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1. Introduction 

 

Graphene is two dimensional structures which was 

discovered in 2004 (Novoselov et al. 2004). It is a 

monolayer structure which has the thickness equal to an 

atom. The repeated structure of the graphene is composed 

of atoms which are joined together with bundles. Graphene 

has shown high electrical and thermal conductivities, 

superior mechanical strength and large specific surface area. 

Comparison of graphene with the other well-known 

nanostructure, i.e., nanotube reveals that, production of 

graphene requires less costs. Considering the above 

mentioned characteristics of the graphene have resulted into 

the vast investigations to explore the extraordinary features 

of graphene. Among them one may refer to (Reddy et al. 

2006, Scarpa et al. 2009, Cadelano et al. 2009, Ni et al. 

2010, Zhang et al. 2011). In these researches and many 

other available works, the potential of graphene as a 

promising reinforcement for the composites is highlighted. 

The graphene layer, as reported in the open literature is 

stiffer than most of the engineering metals such as stainless 

steel. The elasticity modulus of this monolayer in most of 

the investigations is reported as 1 TPa. Graphene has shown 

excellent conduction capacity even more than copper and 

silver. Other features of graphene as reinforcement are 

highlighted in (Stankovich et al. 2006, Potts et al. 2011, 

Das and Prusty 2013). It is also shown that, introduction of 

 

Corresponding author, Ph.D., 

E-mail: y.kiani@sku.ac.ir 
a Ph.D. 

 

 

even a low amount of graphene as reinforcement in a 

composite media, results in better thermal, mechanical and 

electrical properties (Rafiee et al. 2009a, Zhao et al. 2010). 

Owing to its geometry, in many applications, graphene is 

preferred to carbon nanotube due to the higher interaction 

of the graphene with matrix in comparison to carbon 

nanotube (CNT) with matrix. 

In many experimental investigations, it is also verified 

that stability response of an elastic media may be enhanced 

significantly when graphene is inserted into the matrix with 

even low weight fraction. For instance, Rafiee et al. (2009b) 

conducted experiments to examine the enhancement of the 

buckling capacity of epoxy beams which are reinforced 

with graphene. As reported in this research, with 

introduction of low weight fraction of graphene in the 

matrix, the buckling loads of the composite beams may be 

enhanced. For instance, when only 0.1 percent of graphene 

is inserted into the matrix, the buckling load of the 

composite beams may be increased about 50%. In another 

investigation, Parashar and Mertiny (2012) conducted a set 

of simulations to analyse the buckling of graphene-epoxy 

composite plates under the action of unidirectional 

compression. Conclusion of this study is the same with the 

one reported by Rafiee et al. (2009b). For instance 26% 

increase in the buckling load of the plate may be achieved 

when the matrix of the composite media is enriched with 

only 6% percent of the graphene. 

It should be highlighted that, the volume(weight) 

fraction of grpahene as filler cannot be increased arbitrarily 

since higher volume fraction of graphene as reinforcement 

results in unpleasant results (Kulkarni et al. 2010). 

Graphene as reinforcement is observed in two shapes; 

i.e., graphene sheets and graphene platelets. Both of these 
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types have attracted increasing attention in recent years. 

When composites are reinforced with graphene sheets, Shen 

introduced a novel class of composites which are composed 

of laminates and each lamina is reinforced by graphene. 

When volume fraction of graphene sheets are different in 

each layer, a piecewise functionally graded pattern is 

revealed. In this case of reinforced composites properties 

are obtained using a refined micromechanical rule which is 

calibrated using the data of molecular dynamics 

simulations. The weight fraction of graphene sheets in this 

model varies from 3 to 11 percent and temperature 

dependency of the constituents is included. Stability 

behaviour of beams, plates and shells reinforced with 

graphene sheets is well-documented in the open literature. 

Among them, Kiani and Mirzaei (2018) applied the 

conventional Ritz method to analyse the buckling and 

postbuckling of functionally graded graphene reinforced 

composite (FG-GRC) beams resting on two parameter 

elastic foundation. Shen et al. (2017a) applied the two step 

perturbation technique to analyse the thermal postbuckling 

of GRC beams resting on two parameters elastic foundation 

by means of the third order shear deformation beam theory. 

Shen et al. (2017b) analysed the buckling and postbuckling 

behaviour of FG-GRC rectangular plates under uniform 

compressive loads by means of the two step perturbation 

technique. The developed formulation of this study is 

applicable to plates which are simply supported all around. 

Shen et al. (2018) also analysed the thermal postbuckling 

response of rectangular plates subjected to uniform heating 

by means of the two step perturbation technique. The effect 

of the Pasternak elastic foundation is also included in this 

investigation. In another study, Yu et al. (2018) also 

investigated the application of GRC laminates as face sheets 

in sandwich plates. They analysed the postbuckling 

response of rectangular plates under mechanical and 

thermal loads. They showed that, buckling load of sandwich 

plates with FG-GRC face sheets may be enhanced when the 

volume fraction of graphene is increased in the face sheets. 

