
Steel and Composite Structures, Vol. 32, No. 5 (2019) 671-686 

DOI: https://doi.org/10.12989/scs.2019.32.5.671 

Copyright ©  2019 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=scs&subpage=6                                      ISSN: 1229-9367 (Print), 1598-6233 (Online) 

 
1. Introduction 

 

Nowadays, the issue of suppressing micro-vibration 

levels in sandwich panels owing to their effect on the 

sensitive sensors measuring in low frequencies is of great 

importance. The reason lies in the fact that  even the 

presence of the lowest amplitude vibrations generated by 

solar radiation, aerodynamic forces will significantly 

increase measurement errors in optical instruments or 

microgravity experiments, where the microvibrations are 

resulted from the operation of other equipment required for 

correct functioning (e.g., reaction wheels). Thus, it is vital 

to control the micro vibrations to a certain amount by active 

control procedures such as piezoelectric patches (Sharma et 

al. 2015, Xu et al. 2018b). A great number of studied have 

been conducted some of which are mentioned as follows: 

 Applying a flywheel actuator for flexible spacecraft 

vibration suppression and attitude maneuvers, Xu et al. 

(2018a) obtained a system model by the Euler-Lagrange 

methodology and the assumed mode method. 

 A novel sandwich panel which is named RC panel-

Helical springs-RC panel (RHR) sandwich panel was 

proposed by Rashad et al. (2019). Tahouneh (2017) aimed 

at filling the gap in the area about vibration analysis of 
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multiwalled carbon nanotubes (MWCNTs) curved panels by 

providing 3-D vibration analysis results for functionally 

graded multiwalled carbon nanotubes (FG-MWCNTs) 

sandwich structure with power-law distribution of 

nanotube. Nasihatgozar et al. (2017) used higher order 

shear deformation theory to deal with general equations of 

motion for free vibration analysis response of thick three-

layer doubly curved sandwich panels (DCSP) under simply 

supported boundary conditions (BCs). Mohammadimehr et 

al. (2018b) presented free vibration analysis of magneto-

electro-elastic cylindrical composite panel reinforced by 

various distributions of carbon nanotubes (CNTs) with 

considering open and closed circuits boundary conditions 

based on first-order shear deformation theory (FSDT). 

Some researchers worked about free vibration analysis 

of functionally graded (FG)-carbon nanotubes reinforced 

composite (CNTRC) sandwich beam (Mohammadimehr et 

al. 2017c, Mohammdimehr and Shahedi 2017), micro 

porous cylindrical shell (Yazdani et al. 2019), annular 

sandwich plate using Ritz method (Emdadi et al. 2019), 

sandwich thick plate (Mohammadimehr et al. 2016b), nano 

rods (Mohammadimehr and Rahmati 2013). 

Do et al. (2017) presented role of material combination 

and new numerical results of mechanical behavior for 

functionally graded (FG) sandwich plates in high 

temperature. They concluded that a strong impact of severe 

high temperature affected the mechanical behaviors of 

sandwich plates and also, the material combinations play a 

crucial role and significantly on the mechanical behaviors 
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of sandwich plates. Bui et al. (2013) considered dynamic 

analysis of sandwich beams with FG core using a truly 

meshfree radial point interpolation method. They used a 

truly meshfree RPIM using Cartesian transformation 

method and employed the effective core properties using 

rule of mixture or Mori-Tanaka methods. Also, they 

considered penalty method to treat the material 

discontinuities. Also, the other works studied stability of 

double-walled carbon nanotubes (DWCNTs) (Arani et al. 

2011), stability of micro sandwich shell conveying fluid 

flow using DQM (Mohammadimehr and Mehrabi 2017). 

A boundary control strategy was proposed by He et al. 

(2018) to control the vibrations of two flexible wings. Using 

Hamilton’s principle, they established the system dynamic 

model which consisted of governing equations, i.e., four 

partial differential equations and boundary conditions, and 

several ordinary differential equations. 

As the most widely used algorithm for noise control, 

Filtered-x least mean square (FxLMS) was assumed by Niu 

et al. (2019) to control adaptive noise and vibrations. 

However, the secondary path identified offline was not able 

to distinguish the system characteristics in real-time which 

made the classical FxLMS inapplicable for time-varying 

system. To solve this problem, a new method for online 

modeling of secondary path was proposed, i.e., it was 

realized by the existing signals. 

In a new study, the analysis of an adaptive backstepping 

fuzzy sliding mode control approximating the unknown 

system dynamics for a cantilever beam was carried out by 

Fang et al. (2018). They came to the conclusion that the 

adaptive backstepping fuzzy sliding mode control was 

derived from the combination of the backstepping method 

and adaptive fuzzy strategy. 

A computationally efficient method was proposed by 

Daraji et al. (2017) to identify the optimal placement of 

sensor/actuator (s/a) pairs for active vibration control of a 

flexible structure. Dynamically symmetric and asymmetric 

structures under external force and structure base 

excitations were examined by this method so that the 

optimal distribution would be determined based on time-

frequency responses analysis. 

Kumar and Narayanan (2008) examined the optimal 

placement of collocated piezoelectric actuator/sensor pairs 

on flexible beams by a model-based linear quadratic 

regulator (LQR) controller. They used a finite element 

method based on Euler–Bernoulli beam theory and 

formulated the optimal location of actuator and sensor for 

different boundary conditions. In another study, Chhabr et 

al. (2011) considered the active vibration control of 

cantilever beam like structures with the laminated 

piezoelectric sensor and actuator layers bonded on top and 

bottom surfaces of the beam. A finite element model based 

on Euler-Bernoulli beam theory was developed in their 

study.  They presented a design of state/output feedback 

control by Pole placement technique and LQR optimal 

control approach to achieve the optimal control. Lin and 

Cao (2018) investigated the control strategies based on the 

displacement feedback and LQR method. These strategies 

were applied by pasting the piezoelectric material on the 

surface of the plate structure. Based on the Hamilton 

principle and applying the first-order piston theory to 

describe the aerodynamic loads, the governing equation of 

the plate system with the piezoelectric actuator was derived. 

To determine the type of controller, an accurate dynamic 

model of the system that consist of sandwich panel, 

piezoelectric patches and lumped mass, is required that can 

be obtained by the use of Hamilton’s principle. High-order 

shear deformation theory and high-order sandwich panel 

theory are methods for investigating a lumped mass on the 

composite plate in based on Hamiltonian principle 

(Daouadji et al. 2016, Zenkour and Aljadani 2018). 

Using smart structures consisting of composite and 

sandwich panel has been increased considerably due to high 

strength and rigidity. One of the most important reasons for 

using these structures is the possibility of taking advantages 

of piezoelectric layers. They are usually made of three 

parts; top and bottom face sheets, a foam or honeycomb 

core. Faces are generally made of high strength materials, 

whereas the core layer is made of a low specific weight 

material. So, the flexibility of the core is more than the 
facesheet (Nguyen et al. 2015, Mohammadimehr et al. 

