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1. Introduction 

 

Cylindrical vessels are often used as the basic process 

component in various structural and engineering 

applications such as nuclear, aircraft, gun barrels, space 

engineering, oil-transmitting pipeline, power generation 

equipments and pressure vessels (Ghannad et al. 2009, 

Nejad and Rahimi 2009a, b, Fatehi and Nejad 2014, Nejad 

et al. 2014, 2015c, 2016, 2018a, b, Nejad and Hadi 2016a, 

b, Singh and Gupta 2014, Afshin et al. 2017, Gharibi et al. 

2017, Kashkoli and Nejad 2014, 2015, 2018). Under high 

thermo-mechanical loadings, the life of these components 

reduce due to the creep phenomenon occurs (Khanna et al. 

2017). Creep is the time-dependent plastic deformation 

which occurs when a material is subjected to a constant 

stress/load and operating at elevated temperatures for a long 

time, which may lead to catastrophic failure (Valluri et al. 

2010). Therefore, the analysis of creep deformations and 

prediction of strain rates and fracture time is very important 

in these applications. Creep of metals and ceramics occurs 

over three broad temperature ranges: high (𝑇 > 0.6𝑇𝑚, 

melting point), intermediate (0.3𝑇𝑚 < 𝑇 < 0.6𝑇𝑚), and low 

(𝑇 < 0.3𝑇𝑚) (Kassner et al. 2015). This paper concerns 

itself largely with the intermediate temperature range. Using 

the shells with variable thickness is one of the ways to 
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optimize the shells weight and also stress distribution 

(Ghannad et al. 2013). Although the literature on the creep 

stresses of these shells are quite limited. Shear deformation 

theory is very suitable method for the purpose of calculation 

of stresses and displacements in axisymmetric thick shells, 

plates and beams (Sofiyev and Osmancelebioglu 2017, 

Sofiyev 2017, 2018a, b, Ghannad et al. 2012, Nejad et al. 

2015a, b, 2017a, b, c, d, Abdelaziz et al. 2017, Jandaghian 

and Rahmani 2017, Mahmoud 2017, Sekkal et al. 2017, Li 

and Hu 2016, Li et al. 2015, 2016, Hadi et al. 2018a, b, 

Simsek 2016, Nejad and Hadi 2016a, b, Kashkoli et al. 

2018). This kind of structures, with different geometries, 

different loadings and different boundary conditions, with 

even variable pressure, could be more easily solved by this 

method (Ghannad et al. 2013). Elastic and thermo-elastic 

stresses in thick cylindrical shells made of homogeneous 

and functionally graded materials (FGMs) under thermal 

loading have been analyzed extensively in the past years 

(Dehghan et al. 2016, Ghannad and Nejad 2010, Jabbari et 

al. 2015, 2016, Kashkoli et al. 2017a, b, Mazarei et al. 

2016, Nejad and Fatehi 2015, Nejad et al. 2009, 2017a, b, c, 

d, Dung and Dong 2016). The material constitutive models 

are important in creep analysis. Numerous models have 

been proposed to describe the primary and secondary creep 

stages (Kobelev 2014, Naumenko and Altenbach 2007, Yao 

et al. 2007). Among them, the most widespread creep 

constitutive models are the Bailey-Norton and Norton laws. 

Norton law has been used to obtain history of stresses and 

strains in pressure vessels by many researchers (Kashkoli et 

al. 2017a, b, Loghman and Wahab 1996, Loghman et al. 

2010, 2012, Nejad and Kashkoli 2014, You et al. 2007, 

Yang 2000). The other creep models that are very used by 
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researchers are based on threshold stress and Seth’s 

transition theory (Singh and Gupta 2010, 2011, 2012). 

Design procedures and residual life assessments for many 

components such as boiler tubes that are subjected to high 

temperature and stress conditions over a long time, require 

the accounting for creep and damage processes (Altenbach 

et al. 2008). Over the years the simple Robinson’s linear 

life-fraction rule (Robinson 1952) has been very useful in 

estimating creep life under non-steady conditions of stress 

and/or temperature. Many researchers have worked on 

creep data extrapolation and several relationships have been 

suggested to correlate the creep test data. Among the 

proposed relationships, Larson–Miller parameter (LMP) is 

used widely for its simplicity (Viswanathan 1989). Larson 

and Miller introduced a grouping concept between 

temperature (T) and fracture time (𝑡𝑟) of the creep test for a 

specific test stress (Viswanathan, 1989). Based on Larson–

Miller grouping parameter, T and 𝑡𝑟 of different creep tests 

can be related to each other when the stress level remains 

constant (Tahami et al. 2010). Therefore, when the creep 

fracture time under specific temperature is known, the LMP 

can be used to estimate the fracture time at a different 

temperature but under the same working stress. 304L ASS 

is being used in this paper as material due to its high 

strength, ductility and good corrosion and creep resistance 

(Wang et al. 2016, Carroll et al. 2016). Over the last years, 

hot deformation behavior of 304L ASS has been studied by 

many authors (Samantaray et al. 2016, Lopez and Zhang 

2014, Taylor et al. 2011). 