Mirzaei and Kiani (2017) developed an isogeometric 

formulation to analyse the thermal buckling of GRC 

laminated plates with different combinations of boundary 

conditions. The developed solution method of this research 

may be used for arbitrary combinations of boundary 

conditions. To analyse the thermal postbuckling response of 

FG-GRC rectangular plates, Kiani (2018a) developed a 

higher order NURBS-based isogeometric formulation for 

rectangular plates with arbitrary combinations of boundary 

conditions. It is highlighted that when inner layers of the 

plate are enriched with maximum graphene sheets, the 

critical buckling temperature of the plate decreases. Shen 

and his co-authors (Shen et al. 2018, Shen and Xiang 

2018a, b) also investigated the buckling of cylindrical 

panels and shells subjected to different loads in thermal 

environment. In these works, it is shown that to increase the 

buckling loads of the shells and decrease the postbuckling 

deflections, the layers which have the maximum distance 

with neutral surface of the structure should be enriched with 

the maximum amount of graphene sheets. Kiani (2019) also 

investigated the effect of graphene sheet pattern on the 

buckling of nanocomposite conical shells reinforced with 

graphene sheets. The effect of thermal environment is also 

included in this research. It is shown that, buckling load of 

the shell decreases significantly when temperature elevates. 

In another class, graphene platelets are inserted into the 

matrix of the composite media. In this case of reinforced 

composites, properties are obtained using the Halpin-Tsai 

micromechanical rule. The weight fraction of grpahene 

sheets in this model is less that 1 percent and properties are 

assumed to be independent of the temperature. The main 

works on the stability of composite beams, plates and shells 

reinforced with graphene platelets are as follows. Yang et 

al. (2017) analysed the buckling and postbuckling of 

functionally graded graphene platelets reinforced composite 

(FG-GPLRC) beams by means of the first order shear 

deformation beam theory and differential quadrature 

method. Elastic properties of the beams are estimated by 

means of the Halpin-Tsai rule. Yang et al. (2018b) 

investigated the nonlinear in-plane instability of FG-

GPLRC shallow arches using an analytical method. In this 

research, both of the bifurcation and snap-through types of 

instability are taken into account. The nonlinear prebuckling 

deformation for bifurcation analysis are also included into 

the formulation. Kitipornchai et al. (2017) applied the 

conventional Ritz method to analyse the elastic buckling of 

nanocomposite beams reinforced with FG-GPLs. It is 

shown that, non-uniform and symmetric distributions of 

porosity and graphene can achieve the best structural 

performance. Song et al. (2017) applied the single term 

Galerkin solution method to investigate the buckling and 

post-buckling of axially compressed rectangular plates. In 

this research, only simply supported plates are analysed. 

Applying the two dimensional differential quadrature 

method, first order shear deformation plate theory and 

Halpin-Tsai micro-mechanical rule, Wu et al. (2017) 

investigated the thermal buckling and postbuckling of FG-

GPLRC rectangular plates. It is shown that, the effect of 

weight fraction of graphene platelets on critical buckling 

temperature and thermal postbuckling of uniform FG-

GPLRC is almost negligible. Song et al. (2018) applied the 

classical Navier solution method to analyse the buckling of 

FG-GPLRC rectangular plates within the framework if first 

order shear deformation plate theory. As shown in this 

research, a multilayer plate consisting of 10-15 layers is an 

excellent approximation for the desired functionally graded 

plate with a continuous through-thickness variation in GPL 

distribution. Yang et al. (2018a) applied the Chebyshev-Ritz 

formulation to analyse the buckling of FG-GPLRC 

rectangular plates. The effect of cut-out on the buckling of 

compressed cylindrical shells made of FG-GPLRC is 

investigated by Wang et al. (2018a). The solution method is 

based on the finite elements simulation. As shown, larger 

sized GPLs with fewer single graphene layers are 

favourable reinforcing fillers in enhancing the buckling 

performance of the structures. The effect of cut-out on the 

torsional buckling of FG-GPLRC cylindrical shell is also 

investigated by Wang et al. (2018b). The solution method of 

this research is based on a finite elements simulation. As 

shown in this research, square shaped GPLs with fewer 

layers are preferred as reinforcements for torsional 

buckling. Wang et al. (2018c) also investigated the effect of 
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GPLs on the nanocomposites subjected to axial 

compression using the finite elements simulations. 

As the above literature survey indicates and to the best 

of the present authors’ knowledge, the only available work 

on the thermal buckling and postbuckling of FG-GPLRC 

rectangukar plates belongs to Wu et al. (2017). In this 

research, the first order shear deformation plate theory is 

used for plates which contains clamped and simply 

supported edges. The governing equations are solved using 

the generalised differential quadrature method. Present 

work, however uses the third order shear deformation plate 

theory which does not require the shear correction factor. 

Furthermore the solution method is based on the NURBS-

based isogeometric formulation suitable for clamped, 

simply and sliding supported edges. In the present 

investigation, thermal buckling and postbuckling response 

of multi-layer graphene platelet reinforced composite plate 

is investigated. Different patterns of functionally graded for 

graphene reinforcements is assumed into the formulation. A 

higher order plate theory, von Kármán type of nonlinearity, 

Halpin-Tsai micromechanical rule and the NURBS-based 

isogeometric formulation are used to obtain the basic 

governing equations dealing with the postbuckling and 

buckling of FG-GPLRC plates subjected to uniform 

heating. The developed formulation may be used for 

arbitrary combinations of boundary conditions. A direct 

displacement control strategy is applied to the nonlinear 

equilibrium equations to trace the postbuckling equilibrium 

path of the plate. It is shown that, for a specific pattern of 

FG distribution of GPLs, increasing the weight fraction of 

GPLs enhances the critical buckling temperature of the 

nanocomposite plate and decreases the thermal 

postbuckling deflection. 
 

 

2. Basic formulation 
 

A multilayer composite laminated plate with 𝑁𝐿 layers, 

total thickness ℎ, length 𝑎 and width 𝑏 is considered in 

the current research. All plies are considered to be unified in 

thickness. Therefore the thickness of each ply is obtained as 

ℎ/𝑁𝐿. Each ply is made from a polymeric matrix which is 

reinforced by graphene platelets. The volume fraction of 

graphene in each ply may be different. When volume 

fraction of graphene in layers is different, a piecewise 

functionally graded graphene reinforced composite 

laminated plate is achieved. 