2017b). 

Arani and Kiani (2018) presented nonlinear free and 

forced vibration analysis of microbeams resting on the 

nonlinear orthotropic visco-Pasternak foundation with 

different boundary conditions. Ö mer Gündoğdu studied 

vibration behavior of honeycomb sandwich composites 

filled with polyurethane foam by Taguchi Method. Kumar 

et al. (2019) investigated instability and Vibration analyses 

of FG cylindrical panels under parabolic axial 

compressions. Mohammadimehr et al. (2018a) considered 

bending, buckling, and free Vibration analyses of carbon 

nanotube reinforced composite beams and experimental 

tensile test to obtain the mechanical properties of 

nanocomposite. Nguyen and Tran (2018) illustrated free 

Vibration of tapered BFGM beams using an efficient shear 

deformable finite element model. 

In the present study, to improve the bending and strain 

behavior of solar panels, the sandwich layer is assumed 

with a honeycomb homogenous core composed of the 5052 

aluminum alloy and composite face sheets reinforced by 

carbon nanotube which play an important role in low 

weight and stiffness of the structure (Selim et al. 2017). 

The considerable mechanical properties by carbon 

nanotubes (CNTs) have attracted much attention because of 

the elastic modulus and tensile strength of CNTs reinforced 

microcomposite are much harder and stronger than steel, 

while the much lighter. The CNTs reinforced composite 

have many applications in various fields such as 

electromechanical devices, microsensors, biosensors, 

aerospace and shipping. Symmetric and un-symmetric 

distributions of nanotubes are considered for facesheets of 

sandwich microplates such as uniform distribution and 

various functionally graded distributions. Material 

properties of sandwich microplates are obtained by the 

extended rule of mixture (Shen and Xiang 2012). 

However, for piezoelectric patches, it is important that a 

more accurate analysis be done on their physical and 

electrical properties and their equations be obtained in the 

base of Ritz functions (Aglietti et al. 1997). (Aglietti et al. 
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2002) utilized the Lagrange equations to derive a very 

compact mathematical model of an electromechanical 

system comprised of a sandwich panel equipped with mass 

loaded panel and piezoelectric patches which act as sensors 

and actuators. The results of simulations were in 

concurrence with finite element method. 

Based on the dynamic analysis of the system and pole 

placement, a simple controller such as the second order 

linear regression can be used to control the behavior of the 

system to obtain admissible vibration frequency amplitude 

(Nadirian et al. 2017, Lin and Cao 2018). The robustness of 

the system can also be assessed and analyzed taking into 

account uncertainties such as variations in the weight of the 

lumped mass and the position of disturbance force. 

Micro-vibration suppression in satellites particularly in 

their solar panels which are largely subjected to solar 

radiation and aerodynamic forces is of much significance. 

These micro-vibrations cause shear and flexural stresses in 

sandwich panel’s arm and fault in satellite performance in 

the long run. Therefore, it’s necessary to keep them lower 

than a specific level. To do so, employing local controllers 

which perform independently of the satellite control system 

can be a very useful and effective. 

Active control of solar panels with honeycomb core and 

carbon nanotube reinforced composite facesheets for smart 

structures using sensor and actuator to reduce the amplitude 

of vibration is a lack of the previous study and it is the 

novelty of this research. The results of this research can be 

used to optimize active control panel for various 

applications. In the present study, the mechanical properties 

of carbon nanotube reinforced composite facesheets and the 

honeycomb core are first obtained by the extended rule of 

mixture, and then, the dynamic equations of the system are 

derived using the Lagrange relations based on the principle 

of minimum potential energy. With a linear relation based 

on vibration mode shape, system equation will be solved in 

state space. Also, stability of the system has been evaluated 

against mass and position variations of the lumped mass, 

position variations of the disturbance force, and the position 

replacement of the piezoelectric sensor patch with that of 

the actuator patch. Sandwich panel frequency in extremum 

point against variations in core-to-face sheet thickness ratio 

and the displacements of the sandwich panel and aluminum 

plate are analyzed in detail. Finally, the possibility of 

 

 

vibrations reaching an optimum level is proved by linear 

quadratic regression controller. 

 

 

2. Material properties of CNTs reinforced 
composite facesheets and sandwich panel core 
 

Sandwich panels are composed of a homogenous 

aluminum honeycomb core and two carbon nanotubes 

reinforced composite (CNTRC) facesheets with different 

weight percentages of CNT. The sandwich panel with 

length a, width b, and thickness h is shown in Fig. 1. As 

seen, the core is of thickness hc and CNTRC facesheets of 

thickness hf ( = c+f). 

The dynamic equations of the system have been 

obtained based on the following assumptions (Marynowski 

2012): 
 

 Compared to the facesheets, the core is both thicker 

and softer. 

 No slipping takes at the interfaces between the core 

and facesheets. 

 Full bond exists between the core and facesheets. 

Thus, the displacement between the core and the top 

facesheet 𝑧 = +𝑐/2 is the same as the one in the 

bottom facesheet in 𝑧 = −𝑐/2. 
 

In the Cartesian coordinate system, the origin point is 

assumed to be in the center of the core and one of the 

corners of the cube (Fig. 1). The extended rule of mixture 

(Mohammadimehr et al. 2016a), which is a simple and 

convenient way to estimate the material properties of the 

two-phase composites, is written as follows (Rajabi et al. 

2019) 
 

𝐸11 = 𝜂1𝑉𝑁𝑇
𝑡 ,𝑏𝐸11𝑁𝑇 + 𝑉𝑀𝐸11𝑀 (1a) 

 

𝜂2

𝐸12
=

𝑉𝑁𝑇
𝑡 ,𝑏

𝐸22𝑁𝑇
+

𝑉𝑀
𝐸22𝑀

 (1b) 

 

𝜂3

𝐺12
=

𝑉𝑁𝑇
𝑡 ,𝑏

𝐺12𝑁𝑇
+
𝑉𝑀
𝐺𝑀

 (1c) 

 

𝜐12 = 𝑉𝑁𝑇
𝑡 ,𝑏𝜐12𝑁𝑇 + 𝑉𝑚𝜐𝑀  (1d) 

 

 

 

Fig. 1 A schematic view of sandwich panel with homogenous core and CNTRC facesheets 
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𝜌 = 𝑉𝑁𝑇
𝑡 ,𝑏𝜌𝑁𝑇 + 𝑉𝑚𝜌𝑀 (1e) 

 

where the subscripts NT and M denote the nanotube and the 

matrix, respectively. As seen above, the top and bottom 

facesheets are shown by t and b, respectively. 𝑉𝑁𝑇 + 𝑉𝑀 =
1 is obtained as the relation for the composites. In the 

above relations, 𝜂𝑖 (𝑖 = 1, 2, 3)  is considered as the 

efficiency parameter and v is Poisson’s ratio. Furthermore, 

𝐸11, 𝐸22 and G represent longitudinal, transversely elastic 

moduli, and shear modulus, respectively. The efficiency 

parameters are defined numerically for CNTs and can be 

obtained by molecular dynamics simulations (Han and 

Elliott 2007). 
 