As mentioned above, to the best of the authors’ 

knowledge, no analytical study has been carried out to date 

on creep response of cylindrical pressure vessels with 

variable thickness based on first-order shear deformation 

theory. In this study, assuming that the creep response of the 

material is governed by Norton’s law, a semi-analytical 

solution is presented for the calculation of stresses and 

displacements of thick-walled cylindrical pressure vessels 

with variable thickness made of 304L austenitic stainless 

steel. The governing equations are based on first-order 

shear deformation theory that accounts for the transverse 

shear. The governing equations are derived, using minimum 

total potential energy principle. Robinson’s linear life 

fraction damage rule has been used to predict the creep 

damage histories during the life of the cylinder and Larson-

Miller Parameter (LMP) has been used to obtain creep 

remaining life assessment. The results obtained for stresses 

and displacements are validated using the finite element 

method (FEM). Good agreement is found between the 

results. Other assumptions considered in this paper are as 

follows: 
 

● The structure is cylindrical and thick walled. 

● The properties of the material are independent of 

temperature. 

● The internal non uniform pressure distribution along 

the axis of the cylinder is nonlinear. 

 

 

2. Basic formulation for thick walled cylinder 
 

The process of formulation and obtaining the equations 

of creep displacements and stresses are as follows: 
 

● Extracting the thermo-elastic governing equations 

(independent of time). 

● Solving the thermo-elastic governing equations 

using eigenvectors and eigenvalues and disk form 

multilayer method. 

● Applying boundary and continuity conditions (time 

independent). 

● Extracting the creep governing equations using the 

Norton law. 

● Solving the creep governing equations using 

eigenvectors and eigenvalues and disk form 

multilayer method. 

● Applying boundary and continuity conditions (time 

dependent). 

● Calculating the creep damage and life assessment of 

the cylinder using Robinson’s linear life fraction 

damage rule and LMP, respectively. 
 

A cross section of variable thickness clamp-clamp thick 

cylinder with length 𝐿, subjected to non-uniform internal 

pressure distribution P, and distributed temperature field 

due to a steady-state heat conduction is considered. The 

geometry, mechanical and thermal loadings and boundary 

conditions of the cylinder are shown in Fig. 1. 

The location of an arbitrary point m in Fig. 1 is as 

follows 
 

𝑟 = 𝑅 + 𝑧 (1) 

 

In Eq. (1), R is the middle surface radius and z 

represents the distance of the arbitrary point m from the 

middle surface. 

In Eq. (1), the range of changes x and z are as follows 

 

{
0 ≤ 𝑥 ≤ 𝐿

−
ℎ

2
≤ 𝑧 ≤

ℎ

2

 (2) 

 

 

 

Fig. 1 Geometry, mechanical and thermal loadings and 

boundary conditions of the cylinder with variable 

thickness 
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In Eq. (1), the middle surface radius R and variable 

thickness ℎ are as follows 

 

{
𝑅 = 𝑟𝑖 +

𝑎

2
−
𝑥

2
(𝑡𝑎𝑛 𝛽)

ℎ = 𝑎 − 𝑥(𝑡𝑎𝑛 𝛽)
 (3) 

 

The vertex angle 𝛽 is defined as 

 

𝛽 = 𝑡𝑎𝑛−1 [
(𝑎 − 𝑏)

𝐿
] (4) 

 

The displacement field (𝑈𝑥 ,𝑈𝜃 ,𝑈𝑧) of the first order 

theory can be expressed in the form 

 

{

𝑈𝑥(𝑥, 𝑧) = 𝑢(𝑥) + 𝜙(𝑥)𝑧

𝑈𝜃(𝑥, 𝑧) = 0

𝑈𝑧(𝑥, 𝑧) = 𝑤(𝑥) + 𝜓(𝑥)𝑧

 (5) 

 

where 𝑢(𝑥)  and 𝑤(𝑥)  denote the displacements of a 

point on the middle plane (𝑧 = 0) and 𝜙(𝑥) and 𝜓(𝑥) are 

the rotations of a transverse normal. 

The strain–displacement relations in the cylindrical 

coordinate system are 

 

{
 
 
 
 

 
 
 
 𝜀𝑥 =

𝜕𝑈𝑥
𝜕𝑥

=
𝑑𝑢(𝑥)

𝑑𝑥
+
𝑑𝜙(𝑥)

𝑑𝑥
𝑧                                   

𝜀𝜃 =
𝑈𝑧
𝑟
=

1

𝑅 + 𝑧
(𝑤(𝑥) + 𝜓(𝑥)𝑧)                           

𝜀𝑧 =
𝜕𝑈𝑧
𝜕𝑧

= 𝜓(𝑥)                                                           

𝛾𝑥𝑧 =
𝜕𝑈𝑥
𝜕𝑧

+
𝜕𝑈𝑧
𝜕𝑥

= 𝜙(𝑥) + (
𝑑𝑤(𝑥)

𝑑𝑥
+
𝑑𝜓(𝑥)

𝑑𝑥
𝑧)

 (6) 

 

In addition, the thermal stresses based on constitutive 

equations for homogenous and isotropic materials are as 

follow 

 

{
 
 
 
 
 

 
 
 
 
 
{

𝜎𝑥
𝜎𝜃
𝜎𝑧
} = 𝜆𝐸 [

1 − 𝜐 𝜐 𝜐
𝜐 1 − 𝜐 𝜐
𝜐 𝜐 1 − 𝜐

] {

𝜀𝑥 − 𝜀𝑥
𝑐

𝜀𝜃 − 𝜀𝜃
𝑐

𝜀𝑧 − 𝜀𝑧
𝑐

}

−𝜆𝐸(1 + 𝜐)𝛼𝑇𝑇 [
1
1
1
]