A Cartesian coordinate system is assigned to the mid-

surface corner of the plate where the 𝑥 axis is through the 

length, 𝑦 axis is through the width and 𝑧 axis is through 

the thickness. 

A third order shear deformation plate theory, known as 

Reddy’s shear deformation plate theory is used in the 

current investigation to estimate the displacement 

components of the plate. The theory considers the parabolic 

variation of shear strains while ignores the thickness 

stretching. Also the constraint of zero shear strains are 

satisfied on the top and bottom surfaces of the plate. 

According to this theory, displacement field is expressed as 
 

𝐮 = 𝐮1 + 𝑧𝐮2 + 𝑓(𝑧)𝐮3 (1) 

In Eq. (1), 𝐮 = {𝑢, 𝑣, 𝑤}𝑇 . Here, 𝑢, 𝑣 and 𝑤  denote 

the displacements through the 𝑥 , 𝑦  and 𝑧  directions, 

respectively. Also 𝐮1 = {𝑢0, 𝑣0, 𝑤0}
𝑇  indicates the 

displacements of the mid-surface of the plate. The other 

vectors are 𝐮2 = −{𝑤0,𝑥, 𝑤0,𝑦, 0}
𝑇  and 𝐮3 = {𝛽𝑥, 𝛽𝑦 , 0}

𝑇 . 

Here 𝛽𝑥 and 𝛽𝑦 are the cross section rotations about 𝑦 

and 𝑥 axes, respectively. It is of worth-noting that, the 

function 𝑓(𝑧) is equal to 𝑓(𝑧) = 𝑧(1 − 4𝑧2/3ℎ2) which 

satisfies the condition of zero shear strains at the top and 

bottom surfaces of the plate. 

Suitable for nonlinear stability analysis of plates, von 

Kármán type of strain field are used in this research. This 

type of strain is compatible with small strains, large 

deflection and moderate rotations. The components of von 

Kármán strains in Cartesian coordinate system takes the 

form 

{
 
 

 
 
𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧}
 
 

 
 

=

{
 
 

 
 
𝑢,𝑥
𝑣,𝑦
𝑢,𝑦 + 𝑣,𝑥
𝑢,𝑧 +𝑤,𝑥
𝑣,𝑦 + 𝑤,𝑦}

 
 

 
 

+
1

2

{
 
 

 
 
𝑤,𝑥
2

𝑤,𝑦
2

2𝑤,𝑥𝑤,𝑦
0
0 }

 
 

 
 

 (2) 

 

Substitution of Eqs (1) into Eq. (2) results in the 

following expressions for the strain field within the plate 

 

{
𝜺
𝜸} = {

𝜺𝑚
0
} + {

𝑧𝜿1
𝟎

} + {
𝑓(𝑧)𝜿2
𝑓′(𝑧)𝜷

} (3) 

 

where the newly defined functions in Eq. (3) are as 

 

𝜺𝑚 = {

𝑢0,𝑥
𝑣0,𝑦
𝑢0,𝑦 + 𝑣0,𝑥

} +
1

2
{

𝑤0,𝑥
2

𝑤0,𝑦
2

2𝑤0,𝑥𝑤0,𝑦

} = 𝜺𝐿 + 𝜺𝑁𝐿, 

𝜿1 = −{

𝑤0,𝑥𝑥
𝑤0,𝑦𝑦
2𝑤0,𝑥𝑦

},     𝜿2 = {

𝛽𝑥,𝑥
𝛽𝑦,𝑦
𝛽𝑥,𝑦 + 𝛽𝑦,𝑥

} ,     𝜷 = {
𝛽𝑥
𝛽𝑦
} 

(4) 

 

The nonlinear part of the strain tensor from Eq. (4) may 

be expressed in terms of the slope vector as 

 

𝜺𝑁𝐿 =
1

2
𝐴𝜃𝜽 =

1

2
[

𝑤0,𝑥 0

0 𝑤0,𝑦
𝑤0,𝑦 𝑤0,𝑥

] {
𝑤0,𝑥
𝑤0,𝑦

} (5) 

 

Material of the plate is assumed to be linear and 

thermoelastic. Therefore the constitutive law for the plate 

may be expressed as 
 

𝝈 = 𝐂(𝜺 − 𝜺𝑇) 
𝝉 = 𝐆𝜸 

(6) 

 

where the following definitions apply 

 

𝝈 = {

𝜎𝑥
𝜎𝑦
𝜎𝑥𝑦

},    𝜺𝑇 = Δ𝑇 {

𝛼11
𝛼22
𝛼12

} ,    𝝉 = {
𝜏𝑥𝑧
𝜏𝑦𝑧
} 

𝐂 = [

𝑄11 𝑄12 𝑄16
𝑄12 𝑄22 𝑄26
𝑄16 𝑄26 𝑄66

] ,    𝐆 = [
𝑄44    𝑄45
𝑄45    𝑄55

] 

(7) 
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It is assumed that each layer of the composite plate is 

isotropic. Therefore the stiffness components in Eq. (7) of 

the plate may be expressed in terms of elasticity modulus 𝐸 

and Poisson’s ratio 𝜈 of the layer as 

 

𝑄11 = 𝑄22 =
𝐸

1 − 𝜈2
,   𝑄12 =

𝜈𝐸

1 − 𝜈2
,    𝑄16 = 𝑄26 = 0 

𝑄44 = 𝑄55 = 𝑄66 =
𝐸

2(1 + 𝜈)
,   𝑄45 = 0 

(8) 