 

3. System description and constitutive equations 
 

3.1 The effect of masses on the solar panel 
 

Of the equipment mounted on the solar panel are 

sensors, actuators, and telecommunication equipment. The 

equipment is modeled as lumped masses and the 

disturbances as point forces (Fig. 2). The schematic diagram 

of the Cartesian coordinate system on the solar panel can be 

seen in Fig. 3. 
 

 

 

 

As seen in Fig. 2, twin patches of piezoelectric material 

have been employed on the panel with one pair acting as 

sensors and another as actuators. The reason for using this 

structure is to bond the outer connectors from the control 

unit. Any variations in displacement are detected by the 

sensors which, depending contraction or expansion of the 

patch, induce an electric field and send it to the control unit. 

The control unit, in turn, sends the actuators a voltage to 

independently control any vibration on the sandwich panel 

(Malekzadeh et al. 2012). 
 

3.2 Constitutive equations 
 

First, the classical displacement field for the sandwich 

plate is expressed as (Mohammadimehr et al. 2017a) 
 

 
 
 

 
 𝑈 𝑥,𝑦, 𝑧, 𝑡 = 𝑢 𝑥,𝑦, 𝑡 − 𝑧

𝜕𝑤 𝑥,𝑦, 𝑡 

𝜕𝑥

𝑉 𝑥,𝑦, 𝑧, 𝑡 = 𝑣 𝑥,𝑦, 𝑡 − 𝑧
𝜕𝑤 𝑥,𝑦, 𝑡 

𝜕𝑥

𝑊 𝑥,𝑦, 𝑧, 𝑡 = 𝑤 𝑥,𝑦, 𝑡                      

  (2) 

 

where u, v and w denote the displacements of the middle 

plate along the x, y and z axes, respectively. Based on Eq. 
 

 

 

 

 

Fig. 2 Model layout of sandwich panel with considering sensor and actuator 

 

Fig. 3 Plan and side views of sandwich panel as two sensors and actuators 
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(2), normal and shear strain relations can be obtained as 

follows 

 

𝜀𝑥𝑥
𝜀𝑥𝑥
𝛾𝑥𝑦

 =

 
  
 

  
 

∂𝑈

∂𝑥
∂V

∂𝑦
∂𝑈

∂𝑥
+
∂V

∂𝑦 
  
 

  
 

=

 
  
 

  
 

𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑦
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦 
  
 

  
 

+ 𝑧

 
  
 

  
 −

𝜕2𝑤

𝜕𝑥2

+
𝜕2𝑤

𝜕𝑦2

−2
𝜕2𝑤

𝜕𝑥𝜕𝑦 
  
 

  
 

 

 
𝛾𝑥𝑧
𝛾𝑦𝑧

 =  
0
0
  

(3) 

 

Due to the small displacements, the values of u and v 

can be ignored. The constitutive equations for the sandwich 

plate composed of homogenous aluminum honeycomb core 

and nanocomposite facesheets are written as follows 

(Mohammadimehr et al. 2016a) 

 

 
 
 

 
 
𝜍𝑥𝑥
𝜍𝑦𝑦
𝜍𝑥𝑦
𝜍𝑦𝑧
𝜍𝑥𝑧 

 
 

 
 

=

 
 
 
 
 
𝑄11

𝑄12

0
   
𝑄12

𝑄22

0
   

0
0
𝑄66

   
0
0
0

    
0
0
0

    
0
0

     
0
0

     
0
0

    
𝑄44

0
  

0
𝑄55 

 
 
 
 

 
 
 

 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧 

 
 

 
 

 (4) 

 

𝜀𝑧𝑧 = 0 (5) 

 

𝑄11 =
𝐸11

1 − 𝑣12𝑣12
,      𝑄12 =

𝑣12𝐸11

1 − 𝑣12𝑣12
, 

𝑄22 =
𝐸22

1 − 𝑣12𝑣12

,      𝑄66 = 𝐺12 =
𝐸11

2 1 + 𝑣12 
, 

𝑄44 = 𝐺23 ,                    𝑄55 = 𝐺13 

(6) 

 

In Eq. (6), E11 , E22 , v12 , G13 , G23 , G12  and Q 

parameters are Young moduli in x and y directions, 

Poisson’s ratio, shear moduli in three directions, and stress 

constants, respectively. 

To simplify the system equations, vibration mode shapes 

method is applied. The displacement field (out-of-plane 

displacement w) is described by a superposition of shape 

functions 𝑠𝑚 ,𝑛  (consisting of the first 𝑁 = 𝑁𝑚 × 𝑁𝑛  

modes of the bare panel) multiplied by the time-dependent 

modal coordinates Ψm,n i.e. 

 

𝑤 𝑥,𝑦, 𝑡 =   𝑠𝑚 ,𝑛 𝑥,𝑦 Ψ𝑚 ,𝑛 𝑡 =

𝑁𝑛

𝑛=1

𝑁𝑚

𝑚=1

𝑠𝑇Ψ (7) 

 

where the N ×  1  column vectors s and Ψ  contain the 

shape functions and modal coordinates, respectively. The 

mode shapes of the bare panel 

 

𝑠𝑚 ,𝑛 𝑥,𝑦 = sin  
𝑚𝜋𝑥

𝑎
 sin  

𝑛𝜋𝑥

𝑏
  (8) 

 

are taken as Ritz functions to model the displacement field. 
 

 

4. Lagrange equations 
 
By the use of Lagrange equations, dynamic equations of 

the plate can be derived as follows 

 
 

 𝐿 = 𝑇 − 𝑈              

𝑑

𝑑𝑡
 
𝜕𝐿

𝜕𝑞 𝑖
 −

𝜕𝐿

𝜕𝑞𝑖
= 𝑄𝑖

  (9) 

 

where T and U are the kinetic and potential energies of the 

system, and q
i
 and Qi are the ith generalized coordinate 

and force, respectively. Of the generalized coordinates are  

Ψ  together with the voltages at the piezoelectric patches. 

Q is expressed by point forces acting on the sandwich 

plate in the coordinate system as follows 

 

 
 
 

 
 
𝑄𝑖 =  𝐹𝑗

𝜕𝑤𝑗

𝜕Ψ𝑗

𝑁𝑓

𝑗=1

𝑄 = 𝑠𝑓
𝑇𝑓        

  (10) 

 

where f and Sf column vectors are external forces and modal 

shape, respectively, at the corresponding force locations. f is 

the 𝑁𝑓× 1 column vector of forces and Sf, given by Eq. (8), 

is evaluated at its corresponding force location. 