𝜏𝑥𝑧 = 𝜆𝐸 (
1 − 2𝜐

2
) 𝛾𝑥𝑧

𝜆 =
1

(1 + 𝜐)(1 − 2𝜐)

 (7) 

 

where 𝑇  is temperature distribution and 𝜎𝑖 , 𝜀𝑖  and 𝜀𝑖
𝑐 

are, respectively,  the stresses, strains and creep strains in 

the axial, circumferential and radial directions, also 𝜏𝑥𝑧 
and 𝛾𝑥𝑧 are the shear stress and shear strain, respectively. 

𝜐, 𝐸 and 𝛼𝑇 are Poisson’s ratio, modulus of elasticity and 

thermal expansion coefficient, respectively. The normal 

force (𝑁𝑥,𝑁𝜃,𝑁𝑧), bending moment (𝑀𝑥,𝑀𝜃,𝑀𝑧), shearing 

force (𝑄𝑥), and the twisting moment (𝑀𝑥𝑧) all in per unit 

length as terms of stress resultants are 

{
 
 
 
 
 
 

 
 
 
 
 
 {𝑁𝑥, 𝑁𝜃, 𝑁𝑧} = ∫ {𝜎𝑥 (1 +

𝑧

𝑅
) , 𝜎𝜃, 𝜎𝑧 (1 +

𝑧

𝑅
)} 𝑑𝑧

ℎ

2

−
ℎ

2

{𝑀𝑥, 𝑀𝜃, 𝑀𝑧} = ∫ {𝜎𝑥 (1 +
𝑧

𝑅
) , 𝜎𝜃, 𝜎𝑧 (1 +

𝑧

𝑅
)} 𝑧𝑑𝑧

ℎ

2

−
ℎ

2

𝑄𝑥 = 𝐾∫ 𝜏𝑥𝑧 (1 +
𝑧

𝑅
)𝑑𝑧

ℎ

2

−
ℎ

2

𝑀𝑥𝑧 = 𝐾∫ 𝜏𝑥𝑧 (1 +
𝑧

𝑅
) 𝑧𝑑𝑧

ℎ

2

−
ℎ

2

 (8) 

 

where 𝐾  is the shear correction coefficient that is 

embedded in the shear stress term. In the static state, for 

cylindrical shells, 𝐾 =
5

6
 (Jemielita 2002). The governing 

equations of the first-order shear deformation theory can be 

derived using the principle of virtual displacements (Jabbari 

et al. 2015) 
 

{
 
 
 
 

 
 
 
 
𝑑

𝑑𝑥
(𝑅𝑁𝑥) = 0

𝑑

𝑑𝑥
(𝑅𝑀𝑥) − 𝑅𝑄𝑥 = 0

𝑑

𝑑𝑥
(𝑅𝑄𝑥) − 𝑁𝜃 = −𝑃 (𝑅 −

ℎ

2
)

𝑑

𝑑𝑥
(𝑅𝑀𝑥𝑧) − 𝑀𝜃 − 𝑅𝑁𝑧 = 𝑃

ℎ

2
(𝑅 −

ℎ

2
)

 (9) 

 

and the boundary conditions at the two ends of the cylinder 

are 
 

[𝑅(𝑁𝑥𝛿𝑢 +𝑀𝑥𝛿𝜙 + 𝑄𝑥𝛿𝑤 +𝑀𝑥𝑧𝛿𝜓)]0
𝐿 = 0 (10) 

 

The internal non uniform pressure distribution is 

selected as fallow 
 

𝑃 = 𝑃1 + (𝑃2 − 𝑃1) (
𝑥

𝐿
)
𝑚𝑝

 (11) 

 

Here 𝑃1 and 𝑃2 are the values of pressure at the 𝑥 =
0 and 𝑥 = 𝐿, respectively. 𝑚𝑝 is constant parameter that 

is used to control the pressure profile. Substituting the stress 

components from Eq. (7) into Eq. (8) and then into the 

equilibrium Eq. (9), the following set of differential 

equation for displacement is obtained 
 

{
 

 [𝐵1]
𝑑2

𝑑𝑥2
{𝑦} + [𝐵2]

𝑑

𝑑𝑥
{𝑦} + [𝐵3]{𝑦} = {𝐹}

{𝑦} = {
𝑑𝑢(𝑥)

𝑑𝑥
𝜙(𝑥) 𝑤(𝑥) 𝜓(𝑥)}

𝑇  (12) 

 

where the coefficients matrices [𝐵𝑖]4×4, and force vector 
{𝐹}4×1 have been defined in the Appendix A. 