 

The membrane stress resultants, 𝐍, The membrane out-

of-plane shear stress resultants, 𝐐 and the bending stress 

resultants, 𝐌 may be obtained upon integration of stress 

components (6) as 
 

{

𝐍
𝐌
𝐏
𝐐

} = [

𝐀 𝐁 𝐄 𝟎
𝐁 𝐃 𝐅 𝟎
𝐄
𝟎

𝐅
𝟎

𝐇
𝟎

𝟎
𝟎

]{

𝜺𝑚
𝜿1
𝜿2
𝜷

} − {

𝐍𝐓
𝐌𝐓

𝐏𝐓
𝟎

} (9) 

 

where in a compact form may be expressed as 

 

𝝈̂ = 𝐃̂𝜺̂ − 𝝈̂0 (10) 

 

The stiffness matrices of the composite media in Eq. (9) 

are obtained as 

 
(𝐀, 𝐁,𝐃, 𝐄, 𝐅, 𝐇,𝐃𝐬) = 

∑

𝑁𝐿

𝑘=1

∫
ℎ𝑘

ℎ𝑘−1

(𝐂, 𝑧𝐂, 𝑧2𝐂, 𝑓(𝑧)C, 𝑧𝑓(𝑧)𝐂, 𝑓2(𝑧)𝐂, 𝑓′2(𝑧)𝐆)𝑑𝑧 
(11) 

 

and the thermally induced force and moment resultants 

appeared in Eq. (9) are evaluated by 
 

(𝐍𝑇 , 𝐌𝑇, 𝐏𝑇) =∑

𝑁𝐿

𝑘=1

∫
ℎ𝑘

ℎ𝑘−1

𝐀𝑇Δ𝑇(1, 𝑧, 𝑓(𝑧))𝑑𝑧 (12) 

 

where in Eq. (12) 
 

𝐀𝑇 = 𝐂 [
1 0
0 1
0 0

] [
𝛼
𝛼
0
] (13) 

 

It is assumed that the composite laminated plate consists 

of even number of layers, i.e., 𝑁𝐿. As mentioned earlier, the 

volume fraction of GPLs in each layer may be different. 

Three different types of volume fraction distribution for 

FG-GPLRCs is considered in this research which are FG-O, 

FG-X and UD. Distribution of volume fraction for each 

layer is according to the following expressions 
 

UD: 𝑉𝐺𝑃𝐿
(𝑘) = 𝑉𝐺𝑃𝐿

∗  

FG − X: 𝑉𝐺𝑃𝐿
(𝑘) = 2𝑉𝐺𝑃𝐿

∗
|2𝑘 − 𝑁𝐿 − 1|

𝑁𝐿
 

FG − O:𝑉𝐺𝑃𝐿
(𝑘)
= 2𝑉𝐺𝑃𝐿

∗ (1 −
|2𝑘 − 𝑁𝐿 − 1|

𝑁𝐿
) 

(14) 

 

where in Eq. (14), 𝑉𝐺𝑃𝐿
(𝑘)

 indicates the volume fraction of 

GPLs in the 𝑘-th layer of the laminate. In Eq. (14) 𝑘 takes 

the values from 1 to 𝑁𝐿 . Also 𝑉𝐺𝑃𝐿
∗  indicates the total 

volume fraction of the GPLs in the plate. The total volume 

fraction of GPLs may be expressed in terms of the weight 

fraction of the GPLs in the whole plate, 𝑊𝐺𝑃𝐿 and also the 

mass density of the constituents, 𝜌𝑚 and 𝜌𝐺𝑃𝐿 as 

 

𝑉𝐺𝑃𝐿
∗ =

𝑊𝐺𝑃𝐿

𝑊𝐺𝑃𝐿 +
𝜌𝐺𝑃𝐿

𝜌𝑚
(1 −𝑊𝐺𝑃𝐿)

 (15) 

 

It is known that the size and geometry of the fillers are 

two important factors for the estimation of properties of 

polymer composites. To estimate the elasticity modulus of 

the GPLRCs in this research, the Halpin-Tsai rule is used. 

This rule is widely accepted in the estimation of elasticity 

modulus of GPLRCs (Yang et al. 2017, 2018a, b). 

According to this micromechanical rule, the elasticity 

modulus of each layer of the composite may be obtained as 

 

𝐸 =
3

8

1 + 𝜉𝐿𝜂𝐿𝑉𝐺𝑃𝐿
1 − 𝜂𝐿𝑉𝐺𝑃𝐿

𝐸𝑚 +
5

8

1 + 𝜉𝑇𝜂𝑇𝑉𝐺𝑃𝐿
1 − 𝜂𝑇𝑉𝐺𝑃𝐿

𝐸𝑚 (16) 

 

where the auxiliary parameters 𝜂𝐿 and 𝜂𝑇 in Eq. (16) are 

expressed as 

 

𝜂𝐿 =
𝐸𝐺𝑃𝐿 − 𝐸𝑚
𝐸𝐺𝑃𝐿 + 𝜉𝐿𝐸𝑚

          𝜂𝑇 =
𝐸𝐺𝑃𝐿 − 𝐸𝑚
𝐸𝐺𝑃𝐿 + 𝜉𝑇𝐸𝑚

 (17) 

 

In Eq. (17), 𝐸𝑚 and 𝐸𝐺𝑃𝐿 are the elasticity modulus of 

the isotropic matrix and isotropic GPLs, respectively. The 

geometrical factors of GPLs are obtained in terms of the 

thickness of the GPLs, 𝑡𝐺𝑃𝐿, width of the GPLs, 𝑏𝐺𝑃𝐿 and 

length of the GPLs, 𝑎𝐺𝑃𝐿 as follows 

 

𝜉𝐿 =
𝑎𝐺𝑃𝐿
𝑡𝐺𝑃𝐿

          𝜉𝑇 =
𝑏𝐺𝑃𝐿
𝑡𝐺𝑃𝐿

 (18) 

 

The thermal expansion coefficient of the composite 

media 𝛼 and Poisson’s ratio of the composite media 𝜈 

may be obtained easily by means of the properties of the 

constituents according to the simple rule of mixtures. 