 

4.1 Kinetic energy 
 

To compute the kinetic energy of the solar panel, the 

energy of each layer including the core, composite 

reinforced by carbon nanotube facesheets, piezoelectric 

layers, and the lumped mass must be calculated in the 

following form 

 

𝑇 = 𝑇𝑐 + 𝑇𝑓𝑠t
+ 𝑇𝑓𝑠b

+ 𝑇𝑝𝑧𝑠 t
 

+𝑇𝑝𝑧𝑠 b
+ 𝑇𝑝𝑧𝑎 t

+ 𝑇𝑝𝑧𝑎 b
+ 𝑇𝑙𝑚  

(11) 

 

The general equation to calculate kinetic energy is 

 

𝑇 =  
1

2
𝜌   

𝜕𝑈

𝜕𝑡
 

2

+  
𝜕𝑉

𝜕𝑡
 

2

+  
𝜕𝑊

𝜕𝑡
 

2

 𝑑𝑉 

=
1

2
𝜌  𝑧2  

𝜕𝑠𝑇

𝜕𝑥

𝜕Ψ

𝜕𝑡
 

2

+ 𝑧2  
𝜕𝑠𝑇

𝜕𝑦

𝜕Ψ

𝜕𝑡
 

2

  

 +  𝑠𝑇
𝜕Ψ

𝜕𝑡
 

2

 𝑑𝑉 

=
1

2
 
𝜕Ψ

𝜕𝑡
 
𝑇

 𝜌 𝑧2
𝜕𝑠

𝜕𝑥

𝜕𝑠𝑇

𝜕𝑥
+ 𝑧2

𝜕𝑠

𝜕𝑦

𝜕𝑠𝑇

𝜕𝑦
  

 + 𝑠. 𝑠𝑇 𝑑𝑉  
𝜕Ψ

𝜕𝑡
 =

1

2
Ψ 𝑇𝑀Ψ  

(12) 

 

where p denotes the material density. The total weight of the 

plate is obtained from the sum of core, composite reinforced 

by carbon nanotube facesheets, piezoelectric layers, and the 

lumped mass weights as shown in appendix A. 

 

𝑀𝑐 =   

𝜌𝑐  𝑧
2
𝜕𝑠

𝜕𝑥

𝜕𝑠𝑇

𝜕𝑥
+ 𝑧2

𝜕𝑠

𝜕𝑦

𝜕𝑠𝑇

𝜕𝑦
 

 + 𝑠. 𝑠𝑇 𝑑𝑥𝑑𝑦               

𝑁𝑝𝑧

𝑖=1

 (13) 
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𝑀𝑓𝑠 =   

𝜌𝑓𝑠  𝑧
2
𝜕𝑠

𝜕𝑥

𝜕𝑠𝑇

𝜕𝑥
+ 𝑧2

𝜕𝑠

𝜕𝑦

𝜕𝑠𝑇

𝜕𝑦
 

 + 𝑠. 𝑠𝑇 𝑑𝑥𝑑𝑦               

𝑁𝑝𝑧

𝑖=1

 (14) 

 

𝑀𝑝𝑧 =   

𝜌𝑝𝑧  𝑧
2
𝜕𝑠

𝜕𝑥

𝜕𝑠𝑇

𝜕𝑥
+ 𝑧2

𝜕𝑠

𝜕𝑦

𝜕𝑠𝑇

𝜕𝑦
 

 + 𝑠. 𝑠𝑇 𝑑𝑥𝑑𝑦               

𝑁𝑝𝑧

𝑖=1

 (15) 

 

𝑀𝑙𝑚 =  𝑀𝑙𝑚 i
𝑠𝑙𝑚 i

𝑁𝑝𝑧

𝑖=1

𝑠𝑙𝑚 i
𝑇 (16) 

 

𝜌𝑐 , 𝜌𝑓𝑠  and 𝜌𝑝𝑧𝑖  are densities of the sandwich core, 

CNTRC facesheet, piezoelectric patches, respectively. 𝑁1 

is the number of lumped masses acting on the sandwich 

panel. 𝑠𝑙𝑚 i
 denotes the mode shape vector at its 

corresponding location. The thickness in the top and bottom 

composite facesheets can be different. 𝑁𝑝𝑧  represents the 

number of piezoelectric patches. 

 

4.2 The potential energy 
 

The total potential energy of the sandwich plate is 

derived from the sum of core, CNTRC facesheets, 

piezoelectric layers, and the lumped mass potential 

energies. 
 

𝑈 = 𝑈𝑐 + 𝑈𝑓𝑠𝑡 + 𝑈𝑓𝑠𝑏  

+𝑈𝑝𝑧𝑠 t
+ 𝑈𝑝𝑧𝑠 b

+ 𝑈𝑝𝑧𝑎 t
+ 𝑈𝑝𝑧𝑎 b

 
(17) 

 

To obtain the potential energy stored due to the elasticity 

of the panel, the following expression is used as seen in 

appendix B 

𝜀𝑇𝜍 =  𝜀𝑥𝑥    𝜀𝑦𝑦    𝛾𝑥𝑦    𝛾𝑦𝑧    𝛾𝑥𝑧  

 
 
 
 
 
𝜍𝑥𝑥
𝜍𝑦𝑦
𝜍𝑥𝑦
𝜍𝑦𝑧
𝜍𝑥𝑧  

 
 
 
 
𝑇

 

= Ψ𝑇  𝑄11  𝑧
2
𝜕2𝑠

𝜕𝑥2

𝜕2𝑠𝑇

𝜕𝑥2
  + 𝑄22  𝑧

2
𝜕2𝑠

𝜕𝑦2

𝜕2𝑠𝑇

𝜕𝑦2
  

+2𝑄12  𝑧
2
𝜕2𝑠

𝜕𝑥2

𝜕2𝑠𝑇

𝜕𝑦2
  +𝑄66  4𝑧2

𝜕2𝑠

𝜕𝑥𝜕𝑦

𝜕2𝑠𝑇

𝜕𝑥𝜕𝑦
  Ψ 

(18) 

 

For the homogenous core of the sandwich panel, the 

potential energy is written as follows 

 

𝑈𝑐 =
1

2
   𝜀𝑇𝜍𝑐  𝑑𝑥𝑑𝑦𝑑𝑧

𝑐
2

−
𝑐
2

𝑏

0

𝑎

0

=
1

2
Ψ𝑇𝐾𝑐Ψ (19) 

 

𝐾𝑐 =     𝑄11𝑐  𝑧
2
𝜕2𝑠

𝜕𝑥2

𝜕2𝑠𝑇

𝜕𝑥2
  

𝑐
2

−
𝑐
2

𝑏

0

𝑎

0

 (20) 

+𝑄22𝑐  𝑧
2
𝜕2𝑠

𝜕𝑦2

𝜕2𝑠𝑇

𝜕𝑦2
 + 2𝑄12𝑐  𝑧

2
𝜕2𝑠

𝜕𝑥2

𝜕2𝑠𝑇

𝜕𝑦2
  

 +𝑄66𝑐  4𝑧2
𝜕2𝑠

𝜕𝑥𝜕𝑦

𝜕2𝑠𝑇

𝜕𝑥𝜕𝑦
  𝑑𝑥𝑑𝑦𝑑𝑧 

(20) 

 