 
2.1 Semi-analytical solution 
 

Eq. (12) is the set of non-homogenous linear differential 

equations with variable coefficients. An analytical solution 

of this set of differential equations with variable coefficients 

seems to be difficult, if not impossible, to obtain. Hence, in 
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this study, using a semi-analytical method Eq. (12) is 

converted to a set of non-homogenous linear differential 

equations with constant coefficients by dividing the 

cylinder into homogenous disk layers with constant 

thickness t, (Fig. 2(a)).Therefore, the governing equations 

convert to non-homogeneous set of differential equations 

with constant coefficients. 𝑥[𝑘] and  𝑅[𝑘] are length and 

radius of middle of disks. The length of middle of an 

arbitrary disk (Fig. 2(b)) is as follows 
 

{
  
 

  
 𝑥[𝑘] = (𝑘 −

1

2
)
𝐿

𝑛𝐿

(𝑥[𝑘] −
𝑡

2
) ≤ 𝑥 ≤ (𝑥[𝑘] +

𝑡

2
)

𝑡 =
𝐿

𝑛𝐿

 (13) 

 

In Fig. 2, 𝑛𝐿 represents the number of disks and k is the 

corresponding number given to each disk. The radius of 

middle point of each disk is as follows 
 

𝑅[𝑘] = 𝑟𝑖 +
ℎ[𝑘]

2
,     ℎ[𝑘] = 𝑎 − 𝑡𝑎𝑛(𝛽) 𝑥[𝑘] (14) 

 

Thus 
 

𝑑ℎ[𝑘]

𝑑𝑥
= 2

𝑑𝑅

𝑑𝑥

[𝑘]

= −𝑡𝑎𝑛(𝛽) (15) 

 

Considering shear stress and based on first-order shear 

deformation theory, non-homogeneous set of ordinary 

differential equations with constant coefficient of each disk 

is obtained 
 

{
 
 

 
 [𝐵1]

[𝑘]
𝑑2

𝑑𝑥2
{𝑦}[𝑘] + [𝐵2]

[𝑘]
𝑑

𝑑𝑥
{𝑦}[𝑘] + [𝐵3]

[𝑘]{𝑦}[𝑘] = {𝐹}[𝑘]

{𝑦}[𝑘] = {
𝑑𝑢(𝑥)[𝑘]

𝑑𝑥
𝜙(𝑥)[𝑘] 𝑤(𝑥)[𝑘] 𝜓(𝑥)[𝑘]}

𝑇  (16) 

 

2.2 Heat conduction formulation 
 

The steady-state heat conduction equation in hollow 

cylinder in polar coordinates is as follow 

 

 
𝑑

𝑑𝑟
[𝑘𝑇𝑟

𝑑𝑇

𝑑𝑟
] = 0 (17) 

 

where 𝑘𝑇  is thermal conductivity of the cylinder. By 

considering 𝑟 = 𝑅 + 𝑧, Eq. (17) can be written as follows 

 

𝑑

𝑑𝑧
[𝑘𝑇

[𝑘](𝑅[𝑘] + 𝑧)
𝑑𝑇[𝑘]

𝑑𝑧
] = 0 (18) 

 

Solving the differential Eq. (18) finally the temperature 

distribution is derived in the form 

 

𝑇[𝑘] = 𝑔1
[𝑘]∫

𝑑𝑧

𝑘𝑇
[𝑘](𝑅[𝑘] + 𝑧)

+ 𝑔2
[𝑘] − 𝑇𝑟𝑒𝑓 (19) 

 

where 𝑔1
[𝑘]  and 𝑔2

[𝑘]  are the constants of integration 

which obtained from boundary conditions. 𝑇𝑟𝑒𝑓 represents 

the reference temperature where in this study assumed that 

𝑇𝑟𝑒𝑓 = 𝑇𝑜.  

According to Fig. 1, the inner and outer surfaces of the 

variable cylinder are subjected to temperatures 𝑇𝑖 and 𝑇𝑜, 

respectively. Applying the thermal boundary conditions, the 

temperature distribution is obtained as 
 

𝑇[𝑘] = (𝑇𝑜 − 𝑇𝑖)

(

  
 

[
 
 
 
 
 𝑙𝑛 (

𝑅[𝑘]+𝑧

𝑅[𝑘]−
ℎ[𝑘]

2

)

𝑙𝑛 (
𝑅[𝑘]+

ℎ[𝑘]

2

𝑅[𝑘]−
ℎ[𝑘]

2

)
]
 
 
 
 
 

− 1

)

  
 

 (20) 

 

For thermo-elastic analysis of thick cylindrical pressure 

vessels the creep strains (𝜀𝑥
𝑐,𝜀𝜃

𝑐 ,𝜀𝑧
𝑐) are ignored. The total 

solution for Eq. (16) is 
 

{𝑦}[𝑘] =∑𝐶𝑖
[𝑘]

6

𝑖=1

{𝑉}𝑖
[𝑘]
𝑒𝑚𝑖

[𝑘]𝑥 + [𝐵3
[𝑘]]

−1
{𝐹}[𝑘] (21) 

 

where 𝐶𝑖  are unknown values and determine from 

boundary and continuity conditions, 𝑚𝑖  and {𝑉}𝑖  are 

eigenvalues and eigenvectors respectively. 