Accordingly one may write (Cong et al. 2018, Duc and 

Nguyen 2017, Duc et al. 2017a, b, Thanh et al. 2016, Thom 

et al. 2017, Voung and Duc 2018) 

 

𝛼 = 𝛼𝑚𝑉𝑚 + 𝛼𝐺𝑃𝐿𝑉𝐺𝑃𝐿 
𝜈 = 𝜈𝑚𝑉𝑚 + 𝜈𝐺𝑃𝐿𝑉𝐺𝑃𝐿 

(19) 

 

In Eq. (19), the subscripts 𝑚 and 𝐺𝑃𝐿 represent the 

matrix and GPLs respectively. The virtual displacement 

principle which is also known as the static version of the 

Hamilton principle may be used to obtain the governing 

equations of a composite laminated plate subjected to 

thermal loading. Since external forces are absent, the total 

energy of the plate is equal to the strain energy of the plate. 

Therefore in an equilibrium position one may write 

 

𝛿Π = 𝛿𝑈 = ∫
Ω

𝛿𝜺̂𝑇𝝈̂𝑑Ω = 0 (20) 
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3. Solution method; Isogeometric Analysis 
 

The isogeometric finite elements formulation is applied 

recently to different problems of applied mechanics. In the 

next, a summary of the method is only introduced. For more 

details on the process one may refer to the primary 

investigation of Hughes et al. (2005) or Atri and Shojaee 

(2018) and Roodsarabi et al. (2016). 

In one dimensional space, a knot vector consists of a 

non-decreasing set of numbers, i.e., 𝑘(𝜉) =

{𝜉1, 𝜉2, 𝜉3, . . . 𝜉𝑛+𝑝+1}. According to the condition of non-

decreasing set of numbers for any integer number 𝑖, 𝜉𝑖 ≤
𝜉𝑖+1. All of the numbers satisfy the condition 0 ≤ 𝜉𝑖 ≤ 1 

where 𝜉𝑖 is the i-th knot. Also in the definition of knot, 𝑛 

and 𝑝 stand for the number of basis functions and the order 

of the B-spline basis function, respectively. With the aid of 

a given knot vector 𝑘(𝜉), the B-spline basis function is 

defined according to the following recursive Cox-de Boor 

formula 
 

𝑁𝑖,0(𝜉) = {
1    𝜉𝑖 ≤ 𝜉 < 𝜉𝑖+1
0    𝑒𝑙𝑠𝑒

 

𝑁𝑖,𝑝(𝜉) =
𝜉 − 𝜉𝑖
𝜉𝑖+𝑝 − 𝜉𝑖

𝑁𝑖,𝑝−1(𝜉) 

+
𝜉𝑖+𝑝+1 − 𝜉

𝜉𝑖+𝑝+1 − 𝜉𝑖+1
𝑁𝑖+1,𝑝−1(𝜉) 

(21) 

 

It is of worth noting that, in the above equation, the 

value of 0/0 is set equal to zero. For two dimensional 

domains, such as plates and shells, the base functions may 

be determined using the tensor product of two one 

dimensional B-spline functions. These functions are 

obtained as 
 

𝑅𝑖,𝑗
𝑝,𝑞
=

𝑁𝑖,𝑝(𝜉)𝑁𝑗,𝑞(𝜂)𝑤𝑖,𝑗
∑𝑛𝑖=1 ∑

𝑚
𝑗=1 𝑁𝑖,𝑝(𝜉)𝑁𝑗,𝑞(𝜂)𝑤𝑖,𝑗

 (22) 

 

Where in Eq. (22), the shape function of order 𝑝 in 𝜉 

direction and of order 𝑞  in 𝜂  direction are denoted 

respectively by 𝑁𝑖,𝑝(𝜉)  and 𝑁𝑗,𝑞(𝜂) . It should be 

mentioned that derivation of the shape functions 𝑁𝑗,𝑞(𝜂) is 

similar to shape functions 𝑁𝑖,𝑝(𝜉) which is provided in Eq. 

(21). In derivation of the shape functions 𝑁𝑗,𝑞(𝜂) the knot 

vectors 𝑘𝜂  should be used. Furthermore, 𝑤𝑖,𝑗  represent 

the weight coefficients. 

The displacement approximation within the plate 

domain using the NURBS takes the form 
 

(𝑢0𝑖
ℎ , 𝑣0𝑖

ℎ , 𝑤0𝑖
ℎ , 𝛽𝑥𝑖

ℎ , 𝛽𝑦𝑖
ℎ ) 

=∑

𝑛𝑚

𝑖=1

𝑅𝑖(𝒙)(𝑢0𝑖, 𝑣0𝑖 , 𝑤0𝑖 , 𝛽𝑥𝑖 , 𝛽𝑦𝑖) 
(23) 

 

where the definition of 𝑅𝑖(𝑥)  is provided in Eq. (22). 