For the CNTRC facesheet, the potential energy is 

obtained from the following expression (appendix C) 
 

𝑈𝑓𝑠 =
1

2
 𝜀𝑇𝜍𝑓𝑠  𝑑𝑥𝑑𝑦𝑑𝑧 =

1

2
Ψ𝑇𝐾𝑓𝑠Ψ (21) 

 

𝐾𝑓𝑠 =   𝑄11𝑓  𝑧
2
𝜕2𝑠

𝜕𝑥2

𝜕2𝑠𝑇

𝜕𝑥2
   

+𝑄22𝑓  𝑧
2
𝜕2𝑠

𝜕𝑦2

𝜕2𝑠𝑇

𝜕𝑦2
 + 2𝑄12𝑓  𝑧

2
𝜕2𝑠

𝜕𝑥2

𝜕2𝑠𝑇

𝜕𝑦2
  

+𝑄66𝑓  4𝑧2
𝜕2𝑠

𝜕𝑥𝜕𝑦

𝜕2𝑠𝑇

𝜕𝑥𝜕𝑦
  

(22) 

 

For the piezoelectric patches, the potential energy 

includes three energy components, i.e., the energy stored 

due to the elasticity of the material, the additional energy 

due to voltage-driven piezoelectric effect, and the electric 

energy stored due to the dielectric characteristics of the 

piezoelectric material. Therefore, the potential energy can 

be written as 
 

𝑈𝑝𝑧 = 𝑈𝑝𝑧 elast
+ 𝑈𝑝𝑧elastelect

+ 𝑈𝑝𝑧 elect
 (23) 

 

When calculating the potential energy stored due to the 

elastic energy of piezoelectric patches, the following 

assumptions must be taken into account (Aglietti et al. 

2004): 
 

(i) The stiffness of the electrodes attached to the 

piezoelectric patches is negligible. 

(ii) The layer of adhesive connecting the electrodes to 

the piezoelectric patches has negligible thickness 

when compared to that of the patches. The adhesive 

can transfer all of the shear strain. 

(iii) No natural boundary conditions at the edges of 

each patch (i.e., a = 0) exist and do not affect 

stress/strain distribution through the whole 

sandwich panel. 
 

The potential energy stored due to the elasticity and 

isotropy of piezoelectric patches is the same as that of the 

core and CNTRC facesheets. However, the longitudinal and 

transverse moduli of elasticity moduli are assumed the same 

in piezoelectric patches. 𝐸𝑝𝑧𝑖  denotes the Young’s modulus 

for the ith patch and 𝜐𝑝𝑧𝑖  represents Poisson’s ratio. 
 

𝑈𝑝𝑧 elast
=

1

2
  𝜀𝑇𝜍𝑝𝑧𝑖  𝑑𝑥𝑑𝑦𝑑𝑧

𝑁𝑝𝑧

𝑖=1

 

=
1

2
Ψ𝑇𝐾𝑝𝑧 elast

Ψ 

(24) 

 

𝐾𝑝𝑧elast
=   

𝐸𝑝𝑧 𝑖𝑧
2

 1 − 𝜐𝑝𝑧𝑖
2  

𝑁𝑝𝑧

𝑖=1

 
𝜕2𝑠𝑝𝑧𝑖
𝜕𝑥2

𝜕2𝑠𝑝𝑧𝑖
𝑇

𝜕𝑥2
  (25) 
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+
𝜕2𝑠𝑝𝑧𝑖
𝜕𝑦2

𝜕2𝑠𝑝𝑧𝑖
𝑇

𝜕𝑦2
+ 2𝜐𝑝𝑧𝑖

𝜕2𝑠𝑝𝑧𝑖
𝜕𝑥2

𝜕2𝑠𝑝𝑧𝑖
𝑇

𝜕𝑦2
 

 +2(1 − 𝜐𝑝𝑧𝑖 )
𝜕2𝑠𝑝𝑧𝑖
𝜕𝑥𝜕𝑦

𝜕2𝑠𝑝𝑧𝑖
𝑇

𝜕𝑥𝜕𝑦
 𝑑𝑥𝑑𝑦𝑑𝑧 

(25) 

 

In the present study, 𝑁𝑝𝑧𝑖 = 4 (two patches of sensor, 

two patches of actuators in the top and bottom of the 

sandwich panel). Due to the different direction of strain in 

the top and bottom of the sandwich panel and also 

piezoelectric patches being of the same type and size, 

𝐾𝑝𝑧elast
 (the stiff matrix) is the same in the top and bottom 

of the sandwich panel. 

The patch here is assumed to have a constant thickness 

𝑝𝑧  which is thin enough to prevent fringe effects. It has a 

voltage v which is applied at its electrodes. Supposing a 

constant electric field 𝑒 =
𝑉𝑝𝑧

𝑝𝑧
 across the 𝑝𝑧  patch, the 

further stress resulted from the applied voltages is 

calculated as 
 

𝜍elect =  
𝜍𝑥elect

𝜍𝑦elect
 =

𝐸𝑝𝑧
1 − 𝑣2

 
𝜖𝑥𝑧 + 𝜐𝜖𝑦𝑧
𝜖𝑦𝑧 + 𝜐𝜖𝑥𝑧

 𝑒 (26) 

 

𝑝𝑧  is the thickness of the piezoelectric layer and 𝜖𝑥𝑧  

and 𝜖𝑝𝑧  are the piezoelectric constants of the material. 𝐸𝑝𝑧 

is Young’s modulus constant of the piezoelectric material. 

Therefore, by assuming that 𝜖𝑥𝑧 = 𝜖𝑦𝑧 = 𝜖𝑧 and 

substituting 𝜍elect  from Eq. (26) into Eq. (27). 

The elastoelectric energy stored in the 𝑁𝑝𝑧  patches can 

be written as (Aglietti et al. 2000) 
 

𝑈𝑝𝑧 elastelect
=

1

2
  𝜀𝑇𝜍elect  𝑑𝑥𝑑𝑦𝑑𝑧

𝑁𝑝𝑧

𝑖=1

 

=
1

2
  

 𝜀𝑥𝑥𝜍𝑥elect
+ 𝜀𝑦𝑦𝜍𝑦elect

 

𝑑𝑥𝑑𝑦𝑑𝑧                             

𝑁𝑝𝑧

𝑖=1

 

=
1

2
  

 𝑧
𝜕2𝑠𝑝𝑧𝑖

𝑇 Ψ

𝜕𝑥2
+ 𝑧

𝜕2𝑠𝑝𝑧𝑖
𝑇 Ψ

𝜕𝑦2
 

𝐸𝑝𝑧 𝑖𝜖𝑧𝑖𝑒𝑖

 1 − 𝑣𝑝𝑧 𝑖 
𝑑𝑥𝑑𝑦𝑑𝑧            

𝑁𝑝𝑧

𝑖=1

 

= 𝑉𝑝𝑧
𝑇𝐾𝑝𝑧elastelect

Ψ 

(27) 

 

Considering the symmetry in 𝜀𝑇𝜍elect = 𝜍elect 𝜀𝑇 , Eq. 