 
 

(a) (b) 

Fig. 2 (a) Division of thick cylinder with variable thickness into homogenous disks with constant thickness; 

(b) Geometry of an arbitrary homogenous disk layer 
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Given that the two ends of the cylinder are clamp-

clamp, then 
 

{
𝑈𝑥(𝑥, 𝑧)

𝑈𝑧(𝑥, 𝑧)
}
𝑥=0,𝐿

= {
0
0
} (22) 

 

According to the semi analytical solution that is used in 

this study, the continuity conditions based on stresses and 

displacements between the layers must be satisfied. The 

continuity conditions are as follows 

 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 {

𝑈𝑥
[𝑘−1](𝑥, 𝑧)

𝑈𝑧
[𝑘−1](𝑥, 𝑧)

}
𝑥=𝑥[𝑘−1]+

𝑡

2

= {
𝑈𝑥

[𝑘](𝑥, 𝑧)

𝑈𝑧
[𝑘](𝑥, 𝑧)

}
𝑥=𝑥[𝑘]−

𝑡

2

{
 
 

 
 𝑑𝑈𝑥

[𝑘−1](𝑥, 𝑧)

𝑑𝑥

𝑑𝑈𝑧
[𝑘−1](𝑥, 𝑧)

𝑑𝑥 }
 
 

 
 

𝑥=𝑥[𝑘−1]+
𝑡

2

=

{
 
 

 
 𝑑𝑈𝑥

[𝑘](𝑥, 𝑧)

𝑑𝑥

𝑑𝑈𝑧
[𝑘](𝑥, 𝑧)

𝑑𝑥 }
 
 

 
 

𝑥=𝑥[𝑘]−
𝑡

2

{
𝑈𝑥

[𝑘](𝑥, 𝑧)

𝑈𝑧
[𝑘](𝑥, 𝑧)

}
𝑥=𝑥[𝑘]+

𝑡

2

= {
𝑈𝑥

[𝑘+1](𝑥, 𝑧)

𝑈𝑧
[𝑘+1](𝑥, 𝑧)

}
𝑥=𝑥[𝑘+1]−

𝑡

2

{
 
 

 
 𝑑𝑈𝑥

[𝑘](𝑥, 𝑧)

𝑑𝑥

𝑑𝑈𝑧
[𝑘](𝑥, 𝑧)

𝑑𝑥 }
 
 

 
 

𝑥=𝑥[𝑘]+
𝑡

2

=

{
 
 

 
 𝑑𝑈𝑥

[𝑘+1](𝑥, 𝑧)

𝑑𝑥

𝑑𝑈𝑧
[𝑘+1](𝑥, 𝑧)

𝑑𝑥 }
 
 

 
 

𝑥=𝑥[𝑘+1]−
𝑡

2

 (23) 

 

For isotropic cylinder with creep behavior, the relations 

between rates of stress and strain are 

 

{
 
 

 
 
{

𝜎̇𝑥
𝜎̇𝜃
𝜎̇𝑧

} = 𝜆𝐸 [
1 − 𝜐 𝜐 𝜐
𝜐 1 − 𝜐 𝜐
𝜐 𝜐 1 − 𝜐

] {

𝜀𝑥̇ − 𝜀𝑥̇
𝑐

𝜀𝜃̇ − 𝜀𝜃̇
𝑐

𝜀𝑧̇ − 𝜀𝑧̇
𝑐

}

𝜏̇𝑥𝑧 = 𝜆𝐸 (
1 − 2𝜐

2
) 𝛾̇𝑥𝑧

 (24) 

 

where 𝜎̇𝑖, 𝜀𝑖̇ and 𝜀𝑖̇
𝑐 are, respectively, stress rates, strain 

rates and the creep strain rates in the axial, circumferential 

and radial directions, also 𝜏̇𝑥𝑧 and 𝛾̇𝑥𝑧 are the shear stress 

rate and shear strain rate, respectively. Using Norton’s law 

calculate as follows 

 

{
 
 

 
 
{

𝜀𝑥̇
𝑐

𝜀𝜃̇
𝑐

𝜀𝑧̇
𝑐

} =
𝐴𝜎𝑒

(𝑛−1)

2
[
2 −1 −1
−1 2 −1
−1 −1 2

] {

𝜎𝑥
𝜎𝜃
𝜎𝑧
}

𝜎𝑒 =
1

√2
√(𝜎𝑥 − 𝜎𝜃)

2 + (𝜎𝑥 − 𝜎𝑧)
2 + (𝜎𝑧 − 𝜎𝜃)

2 + 6𝜏𝑥𝑧
2

 (25) 

 

where A and n are material constants for creep. Using Eq. 

(9) and considering the pressure to be constant with time, 

the equilibrium equation for creep analysis is 

 

{
 
 
 

 
 
 
𝑑

𝑑𝑥
(𝑅𝑁̇𝑥) = 0

𝑑

𝑑𝑥
(𝑅𝑄̇𝑥) − 𝑁̇𝜃 = 0

𝑑

𝑑𝑥
(𝑅𝑀̇𝑥) − 𝑅𝑄̇𝑥 = 0

𝑑

𝑑𝑥
(𝑅𝑀̇𝑥𝑧) − 𝑀̇𝜃 − 𝑅𝑁̇𝑧 = 0

 (26) 

Considering the temperature field to be steady, the 

following set of differential equations for displacement 

rates is obtained 

 

{
 

 [𝐵1]
𝑑2

𝑑𝑥2
{𝑦̇} + [𝐵2]

𝑑

𝑑𝑥
{𝑦̇} + [𝐵3]{𝑦̇} = {𝐹𝑐}

{𝑦̇} = {
𝑑𝑢̇(𝑥)

𝑑𝑥
𝜙̇(𝑥) 𝑤̇(𝑥) 𝜓̇(𝑥)}

𝑇  (27) 

