

Nejati, M., Asanjarani, A., Dimitri, R. and Tornabene, F. (2017),
“Static and free vibration analysis of functionally graded conical
shells reinforced by carbon nanotubes™, Int. J. Mech. Sci., 130,
383-398. https://doi.org/10.1016/j.ijmecsci.2017.06.024

Qin, Q.H. and Wang, T.J. (2009), “A theoretical analysis of the
dynamic response of metallic sandwich Beam under impulsive
loading”, Eur. J. Mech. A/Solids, 28, 1014-1025.
https://doi.org/10.1016/j.euromechsol.2009.04.002

Quan, T.Q., Tran, P., Tuan, N.D. and Duc, N.D. (2015), “Nonlinear
dynamic analysis and vibration of shear deformable eccentrically
stiffened S-FGM cylindrical panels with metal-ceramic-metal
layers resting on elastic foundations”, Compos. Struct., 126, 16-
33.
https://doi.org/10.1016/j.compstruct.2015.02.056

Safaeia, B., Moradi-Dastjerdib, R. and Chu, F. (2018), “Effect of
thermal gradient load on thermo-elastic vibrational behavior of
sandwich plates reinforced by carbon nanotube agglomerations”,
Compos. Struct., 192, 28-37.
https://doi.org/10.1016/j.compstruct.2018.02.022

Shokravi, M. (2018), “Forced vibration response in nanocomposite
cylindrical shells - Based on strain gradient beam theory”, Steel
Compos. Struct., Int. J., 28(3), 381-388.
https://doi.org/10.12989/scs.2018.28.3.381

Smyczynski, M.J. and Magnucka-Blandzi, E. (2018), “Stability of
five layer sandwich beams — a nonlinear hypothesis”, Steel
Compos. Struct., Int. J., 28(6), 671-679.
https://doi.org/10.12989/scs.2018.28.6.671

Sorokin, S.V. and Grishina, S.V. (2004), “Analysis of wave



804 Ali Cheraghbak, M. Botshekanan Dehkordi and H. Golestanian

propagation in sandwich beams with parametric stiffness
modulations”, J. Sound Vib., 271, 1063-1082.
https://doi.org/10.1016/j.jsv.2003.03.005

Suman, S.D., Hirwani, C.K., Chaturvedi, A. and Panda, S.K.
(2017), “Effect of magnetostrictive material layer on the stress
and deformation behaviour of laminated structure”, 10P
Conference Series: Materials Science and Engineering, 178(1),
012026.

Thu, P.V. and Duc, N.D. (2016), “Nonlinear dynamic response and
vibration of an imperfect three-phase laminated nanocomposite
cylindrical panel resting on elastic foundations in thermal
environments”, J. Sci. Eng. Compos. Mater., 24(6), 951-962.
https://doi.org/10.1515/secm-2015-0467

Vuong, P.M. and Duc, N.D. (2018), “Nonlinear response and
buckling analysis of eccentrically stiffened FGM toroidal shell
segments in thermal environment”, Aerosp. Sci. Technol., 79,
383-398. https://doi.org/10.1016/j.ast.2018.05.058

Zeinedini, A., Shokrieh, M.M. and Ebrahimi, A. (2018), “The
effect of agglomeration on the fracture toughness of CNTs-
reinforced Nano composites”, Theoret. Appl. Fract. Mech., 94,
84-94. https://doi.org/10.1016/j.tafmec.2018.01.009

CcC



Vibration analysis of sandwich beam with nanocomposite facesheets considering structural damping effects

Appendix A
M11 = —mt.Ine? — (1/3).mc. Ine? (A1)
M12 = —(1/6).mc. Ine? (A2)

M13 = (1/6).mc.dt.n. Pi. 1?2 /L + m1t.n.Pi. 12 /L (A3)

M14 = —(1/12). mc.db.n. Pi.lne?/L (A4)
M15=0 (A5)

M21 = —(1/6).mc. Ine? (AB)

M22 = —mb.Ine? — (1/3).mc.Ine? (A7)
M23 = (1/12).me. dt.n. Pi.Ine?/L (A8)

M24 = —(1/6).mc.db.n.Pi.12/L + m1b.n. Pi. 1% /L(A9)
M25=0 (A10)

M31 = (1/6).mc.dt.n. Pi.12/L + m1t.n. Pi. 12/L (All)

M32 = (1/12).mc.db.n.Pi.lne?/L (A12)
M33 = —mt — (1/12).mc.dt?.n?.
Pi2.12 /12 — m2t.n? Pi%. 1%/ 1?; (AL3)
M34=(1/24).mc. db. dt.n?. Pi?. 1212
—(1/6).mc. 12 (Al4)
M35=0 (A15)
M41 = —(1/12).mc.db.n. Pi.Ine?/L (A16)
M42 = —(1/6).mc.db.n.Pi.lne?/L
+ mlb.n.Pi.1%/L (AL7)
M43=(1/24).mc. db. dt.n?. Pi?. 1212
—(1/6).mc. 12 (A18)
M44 = —mb.Ine? — (1/12).mc.db?.n?. (AL9)
Pi?.12 /12 — m2b.n%. Pi2.12/1? — (1/3).mc. 12
M45=0 (A20)
M51=0 (A21)
M52=0 (A22)
M53=0 (A23)
M54=0 (A24)
M55=0 (A25)
Cl11 = At.E.(—g.n% Pi%.Ine/IL?) (A26)

C12=0 (A27)

C13=0
C14=0
C15=0
C21=0
C22 = —(g.n?.Pi%.lne/L?).E.Ab
C23=0
C24=0
C25=0
C31=0
C32=0

C33 = —E.(+g.n* Pi*.lne/L").It
+(Ec.(—g.lne).b)/(c)

C34 = Ec.(g.lne).b/c
C35=0
C41=0
C42=0
C43 = —Ec.(—g.Ilne).b/c

C44 = —E.(+g.n* Pi*.lne/L*).Ib
—Ec.(g.lne).b/c —cd

C45=0
C51=0
C52=0
C53=0
C54=0
C55=0
K11 = —n% Pi?/I1%. At.E
K12=0
K13=0
K14=0

K15=b

805

(A28)
(A29)
(A30)
(A31)
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(A33)
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(A35)
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K21=0 (A56)
K22 = —n2.Pi%/I2.E. Ab (A57)
K23=0 (A58)
K24=0 (A59)
K25=-b (A60)
K31=0 (A61)
K32=0 (A62)

K33 = —E.(n*.Pi*/L").It + (Ec.(—1).b)/(c) (AB3)
K34 = Ec.(+1).b/c (A64)

K35=-(1/2).n.Pib.dt/L-(1/2).Cn.Pib/L  (A65)

K41=0 (A66)
K42=0 (A67)
K43 = —Ec.(—1).b/c (AB8)

K44 = —E. (n* Pi*/L*).1b — Ec.(+1).b/c —
kgl.cos(theta)?.n?. Pi?/L?
— kg2.sin(theta)?.n?. Pi?/L?
— Kw

(AB9)

K45=-(1/2).n.Pib.db/L-(1/2).CnPib/L  (A70)

K51=b (A71)
K52=-b (A72)

K53 = —(1/2).n.Pi.b. (c + dt)/L
—(1/2).k.n®.Pi®.b. (c + dt) /L (AT73)
K54 = —(1/2).n.Pi.b. (c + db)/L (A74)
K55 = (1/12).n2. Pi%.b.¢® /(1. Ec) A75)

+b.c/Gc