(27) is derived in the following form 

 

𝐾𝑝𝑧elastelect
𝑇  

=   
𝐸𝑝𝑧 𝑖𝜖𝑧𝑖𝑝𝑖

2(1 − 𝑣𝑝𝑧 𝑖)
 𝑧

𝜕2𝑠𝑝𝑧𝑖
𝑇

𝜕𝑥2
+ 𝑧

𝜕2𝑠𝑝𝑧𝑖
𝑇

𝜕𝑦2
 

𝑁𝑝𝑧

𝑖=1

𝑑𝑥𝑑𝑦𝑑𝑧 
(28) 

 

In Eq. (28), 𝑝𝑖 =
1

𝑝𝑧𝑖
. Since the potential energy 

function is even, it would be equal for the piezoelectric 

patches in the top and bottom of the sandwich panel. 

 The potential energy due to the electric field is 

obtained from 𝑑𝑖 = 𝜖𝑝𝑧𝑖
𝑉𝑝𝑧

𝑝𝑧𝑖
. d is the electric displacement 

and 𝜖𝑝𝑧𝑖  is the dielectric constant of the piezoelectric 

material. 
 

𝑈𝑝𝑧 elect
=

1

2
  𝑒𝑇𝑑 𝑑𝑥𝑑𝑦𝑑𝑧

𝑁𝑝𝑧

𝑖=1

 

=
1

2
   

𝑉𝑝𝑧
𝑝𝑧 𝑖

 

𝑇
𝑁𝑝𝑧

𝑖=1

𝜖𝑝𝑧 𝑖
𝑉𝑝𝑧
𝑝𝑧 𝑖

 𝑑𝑥𝑑𝑦𝑑𝑧 

=
1

2
𝑉𝑇𝐾𝑝𝑧elect

𝑉 

(29) 

 

𝐾𝑝𝑧 elect
=

1

2
  𝜖𝑝𝑧 𝑖

𝑁𝑝𝑧

𝑖=1

𝑃𝑖
𝑇𝑃𝑖  𝑑𝑥𝑑𝑦𝑑𝑧 (30) 

 

Due to the symmetric distribution of the electric energy 

in the top and bottom of the sandwich panel in piezoelectric 

patches, 𝑈𝑝𝑧𝑡elect
= 𝑈𝑝𝑧𝑏elect

.  Therefore, the general 

relation for the potential energy is 
 

𝑈 =
1

2
Ψ𝑇𝐾𝑐  Ψ +

1

2
Ψ𝑇𝐾𝑓𝑠  Ψ +

1

2
Ψ𝑇𝐾𝑝𝑧 elect

 Ψ 

+𝑉𝑝𝑧
𝑇𝐾𝑝𝑧elastelect

 Ψ +
1

2
𝑉𝑝𝑧
𝑇𝐾𝑝𝑧elect

𝑉𝑝𝑧  

(31) 

 

Substituting the kinetic and potential energies and the 

generalized forces from Eqs. (12)-(31) and (10) into Eq. (9) 

and derivation of 𝛹  and 𝑉𝑝𝑧  yields the following 

equations 

 

 𝑀𝑐 + 𝑀𝑓𝑠 + 𝑀𝑝𝑧 + 𝑀𝑙𝑚  Ψ  

+ 𝐾𝑐 + 𝐾𝑓𝑠 + 𝐾𝑝𝑧elect
 Ψ + 𝐾𝑝𝑧 elastelect

𝑇 𝑉𝑝𝑧 = 𝑠𝑓
𝑇𝐹 

(32) 

 

𝐾𝑝𝑧elastelect
Ψ + 𝐾𝑝𝑧elect

𝑉𝑝𝑧 = 0 (33) 
 

Using 
 

𝑀 = 𝑀𝑐 + 𝑀𝑓𝑠 + 𝑀𝑝𝑧 + 𝑀𝑙𝑚  (34) 

 

𝐾elast = 𝐾𝑐 + 𝐾𝑓𝑠 + 𝐾𝑝𝑧elect
 (35) 

 

𝐾𝑝𝑧elastelect
𝑇 𝑉𝑝𝑧 =  𝐾𝑝𝑧𝑠 elastelect

𝑇    𝐾𝑝𝑧𝑎 elastelect
𝑇   

𝑉𝑝𝑧𝑠
𝑉𝑝𝑧𝑎

  (36) 

 

Eq. (32) can be written as follows 

 

𝑀Ψ + 𝐾elast Ψ + 𝐾𝑝𝑧𝑠 elastelect
𝑇 𝑉𝑝𝑧𝑠  

+𝐾𝑝𝑧𝑎 elastelect
𝑇 𝑉𝑝𝑧𝑎 = 𝑠𝑓

𝑇𝐹 
(37) 

 

Based on Eq. (33), the piezoelectric voltage obtained 

from measuring the sensor is 
 

𝑉𝑝𝑧𝑠 = −𝐾𝑝𝑧𝑠 elect
𝐾𝑝𝑧𝑠 elastelect

−1 Ψ (38) 

 

Substituting Eq. (38) into Eq. (37) yields the following 

equation 
 

𝑀Ψ +  𝐾elast − 𝐾𝑝𝑧𝑠 elastelect
𝑇 𝐾𝑝𝑧𝑠 elect

𝐾𝑝𝑧𝑠 elastelect

−1  Ψ 

= −𝐾𝑝𝑧𝑎 elastelect
𝑇 𝑉𝑝𝑧𝑎 + 𝑠𝑓

𝑇𝐹 
(39) 
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Considering 𝐾𝑝𝑧𝑠 = 𝐾𝑝𝑧𝑠
𝑇

elastelect
𝐾𝑝𝑧𝑠 elect

 

𝐾𝑝𝑧𝑠 elastelect

−1 , Eq. (39) is simplified as follows 

 

𝑀Ψ +  𝐾elast + 𝐾𝑝𝑧𝑠  Ψ = −𝐾𝑝𝑧𝑎 elastelect
𝑇 𝑉𝑝𝑧𝑎 + 𝑠𝑓

𝑇𝐹 (40) 

 

Adding damping matrix and defining 𝐾 = 𝐾elast + 𝐾𝑝𝑧𝑠  

for Eq. (40) yields the following equations for solar panels 

with honeycomb core and carbon nanotube reinforced 

composite facesheets 
 

𝑀Ψ + 𝐶𝑠Ψ + 𝐾Ψ = −𝐾𝑝𝑧𝑎 elastelect
𝑇 𝑉𝑝𝑧𝑎 + 𝑠𝑓

𝑇𝐹 (41) 

 

where [M], [K], [F], [Vpza] are the global mass matrix, the 

global stiffness matrix, the external force vector, and the 

control force vector, respectively. [Cs] = α[M]+β[K] is the 

damping matrix of which α and β are the constants (Qiu 

and Ling 2014). 
 