 

where the force vector {𝐹𝑐}4×1 has been defined in the 

Appendix B. The total solution for Eq. (27) is 

 

{𝑦̇}[𝑘] =∑𝐷𝑖
[𝑘]

6

𝑖=1

{𝑉}𝑖
[𝑘]
𝑒𝑚𝑖

[𝑘]𝑥 + [𝐵3
[𝑘]]

−1
{𝐹𝑐}

[𝑘] (28) 

 

where 𝐷𝑖  are unknown values. When the stress rate is 

known, the calculation of stresses at any time 𝑡𝑖 should be 

performed iteratively 

 

{
 
 

 
 𝜎𝑟

(𝑖)(𝑡𝑖) = 𝜎𝑟
(𝑖−1)(𝑡𝑖−1) + 𝜎̇𝑟

(𝑖)(𝑡𝑖)𝑑𝑡
(𝑖)

𝜎𝜃
(𝑖)(𝑡𝑖) = 𝜎𝜃

(𝑖−1)(𝑡𝑖−1) + 𝜎̇𝜃
(𝑖)(𝑡𝑖)𝑑𝑡

(𝑖)

𝜎𝑥
(𝑖)(𝑡𝑖) = 𝜎𝑥

(𝑖−1)(𝑡𝑖−1) + 𝜎̇𝑥
(𝑖)(𝑡𝑖)𝑑𝑡

(𝑖)

𝜏𝑟𝑥
(𝑖)(𝑡𝑖) = 𝜏𝑟𝑥

(𝑖−1)(𝑡𝑖−1) + 𝜏̇𝑟𝑥
(𝑖)(𝑡𝑖)𝑑𝑡

(𝑖)

 (29) 

 

where 
 

𝑡𝑖 =∑𝑑𝑡(𝑘)
𝑖

𝑘=0

 (30) 

 

The solution of 𝑡𝑖 = 0 corresponds to that for thermo-

elastic material behavior. To calculate 𝜎̇𝑖𝑗
(𝑖)(𝑟, 𝑡𝑖) , the 

stresses at the time 𝑡𝑖−1 used. 

 

 

3. Creep damage and remaining life assessment 
 

The most used method for creep damage calculating is 

Robinson’s linear life-fraction rule. According to this 

method, the fracture under variable load and temperatures 

can be predicted adding the creep life fractions consumed at 

each condition until their sum reaches the value of unity. 

The calculation of accumulated creep damage is performed 

at the end of each time increment 𝛥𝑡𝑖  by using the 

following equation 

 

𝐷𝑓
𝑖 =∑

𝛥𝑡𝑖

𝑡𝑟
𝑖

𝑛

𝑖=1

 (31) 

 

where 𝐷𝑓
𝑖  is creep damage and 𝑡𝑟

𝑖  is the creep fracture 

time at i-th time increment and at the equivalent stress and 

temperature of that point in the radial direction of the 

cylinder. At rupture, 𝐷𝑓
𝑖 = 1, which is the rupture criteria. 

The time to rupture is calculated using LMP. In contrast 

to the conventional creep tests, which take a long time, the 

LMP can be obtained using some sort of quick tests at high 

temperature and stress level and then extrapolating the 
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Fig  .3 Variation of stress versus Larson–Miller parameter 

for the 304L SS (Tahami et al. 2010) 
 

 

 

results for prediction of the required parameters. The 

Larson–Miller parameter is a grouping concept between 

rupture time (𝑡𝑟) and temperature (𝑇) for a particular stress 

level (Tahami et al. 2010). The Larson-Miller extrapolation 

parameter is in the following form 

 

𝑃𝐿𝑀
𝑖 = 𝑇. (𝐶 + 𝑙𝑜𝑔10(𝑡𝑟

𝑖 )) (32) 

 

In this equation 𝑇 is in Kelvin, 𝑡𝑟
𝑖  is in hours and 𝐶 is 

a physical parameter which has been assumed to be 20. This 

value is an accepted amount for most engineering materials 

and steels (Larson 1952) and therefore, has been used in 

this study to estimate the creep behaviour of the material. 

The LMP can be easily used to creep fracture data 

extrapolation, in which for any constant stress level the 

combination of rupture time and test temperature, the LMP 

will remain constant (Tahami et al. 2010): LMP variation 

with stress is shown in Fig. 3. The remaining life at any 

point in the radial direction of the cylinder is then given by 

 

𝑅𝐿𝑖 =(1 − 𝐷𝑓
𝑖)𝑡𝑟

𝑖  (33) 
 

 

 

 

Fig. 4 Variation of normalized radial displacement along 

the number of disk layers (𝑚𝑝 = 1) 

 

 

4. Numerical results and discussion 
 
In this section, numerical results are presented and 

discussed for verifying the accuracy of the present theory in 

predicting creep stress responses of cylinder. The 

geometrical characteristics of pressure vessel are assumed 

as 𝑟𝑖 = 400 𝑚𝑚 , 𝑎 = 40 𝑚𝑚 , 𝑏 = 20 𝑚𝑚  and 𝐿 =
2000 𝑚𝑚. 304L Austenitic stainless steel (304L ASS) is 

being used in this paper as material due to its excellent 

creep resistance. Type 304L is an extra low-carbon variation 

of type 304 with a 0.03% maximum carbon content that 

eliminates carbide precipitation due to welding. The 

following data for loading and material properties for type 

304L are used in this investigation (Tahami et al. 2010) 