Furthermore, in Eq. (23), the displacements at the control 

node 𝑖 are denoted by (𝑢𝑖 , 𝑣𝑖 , 𝑤𝑖) and the rotations at the 

control node 𝑖 are denoted by (𝛽𝑥𝑖 , 𝛽𝑦𝑖). In a compact 

form Eq. (23) takes the form 
 

𝐮ℎ(𝒙) =∑

𝐴

𝑅𝑖(𝒙)𝐪𝐴 (24) 

Substitution of the above equation into the Eq. (4) 

results in the expression of strain in terms of vector of nodal 

degrees of freedom associated with the control point as 

 

𝜺̂ = (𝐁𝐿 +
1

2
𝐁𝑁𝐿)𝐪 (25) 

 

where 𝐁𝐿  is the infinitesimal strain field which ma be 

written as 

 

𝐁𝐴
𝐿 = [(𝐁𝐴

𝑚)𝑇(𝐁𝐴
𝑏1)𝑇(𝐁𝐴

𝑏2)𝑇(𝐁𝐴
𝑠)𝑇]𝑇 (26) 

 

where the following definitions apply 
 

𝐁𝐴
𝑚 = [

𝑅𝐴,𝑥 0 0 0 0

0 𝑅𝐴,𝑦 0 0 0

𝑅𝐴,𝑦 𝑅𝐴,𝑥 0 0 0
] 

𝐁𝐴
𝑏1 = −[

0 0 𝑅𝐴,𝑥𝑥 0 0

0 0 𝑅𝐴,𝑦𝑦 0 0

0 0 2𝑅𝐴,𝑥𝑦 0 0
] 

𝐁𝐴
𝑏2 = [

0 0 0 𝑅𝐴,𝑥 0

0 0 0 0 𝑅𝐴,𝑦
0 0 0 𝑅𝐴,𝑦 𝑅𝐴,𝑥

] 

𝐁𝐴
𝑠 = [

0 0 0 𝑅𝐴 0
0 0 0 0 𝑅𝐴

] 

𝐁𝐴
𝑔
= [

0 0 𝑅𝐴,𝑥 0 0

0 0 𝑅𝐴,𝑦 0 0
] 

(27) 

 

Similar to linear strain, the non-linear part of the strain 

field may be expressed as 
 

𝐁𝐴
𝑁𝐿(𝐪) = 𝐀𝜃𝐁𝐴

𝑔
 (28) 

 

Recalling the definition of the strain field from Eq. (25), 

the variation of the strain field may be expressed as 

 
(𝐊𝐿 + 𝐊𝑁𝐿 − 𝐊𝐺)𝐪 = 0 (29) 

 

where in the above equations, 𝐊𝐿 , 𝐊𝑁𝐿  and 𝐊𝐺  are, 

respectively, the linear, nonlinear and geometrical stiffness 

matrices. These matrices may be evaluated by 

 

𝐊𝐿 = ∫
Ω

(𝐁𝐿)𝑇𝐃̂𝐁𝐿𝑑Ω 

𝐊𝑁𝐿 =
1

2
∫
Ω

(𝐁𝐿)𝑇𝐃̂𝐁𝑁𝐿𝑑Ω +∫
Ω

(𝐁𝑁𝐿)𝑇𝐃̂𝐁𝐿𝑑Ω 

             +
1

2
∫
Ω

(𝐁𝑁𝐿)𝑇𝐃̂𝐁𝑁𝐿𝑑Ω 

𝐊𝐺 = ∫
Ω

(𝐁𝑔)𝑇 [
𝑁𝑥𝑇 0
0 𝑁𝑦𝑇

] 𝐁𝑔𝑑Ω 

(30) 

 

It is of worth-noting that, even under uniform 

temperature rise, a rectangular plate may not follow the 

classical thermal postbuckling behaviour. Boundary 

conditions and lamination scheme both affect the nonlinear 

thermal stability of the plate. When all edges of the plate are 

of clamped type, for both the symmetric and asymmetric 

lamination schemes, thermal bifurcation takes place. 

However, when at least one edge of the plate is of the 
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simply supported type, thermal bifurcation and regular 

postbuckling happens only for symmetric lamination 

scheme. In this study, only the classical postbuckling 

equilibrium path of the plate is considered. 

For the numerical integration, the standard Gaussian 

rules are used in this work without the need for any special 

calculations. 

It should be mentioned that Eq. (29) is a non-linear 

eigenvalue problem which should be solved according to a 

displacement control strategy. For the sake of brevity, the 

process of solution is not mentioned in here, meanwhile 

readers of this study may refer to the previous 

investigations of the author, see e.g., (Kitipornchai et al. 

2017, Kiani 2017, 2018b, c). 

 

 

4. Numerical result and discussion 
 
In the present research, thermal buckling and 

postbuckling response of FG-GPLRC rectangular plates is 

investigated by means of the third order shear deformation 

plate theory and NURBS-based isogeometric formulation. 

In all numerical calculations, the cubic order NURBS basis 

functions are used and a 4×4 Gaussian quadrature scheme 

is used for integration of each element. Each side of the 

plate may be clamped (C), simply supported (S) or sliding 

supported (X). For a clamped plate, all of the 

displacements, normal derivative of lateral deflection and 

both of the rotations are restrained at the support. For a 

simply supported edge, all of the displacement and 

tangential rotation are restrained at the support. For a 

sliding supported edge, the in-plane displacements and the 

normal rotation are equal to zero. 

Many factors affect the response of the composite 

laminated plate reinforced with GPLs. The geometry and 

dimensions of GPLs is one of the main factors. Wu et al. 