 

5. Control system 
 

The mathematical model obtained from Eqs. (7)-(38) 

and (41) in state-space form can be written as 
 

𝑤out = 𝐶𝑤𝑥 (42) 

 

𝑣𝑠 = 𝐶𝑣𝑥 (43) 

 

𝑥 = 𝐴𝑥 + 𝐵𝑣𝑣𝑎 + 𝐵𝑓𝑓 (44) 

where 

𝑥 =  
𝑥1

𝑥2
 =  

Ψ
Ψ
 , 

 

𝑥 1 = 𝑥2

𝑥 2 = −𝑀−1𝐾𝑥1−𝑀
−1𝐶𝑠𝑥2−𝑀

−1

          𝐾𝑝𝑧𝑎 elastelect
𝑇 𝑉𝑝𝑧𝑎 + 𝑀−1𝑠𝑓

𝑇𝐹

  
(45) 

 

 

Therefore 

𝐴 =  
0 1

−𝑀−1𝐾 −𝑀−1𝐶𝑠
 , 

𝐵𝑣 =  
0

−𝑀−1𝐾𝑝𝑧𝑎 elastelect
𝑇  ,    𝐵𝑓 =   

0
𝑀−1𝑠𝑓

𝑇  
(46) 

 

𝐶𝑣 =  −𝐾𝑝𝑧𝑠 elect
𝐾𝑝𝑧𝑠 elastelect

−1  0 ,   𝐶𝑤 =  𝑠out
𝑇    0  (47) 

 

where K denotes the total stiffness matrix, 𝑤out  is the 

output displacement of the sandwich panel specified by 

𝑠out , the vibration mode shape vectors. By the use of the 

obtained relations in state-space form and their linearity, 

state feedback design based on linear quadratic regulator 

(LQR) can be of the optimal approaches for the controller 

which mainly focuses on minimizing the following cost 

function (Murray 2006) 
 

𝐽 =  (𝑤out
𝑇 𝑄𝑤out + 𝑣𝑎

𝑇𝑅𝑣𝑎)𝑑𝑡
∞

0

 (48) 

 

where the symmetric weighting matrices Q and R are 

positive semi-definite and positive definite, respectively. 

They are of the same dimensions with system state 

variables and selecting them depends on the controller’s 

designer.  Based on state feedback law 
 

𝑉𝑝𝑧𝑎 = 𝐺𝑓𝑠𝑥 (49) 
 

where 𝐺𝑓𝑠  is the state-feedback matrix and generated as 

follows 

𝐺𝑓𝑠 = 𝑅−1𝐵𝑣𝑇𝑃𝑐  (50) 
 

And 𝑃𝑐  in Eq. (50) is satisfied in the algebraic Riccati 

equation as follows 
 

𝐴𝑇𝑃𝑐 + 𝑃𝑐𝐴 − 𝑃𝑐𝐵𝑣𝑅
−1𝐵𝑣

𝑇𝑃𝑐 + 𝐶𝑤𝑄𝐶𝑤
𝑇 = 0 (51) 

 

 

 

Table 1 Mechanical properties of materials for sandwich panels 

 Material dimensions Material properties 

Aluminum plate 

𝑎 =  304.8𝑚𝑚 
𝑏 = 203.2𝑚𝑚 
 = 21𝑚𝑚 

𝐺12 = 27 𝐺𝑃𝑎 
𝐸1 = 72 𝐺𝑃𝑎 , 𝐸2 = 72 𝐺𝑃𝑎 

𝜌 = 2700 𝑘𝑔𝑚−3,𝜐 = 0.33 

CNTRC facesheet 

𝑎 =  304.8𝑚𝑚 
𝑏 = 203.2𝑚𝑚 
 = 0.5𝑚𝑚 

η
1
=0.142,η

2
=1.626,η

3
=1.138 

𝐸1 = 5.64 𝑇𝑃𝑎 , 𝐸2 = 7.08 𝑇𝑃𝑎 
𝐺12 = 1.94 𝑇𝑃𝑎,VCNT=0.17, 

𝜌 = 4000 𝑘𝑔𝑚−3,𝜐 = 0.175 

Aluminum core 

5052 

𝑎 =  304.8𝑚𝑚 
𝑏 = 203.2𝑚𝑚 
 = 20𝑚𝑚 

𝐺12 = 0.22 𝐺𝑃𝑎 
𝐸1 = 0.41 𝐺𝑃𝑎 , 𝐸2 = 0.24 𝐺𝑃𝑎 

𝜌 = 37 𝑘𝑔𝑚−3,𝜐 = 0.33 

sensor 

𝑝𝑧𝑠 = 0.19𝑚𝑚 

𝑥𝑠1 = 0.8𝑚𝑚 , 𝑥𝑠2 = 101.6𝑚𝑚 
𝑦𝑠1 = 25.4𝑚𝑚 , 𝑦𝑠2 = 76.2𝑚𝑚 

𝐸 = 63𝑒9 𝑃𝑎 

𝜌 = 7650 𝑘𝑔𝑚−3, 𝜐 = 0.3 

𝐷 = 1.66𝑒 − 10 𝑚𝑣−1 , ԑ = 1700 𝜀0 

Actuator 

𝑝𝑧𝑎 = 0.19𝑚𝑚 

𝑥𝑎1 = 76.2𝑚𝑚 , 𝑥𝑎2 = 127𝑚𝑚 
𝑦𝑎1 = 101.6𝑚𝑚 , 𝑦𝑎2 = 152.4𝑚𝑚 

𝐸 = 63𝑒9 𝑃𝑎 

𝜌 = 7650 𝑘𝑔𝑚−3, 𝜐 = 0.3 

𝐷 = 1.66𝑒 − 10 𝑚𝑣−1 , ԑ = 1700 𝜀0 

Lumped mass 𝑋𝑙𝑚 = 50.8𝑚𝑚 , 𝑌𝑙𝑚 = 152.4𝑚𝑚 𝑊𝑙𝑚 = 50𝑔 
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6. Results and simulation 
 

We have come across different interpretations of 

analytical vs. numerical methods in books and articles. One 

of the explanations suggests that analytical methods give 

exact solutions while numerical methods give approximate 

solutions. If we follow this definition, methods like the 

Adomian decomposi t ion,  homotopy analysis  & 

perturbation, Taylor series expansion, and even Picard’s. In 

fact, in this case almost all methods - except very few ones - 

are numerical. Another explanation suggests that the 

difference is that an analytical method gives a solution in 

the form of symbols i.e., closed form solution. On the other 

hand, a numerical method gives solutions at certain points 

only. If we follow this explanation, the aforementioned 

methods will be all analytical since they produce closed 

form solutions. In this case, methods like the finite 

 

 

 

 

 

 

difference and finite element are numerical since they give 

results at certain points. 

Given the system has two inputs, i.e., Force and 

Actuator voltage, the results and simulation were analyzed 

considering two test cases: 

Test case 1: the disturbance consists of a harmonic point 

force of amplitude 1 N perpendicular to the panel at a 

specific location x = 254 mm and y = 50.8 mm, which is 

written as follows 
 

𝑓 = 𝐹𝑒𝑗𝑤𝑡  (52) 

 

And also a lumped mass weighing 50 g is applied at 

x = 50.8 mm and y = 154.2 mm. 