 

𝐸 = 179 𝐺𝑃𝑎,      𝜐 = 0.3,     𝛼 = 16.9 × 10−6 𝐶,𝑜  

𝑘𝑇 = 16.2 
𝑊

𝑚 𝐶𝑜
,     𝑃1 = 20 𝑀𝑃𝑎,     𝑃2 = 10 𝑀𝑃𝑎 

𝐴 = 7.18 × 10−43 𝑃𝑎−𝑛𝑠−1,     𝑛 = 5.7278 

 

The boundary conditions for temperature are taken as 

𝑇𝑖 = 600 𝐶𝑜  and 𝑇𝑜 = 550 𝐶𝑜 . The results are presented 

in a non-dimensional form. Displacements are normalized 

 

 

Table 1 Numerical results based on first-order shear deformation theory (FSDT) and FEM at 

different creep times layer (𝑚𝑝 = 1) 

  Initial solution t = 500 hr t = 1000 hr t = 2000 hr 

𝑢𝑟
𝑟 𝑖
× 103 

FSDT 

FEM 

1.6501 

1.6521 

1.7301 

1.7511 

1.8215 

1.8365 

1.9501 

1.9845 

𝑢𝑥
𝑟 𝑖
× 103 

FSDT 

FEM 

0.0225 

0.0807 

0.0139 

0.0689 

0.0102 

0.0562 

0.0085 

0.0304 

𝜎𝑟

𝑃̄
 

FSDT 

FEM 

-0.6988 

-0.6038 

-0.6572 

-0.5824 

-0.6142 

-0.5690 

-0.6174 

-0.5514 

𝜎𝜃

𝑃̄
 

FSDT 

FEM 

13.3211 

13.4173 

13.5468 

13.5960 

13.7689 

13.6633 

13.7348 

13.6906 

𝜎𝑥

𝑃̄
 

FSDT 

FEM 

-1.6626 

1.5192 

-1.1766 

-0.9135 

-0.7175 

-0.4103 

0.0183 

0.3940 

𝜏𝑟𝑥

𝑃̄
 

FSDT 

FEM 

-0.0095 

-0.0108 

-0.0120 

-0.0134 

-0.0139 

-0.0153 

-0.0167 

-0.0180 

𝜎𝑒

𝑃̄
 

FSDT 

FEM 

14.5260 

14.5006 

14.4707 

14.3466 

14.4351 

14.1540 

14.0452 

13.7940 
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by dividing to the internal radius. In order to normalize 

stresses, we define the mean internal pressure parameter as 

follows 

𝑃̄ =
(𝑃1 + 𝑃2)

2
 (34) 

 

The number of disk layers have significant effect on the 

results. In order to show the effectiveness of disk layers, 

variation of normalized radial displacement along the 

number of disks is shown in Fig. 4. It could be observed 

that if the number of disk layers is more than 40, there will 

be no significant effect on radial displacement and other 

results. In the present study, 75 disks are used. 

In order to show the effectiveness and accuracy of the 

approach suggested here, a comparison between responses 

of the present theory and FEM can be made. In FEM, a 

thick cylinder was modeled using ANSYS® . The PLANE 

223 element in axisymmetric mode, which is an element 

with eight nodes with up to four degrees of freedom per 

each node, was used for discretization. There is a very good 

agreement among numerical results based on first-order 

shear deformation theory and FEM at different creep times. 

Table 1 presents the results of the different solutions for the 

thick cylinder under mechanical and thermal loading at the 

middle layer and 𝑥 =
𝐿

2
 , after 0 hr (initial solution), 500 

hr, 1000 hr and 2000 hr of creeping. 
 

 

Fig. 5 illustrates the finite-element model is established 

with ANSYS®  after 1000 hr of creeping. 

Relevant results have also been obtained for the 

displacements and creep stresses curves at different layers 

through the axial direction of the shell in Figs. 6 and 7, 

which verify the results obtained in Table 1. 

Figs. 6 and 7 show that the semi-analytical solution 

based on first-order shear deformation theory has an 

acceptable accuracy. Also, it observed that first-order shear 

deformation theory method is very suitable for the purpose 

of calculation of radial stress, circumferential stress, shear 

stress and radial displacement. However, first-order shear 

deformation theory is not that useful for axial stress and not 

useful at all for axial displacement.  

It could be observed from Fig. 6(a) that there is no 

significant changes in the variation of normalized radial 

displacement at different layers. According to Fig. 6(b), the 

greatest axial displacement occurs in the internal surface. 

According to Fig. 7, the different behavior of the stress 

distribution near the clamped boundaries is due to the edge 

moments in these regions. As shown in Figs. 7(a) and (d), at 

the points near the boundaries, the absolute maximum of 

radial and shear creep stresses occur at the outer surface of 

the cylinder. Fig. 7(b) show that the absolute maximum of 

circumferential creep stress occur at the outer surface of the 

cylinder. It can be seen from Fig. 7(c) that at the points 

 

 

  

(a) (b) 
 

  

(c) (d) 

Fig. 5 Finite-element model for the cylinder (a) Temperature gradient; (b) Radial displacement; (c) Radial stress; 

(d) Circumferential stress distribution in the cylinder after 1000 hr of creeping 
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away from boundaries, the axial stress changes from 

negative values to positive along the thickness of the 

cylinder. 