(2017) performed a series of studies on the influence of 

geometrical parameters of GPLs on thermal buckling and 

post-buckling of FG-GPLRC rectangular plates. The effects 

of 𝑎𝐺𝑃𝐿/𝑏𝐺𝑃𝐿 and 𝑏𝐺𝑃𝐿/𝑡𝐺𝑃𝐿 on the thermal buckling and 

postbuckling of FG-GPLRC is examined. It is shown that 

for values of 𝑏𝐺𝑃𝐿/𝑡𝐺𝑃𝐿  grater than 1000, the value of 

critical buckling temperature almost remains constant. Also 

in another study by Wu et al. (2017) it is shown that the 

post-buckling curves of UD, FG-X and FG-O plates are 

hardly dependent to 𝑎𝐺𝑃𝐿/𝑏𝐺𝑃𝐿 . Therefore in all of the 

numerical results on this study the following geometrical 

parameters which are proposed by Wu et al. (2017) are 

used. The geometrical properties of GPLs are as follows 

𝑎𝐺𝑃𝐿 = 2.5 𝜇m, 𝑏𝐺𝑃𝐿 = 1.5 𝜇m and 𝑡𝐺𝑃𝐿 = 1.5 nm. 

The other important factor which affects the thermal 

buckling and post-buckling response of FG-GPLRC 

rectangular plates is the number of layers. Wu et al. (2017) 

performed an investigation on the effect of number of 

layers. Their results also confirm that for the number of 

layers larger than 10, the critical buckling temperature 

almost remains constant and also thermal post-buckling 

deflection is unchanged. Therefore in the current 

investigation, for all of the numerical results, the number of 

layers is set equal to 𝑁𝐿 = 10. 

Table 1 Thermo-mechanical properties of the matrix and 

GPLs (Wu et al. 2017) 

Properties Epoxy GPL 

Elasticity modulus (𝐸)[GPa] 3.0 1010 

Mass density (𝜌) [kg/m 3] 1200 1062.5 

Thermal expansion coefficient (× 10−6/K) 60 5.0 

Poisson’s ratio (𝜈) 0.34 0.186 
 

 

 

The following convention is used to distinguish the 

boundary condition of the plate. A four letter phrase is used 

for each class of boundary condition where the first letter is 

associated to 𝑥 = 0, the second letter is associated to 𝑦 =
0, the third letter indicates the boundary on 𝑥 = 𝑎 and the 

fourth letter is the boundary on 𝑦 = 𝑏. 

For the numerical results of this study, unless otherwise 

stated, the thermo-mechanical properties of epoxy and 

graphene platelets are taken from Wu et al. (2017) and are 

listed in Table 1. 

In whole of the post-buckling results, the center point 

deflection of the plate is denoted by 𝑊. 

 

4.1 Comparison Studies 
 

In this section two comparison studies are given. A 

comparison study is presented between the numerical 

results of our study with those obtained by Wu et al. (2017). 

In the present study a third order shear deformation plate 

theory is used and solution method is based on the NURBS-

based isogeometric formulation. However in the analysis of 

Wu et al. (2017), the first order shear deformation plate 

theory is used and the solution method is based on the two 

dimensional differential quadrature. Comparison is 

provided in Table 2. It is seen that our results are in 

excellent agreement with those of Wu et al. (2017) which 

accepts the accuracy and effectiveness of our solution 

method. 

In another comparison study, the thermal post-buckling 

equilibrium path of square plates is compared with the 

available data in the open literature. In this comparison, a 

single layer isotropic plate is considered and results are 

compared with those of Raju and Rao (1988). For this 

comparison study, a thin square plate is considered. The 

 

 

Table 2 A comparison on critical buckling temperature 

difference Δ𝑇𝑐𝑟[𝐾] of square SSSS FG-GPLRC 

plates with 𝑊𝐺𝑃𝐿 = 0.3%, various thickness ratios 

and graded patterns 

Pattern Source 𝑎/ℎ = 25 𝑎/ℎ = 35 𝑎/ℎ = 45 

UD 
Present 32.517 16.672 10.106 

Wu et al. (2017) 32.539 16.679 10.109 

FG-X 
Present 40.230 20.650 12.524 

Wu et al. (2017) 40.261 20.660 12.528 

FG-O 
Present 24.804 12.703 7.696 

Wu et al. (2017) 24.817 12.707 7.698 
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Fig. 1 Comparison of thermal postbuckling of square thin 

plates with those of Raju and Rao (1988) for different 

types of boundary conditions 

 

 

side to thickness ratio is set equal to 𝑎/ℎ = 100. Three 

different types of boundary conditions are assumed and 

comparison is shown in Fig. 1. It is concluded that, our 

results match well with the available data in the open 

literature which shows the accuracy and correctness of our 

solution method and formulation. 

 

 

4.2 Parametric studies 
 

After validating the proposed solution method and 

formulation, novel numerical results are given in this 

section. 

Critical buckling temperature of FG-GPLRC plates are 

obtained for different combinations of boundary conditions 

and graded patterns. Results of this study are provided in 

Fig. 2. Four different combinations of boundary conditions 

are assumed which are SSSS, CCCC, SCSC and XCXC. 