Test case 2: Sinusoidal voltage of 1 volt is applied into 

the piezoelectric actuator. Voltage function is in the 

following form 

 

 

 

 

 

 

Fig. 4 Comparison of the sandwich panel and aluminum plate in test case 1 

Table 2 Comparison of the sandwich panel and aluminum plate in the first three frequencies and displacements in 

test state 1 

 Frequency 1 Frequency 2 Frequency 3 Displacement 1 Displacement 2 Displacement 3 

Sandwich panel (present) 3320 3700 18690 8.41e-6 2.56e-10 1.03e-4 

Aluminum plate (Kumar 

and Narayanan 2008) 
10980 11630 27690 5.12e-7 1.69e-12 1.62e-5 

 

Table 3 Comparison of the sandwich panel and aluminum plate in the first three frequencies and displacements in 

test state 2 

 Frequency 1 Frequency 2 Frequency 3 Displacement 1 Displacement 2 Displacement 3 

Sandwich panel (present) 161© 50 24470 26560 3.24e-5 5.97e-9 2.81e-6 

Aluminum plate (Kumar 

and Narayanan 2008) 
27530 27660 27700 4.97e-6 9.12e-9 2.98e-6 
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𝑉𝑝𝑧𝑎 = 𝑉𝑒𝑗𝑤𝑡  (53) 

 

To simulate the equations of the system, up to 36 mode 

shape vectors were considered so that the stress strain 

behavior of the panel and extent of displacement would be 

thoroughly evaluated. 
 

𝑤 = 𝑠𝑇Ψ =  𝑠1 …𝑠36 (Ψ1 …Ψ36)𝑇 (54) 
 

The properties of the sandwich panel, piezoelectric 

patches, CNTRC facesheets, and the honeycomb core are 

given in Table 1 (Aglietti et al. 1997, Kim and Lee 2008). 

The displacements of an aluminum plate and a sandwich 

panel in the frequency domain of 30 kHz in test case 1 are 

shown in Fig. 4. Material properties of the CNTRC 

facesheet are given as 

 

𝐸𝑚
𝑐 = 8.3 GPa,      𝑣𝑚

𝑐 = 0.18,      𝜌𝑚
𝑐 = 1750 Kgm−3 

 

As seen in Fig. 4, the displacement of the sandwich 

panel being close to that of aluminum plate is indicative of 

the high robustness of the sandwich panel the core density 

of which is 73 times as small as the aluminum plate. The 

reason for the robustness is the use of carbon nanotube 

reinforced composite in the structure of the sandwich panel 

facesheets which is verified by the value of Young’s 

modulus of nanotube particles in Table 1. The 

displacements of the sandwich panel and the aluminum 

plate in the first three frequency mode for test cases 1 and 2 

are shown in Tables 2-3. 

In Fig. 5, the same comparison is made between the 

sandwich panel and aluminum plate. However, in contrast 

to the test case 1 in which inputs are the disturbance force 

and a lumped mass applied, here the only input is the 

piezoelectric actuators voltage. 

Although the sandwich panel has vibrations close to that 

of the aluminum plate in Fig. 4, the extremums are more 

compared to those in. The reason is that the disturbance 

force would be smaller than the piezoelectric actuator 

 

 

 

Fig. 6 Frequency response of the sandwich panel with 

LQR controller 

 

 

voltage as their coefficients are different. 

In Fig. 6, linear quadratic regulator (LQR) is used to 

decrease the vibrations of the sandwich panel. Controller 

coefficients have been selected as R = 1 and Q = 1013 to 

yield the best performance of the controller and the least 

vibrations of the panel. The reason for the large difference 

between R and Q in the controller is the large difference 

between the mass and the stiffness matrices in the sandwich 

panel. Eigenvalues of mass matrix are about 10-3 when 

eigenvalue of stiffness matrix are about 1012. 

Since the system matrix has its own eigenvalues on the 

left side of the imaginary axis, it can be said that it has inner 

stability. For better understanding, Figs. 7-9 present the 

effect of uncertainties on the performance of the system in 

the force position (tolerance = 6 mm), the lumped mass 

position (tolerance = 3 mm)and lumped mass weight 

(tolerance = 3 gr). Differences are shown in larger scales, 

 

Fig. 5 Comparison of the sandwich panel and aluminum plate in test case 2 
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i.e., between 3000 to 4000 Hz. 

Variations in core-to-facesheet thickness ratio are very 

important in the robustness of a sandwich panel. The 

increase in the ratio of the core thickness to that of the 

nanocomposite facesheet would decrease the robustness of 

the sandwich panel (Fig. 10). These variations are shown 

numerically in Table 4. 

Another important factor in the optimization of the 

control parameters of the system is positioning the 

piezoelectric patches. Robustness to changing the position 

between the sensor and the actuator on the top facesheet can 

be seen in Fig. 11. Differences have been shown in larger 

scales, i.e., between 3000 to 4000 Hz. 

 

 

 

 

 

 

7. Conclusions 
 

In the present study, with the application of the dynamic 

equations of a sandwich panel based on Lagrange equations 

and presentation of a very precise model of piezoelectric 

patches properties and performance, a linear, simple and 

efficient equation was obtained. By the use of the first 36 

mode shape a vector, an accurate model of dynamic system 

was obtained that can be evaluated with the finite element 

method. Performance analysis of a sandwich panel with the 

honeycomb core and carbon nanotube reinforced composite 

facesheets revealed its inner stability against uncertainties. 

Due to the presence of system eigenvalues on the left side 

  

(a) (b) 

Fig. 7 (a) Stability to uncertainty in the force position; (b) Stability to uncertainty in the force position 

(First and Second Natural Frequency) 

  

(a) (b) 

Fig. 8 (a) Stability to uncertainty in the lumped mass position; (b) Stability to uncertainty in the lumped 

mass position (First and Second Natural Frequency) 

681



 

Amir Amini, M. Mohammadimehr and A.R. Faraji 

 

 

 

 

Fig. 10 Reduction of robustness with the increase in core-

to-facesheet thickness ratio 

 

 

 

of the imaginary axis, using a model-based the second order 

linear regression controller was the best option. As proved 

in the study, the utilization of the sandwich panel in the 

structure and skeleton of the satellites caused the decrease 

 

 

 

 

 

 

in weight and no change in its robustness. As a matter of 

fact, given the effects of different parameters such as weight 

and the position of the lumped mass, core to facesheet 

thickness ratio, and the position of the piezoelectric patches, 

robustness properties in the sandwich panel were revealed. 

Last but not least, Solar radiation and aerodynamic forces 

are about 10−4 N.m. This number is far smaller compared 

to the disturbance force in this article, which is about 1 

N.m. Thus, with the help of LQR controller, vibration 

suppression can occur in the sandwich panel. 
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