The distribution of pressure for different values of 𝑚𝑝 

could be seen in Fig. 8 after 1000 hr of creeping. Fig. 8(a) 

shows that a linear pressure distribution can be obtained by 

setting 𝑚𝑝 = 1. It can be seen from Figs. 8(b) and (d) that, 

with increasing non-uniformity pressure constant 𝑚𝑝 , 

radial displacement and effective stress increase. It can be 

observed from Fig. 8(c) that the maximums of axial 

 

 

 

 

displacement occur for 𝑚𝑝 = 0. 

Effective stress distribution of the cylindrical vessel 

under an applied non-uniform internal pressure and 

temperature field up to 70000 hr of creeping, along the 

dimensionless radial at 𝑥 =
𝐿

2
, is shown in Fig. 9(a). It can 

be seen from Fig. 9(a) that the effective stresses are 

decreasing with time during the life of the vessel. Fig. 9(b) 

shows the effect of internal pressure on normalized 

effective stress. It is clear that with increasing internal 

pressure, effective stress increases. 

  

(a) (b) 

Fig. 6 Variation of normalized radial and axial displacement along the dimensionless axial direction after 

1000 hr of creeping at different layers (𝑚𝑝 = 1) 

  

(a) (b) 
 

  

(c) (d) 

Fig. 7 Variation of normalized creep stresses along the dimensionless axial direction after 1000 hr of creeping at 

different layers (𝑚𝑝 = 1) 
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Creep damage and effect of internal pressure on creep 

damage histories are illustrated in Figs. 10(a) and (b). Figs. 

11(a) and (b) also show the remaining life and effect of 

internal pressure on remaining life histories along the 

dimensionless radial direction of the cylinder at 𝑥 =
𝐿

2
. 

Maximum damages and the minimum remaining lives are 

located at the inner surface of the cylinder as illustrated in 

Figs. 10 and 11. It can be seen from Figs. 10(b) and 11(b) 

that with increasing internal pressure, creep damages 

 

 

 

 

increase and remaining lives decrease. 

Effect of temperature gradient on creep damage and 

remaining life histories are illustrated in Figs. 12(a) and (b). 

It can be seen that, increasing temperature gradient has 

increased creep damages and decreased remaining lives. 

Creep damage and life assessment of isotropic thick-

walled cylindrical pressure vessels with variable thickness 

subjected to the temperature gradient and internal non-

uniform pressure made of 304L austenitic stainless steel has 

been investigated in the present study by taking into 

  

(a) (b) 
 

  

(c) (d) 

Fig. 8 Effect of the non-uniformity pressure constant on the normalized (a) pressure profile; (b) radial displacement; 

(c) axial displacement; (d) effective stress along the dimensionless axial direction after 1000 hr of creeping in 

middle layer 

  

(a) (b) 

Fig. 9 (a) Variation of normalized effective stress along the dimensionless radial direction (𝑚𝑝 = 1); 

(b) Effect of internal pressure on normalized effective stress 
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account the creep behavior, as described by Norton’s model. 

The governing equations are based on first-order shear 

deformation theory that accounts for the transverse shear. 

Using the semi-analytical solution, the thick cylindrical 

shell with variable thickness is divided into disks with 

constant height. Considering continuity between layers and 

applying boundary conditions, the governing set of 

 

 

 

 

 

 

differential equations with constant coefficients are solved. 

The creep damage obtained by Robinson’s linear life 

fraction damage rule and LMP is used to obtain creep 

remaining life assessment. The results obtained for stresses 

and displacements are compared with the solutions carried 

out through the FEM. Good agreement is found among the 

results. 

  

(a) (b) 

Fig. 10 (a) Variation of creep damage along the dimensionless radial direction (𝑚𝑝 = 1); 

(b) Effect of internal pressure on creep damage distribution (𝑚𝑝 = 1) 

  

(a) (b) 

Fig. 11 (a) Variation of remaining life along the dimensionless radial direction (𝑚𝑝 = 1); 

(b) Effect of internal pressure on remaining life distribution (𝑚𝑝 = 1) 

  

(a) (b) 

Fig. 12 Effect of temperature gradient on (a) creep damage; (b) remaining life distributions (𝑚𝑝 = 1) 
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The following conclusions are made in this 

investigation: 

 

• The results obtained using the first-order shear 

deformation theory in comparison with the FEM 

results are in good adaptation specially for obtaining 

creep radial, circumferential and shear stresses and 

radial displacement. 

• Due to the edge moments near the clamped 

boundaries, the stress distributions in these regions 

have different behavior in comparison with the other 

parts of the cylinder. 

• The radial creep displacement values for cylinder are 

greater than the axial creep displacement. 

• Effective stresses are decreasing with time 

throughout the thickness during the life of the vessel. 

• The maximum creep life is located at the outer 

surface of the cylinder where the minimum value of 

temperature is located. 

• Increasing internal pressure and temperature gradient 

have considerably increased creep damages and 

decreased the remaining life of the vessel. 

• The shells with different geometries, loadings and 

boundary conditions could be analyzed and solved 

using the semi-analytical solution presented in this 

study. 
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