For each case, the critical buckling temperature is obtained 

as a function of weight fraction of GPLs. It is seen that for 

all combinations of boundary conditions, in UD plates as 

the weight fraction of GPLs increases, the critical buckling 

temperature almost remains unchanged. For FG-X plates, 

on the other hand, critical buckling temperature increases 

permanently with the increase in the weight fraction of 

GPLs. Finally for the third FG pattern which is FG-O, 

enrichment of the composite media with more GPLs, results 

in the lower critical buckling temperature. Such trends are 

also reported by Wu et al. (2017). In general when the 

composite plate is reinforced with more GPLs, the stiffness 

of the plate increases. However according to Eq. (12), the 

critical buckling temperature of the plate may remain 

constant, or increase/decrease versus the weight fraction of 

GPLs. The critical buckling temperature of the plate 
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depends on both the stiffness of the plate and the thermal 

stiffness. Since increasing the weight fraction of GPLs 

results in increasing both of these stiffnesses, their ratio 

may increase, decrease of remain constant. Further 

examination of the results of this figure indicates that 

CCCC plates have the highest critical buckling temperature. 

When a clamped edge is replaced by a simply supported 

edge, critical buckling temperature decreases. This is 

expected since in clamped edges the local flexural rigidity 

of the support is much more than the simply supported 

plates. 

Fig. 3 provides the critical buckling temperature and the 

buckled shape of FG-GPLRC plates. In this example, 

different combinations of boundary conditions are taken 

into account. Square plates with thickness ratio 𝑎/ℎ = 25 

are assumed. The weight fraction of the GPLs is set equal to 
 

 

𝑊𝐺𝑃𝐿 = 0.3%  and FG-X pattern is assumed for the 

lamination scheme. It is seen that the essential boundary 

conditions are fully satisfied at the supports in the buckled 

shapes of the plate. When one edge of the plate changes 

from clamped to sliding supported, the critical buckling 

temperature decreases significantly due to the ability of the 

edge to move laterally. 

Postbuckling equilibrium path of a class of FG-GPLRC 

plates is provided in Fig. 4. In this figure, plates with aspect 

ratio 𝑎/𝑏 = 1 are considered. Thickness ratio of the plate 

is set equal to 𝑎/ℎ = 25. Three different types of boundary 

conditions are considered which are CCCC, SSSS and 

SCSC. The weight fraction of the GPLs is also set equal to 

𝑊𝐺𝑃𝐿 = 0.3%. It is seen that, for all cases of boundary 

conditions, FG-X plates have higher critical buckling 

temperature than UD case. Also the UD case has the higher 
 

 

  

 

 

 
 

  
 

  

Fig. 3 Critical buckling temperature and buckled configurations of FG-X GPLRC plates with 𝑎/𝑏 = 1, 𝑎/ℎ = 25, 

𝑊𝐺𝑃𝐿 = 0.3% and different types of boundary conditions 
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Fig. 4 Thermal postbuckling response of FG-GPLRC plates 

with different boundary conditions and graded 

patterns 

 

 

critical buckling temperature than the FG-O plate. The post-

buckling equilibrium path of FG-GPLRC plates is unique 

and stable. Following the bifurcation buckling of FG-

GPLRCs, the maximum post-buckling deflection belongs to 

FG-O plates and the minimum one belongs to FG-X plates. 

Post-buckling deflection of UD plates, serves as an 

 
 

 
 

 

Fig. 5 The influence of weight fraction of GPLs on the 

thermal postbuckling of FG-GPLRC plates 

 

 

intermediate response for FG-X and FG-O plates. In FG-X 

plates, the surfaces which are closed to the free surfaces of 

the plate are enriched with more volume fraction of GPL 

which results in the higher flexural rigidity of the plate. 

Thus higher critical buckling temperatures and lower post-

buckling deflections are concluded. 
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The influence of weight fraction of GPLs on the thermal 

postbuckling behaviour of FG-GPLRC plates is depicted in 

Fig. (5). In this figure, plates in square shape with 𝑎/ℎ =
20 are considered. Different functionally graded patterns 

are considered. In each case, four different weight fractions 

are assumed for the plate. As seen from the results of this 

figure, increasing the weigh fraction of GPLs increases the 

critical buckling temperature of FGX GPLRCs and 

therefore diminishes the post-buckling deflection. On the 

other hand, the behaviour is opposite for FG-O plates. 

Critical buckling temperature decrease with the increase in 

the weight fraction of GPLs and higher post-buckling 

deflections are revealed as the weight fraction of GPLs 

increases. For UD plates, critical buckling temperature and 

post-buckling deflection are almost remain unchanged with 

respect to weight fraction of GPLs. The reason of such 

behaviour is due to the fact that as the weight fraction of 

GPLs increases both of the stiffness of the structure and 

thermal stiffness increase. The ratio of these two parameters 

may increase, decrease or remains unchanged. As a result, 

thermal post-buckling temperatures also may decrease, 

increase or remain unchanged. 

 

 

5. Conclusions 
 

In the current investigation, the thermal buckling and 

postbuckling responses of FG-GPLRC rectangular plates is 

investigated by means of an isogeometric formulation. The 

developed formulation is based on the third order shear 

deformation theory, von Kármán type of geometrical 

nonlinearity and NURBS-based formulation. Properties of 

the composite media are obtained using the modified 

Halpin-Tsai approach and are assumed to be independent of 

temperature. With the aid of virtual displacement principle, 

the governing equilibrium equations of the plate are 

obtained. These equations are solved using a direct 

displacement control formulation. Results of this study 

indicate that, graded pattern of GPLs is an important factor 

on critical buckling temperature of the plate. In general, 

highest critical buckling temperature belongs to FG-X 

plates which means that lowest post-buckling deflection is 

associated to FG-X plates. Also weight fraction of GPLs is 

another important factor. The influence of this factor 

depends on the FG pattern. In FG-X plate when the weight 

fraction increases, critical buckling temperature increases 

and post-buckling deflection diminishes. For FG-O plates, 

however trends is inverse. In UD plates, critical buckling 

temperature and post-buckling deflections are almost 

independent of weight fraction of GPLs. 
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