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1. Introduction 

 

Concrete box girders and steel-concrete composite 

girders are widely used in expressway bridges, urban 

overpasses, and viaducts, and the shear-lag effects are non-

negligible mechanical behaviors for these structures. 

Particularly, for girders with thin-walled and wide flanged 

sections, the shear lag effects are significant. The shear-lag 

effects are important issues in structural analysis and design 

because of their considerable influence on the structural 

stiffness and bearing capacity (Luo et al. 2019). An 

effective flange width is usually adopted to account for the 

effects during the initial structural design. However, the 

simplified effective flange width recommended by design 

codes are quite different from each other and sometimes 

may result in a significant error (Dezi et al. 2003). 

Therefore, an effective analytical model is needed to 

determine the structural stiffness and stress. 

Elastic analysis models with the shear-lag effects have 

been a popular research topic for decades. Many analytical 

methods and models have been studied and proposed, such 

as the space grid analysis method (Ma et al. 2017), energy 

variational method (Chen et al. 2014, Lin et al. 2015, 
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Reissner 1946, Zhou et al. 2018), and some numerical 

methods based on the FE model (Gara et al. 2009, Lacki et 

al. 2019, Zhang and Lin 2014, Zhou 2010). Reissner (1946) 

first proposed the shear-lag effect analysis method based on 

the minimum potential energy principle and variational 

method. Then, some researchers applied this method to 

concrete box girders (Lin et al. 2015, Zhou et al. 2018) and 

steel-concrete composite girders (Dezi et al. 2003, Zhu and 

Su 2017). Analytical formulas were proposed to address the 

different structural types with shear-lag effects. However, 

engineering structures are complex, and complicated 

analytical formulas are challenging to use in practice. 

Numerical models based on the FE method are an effective 

solution, and these models include the shell and solid FE 

models (Boules et al. 2018, Lacki et al. 2019). However, 

the complicated modeling process and enormous structural 

stiffness equations reduce the analysis efficiency for large-

scale structures. In recent years, some researchers have 

proposed a beam element model with the shear-lag effects 

to improve analysis efficiency. There were two different 

ways to construct the shear-lag warping displacement field 

in the beam element. The first was to employ the 

homogeneous analytical solution based on the shear-lag 

differential equation as a shape function (Zhang and Lin 

2014, Zhou 2010). The second used the Hermite polynomial 

interpolation method by piecewise approximation (Vojnić-

Purčar et al. 2019), and Gara et al. (2009) verified the 

effectiveness and accuracy of this method. 

Nevertheless, the cracking and crushing of concrete, as 

well as the plasticity of reinforcement materially non-linear 

behaviors, are inevitable under capacity limit states. 
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Moreover, the shear-lag effect is constantly changing under 

elastoplastic loading states and a full range analysis model 

is needed. The aforementioned models are not applicable to 

these cases. Usually, the refined shell/brick element models 

are employed to accomplish the elastoplastic analysis, but 

these models come with high computational costs. Recently, 

some researchers tried to study the high-efficiency analysis 

model for structural elastic-plastic behavior that takes into 

consideration the shear-lag effects. Tao and Nie (2014) did 

excellent work for proposing the conventional fiber beam 

element with modified material constitutive laws to 

consider the slab spatial effect in steel-concrete composite 

frames. 

In this paper, we develop a new fiber beam element 

model with consideration of the shear-lag effect and 

materially non-linear property without the modification of 

the material parameters. Consideration of economical 

computational cost, two DOFs are introduced into the 

proposed model to approximately describe the shear lag 

warping deformation. Based on the displacement-based 

fiber beam element, a novel 10-DOF element model 

considering the shear lag warping effects and materially 

non-linear behavior is developed. The numerical 

verifications show that our proposed model provides an 

accurate and efficient solution method with the DOFs‟ 

economy. 

The framework of this paper is as follows. Section 2 

presents the FE formulations of the proposed elements in 

detail. The definitions of the related parameters are 

introduced, and then the basic stiffness equations of the new 

elements are deduced based on the minimum potential 

energy variational principle. A new element developed on 

the OpenSees computational framework based on the 

presented formulations is included in this section. Section 3 

shows the validation of the proposed model for both 

concrete box girders and steel-concrete composite girders, 

under either the elastic or plastic loading states. Detailed 

comparisons are shown, including the results from the 

literature, tests, and the shell/solid refined FE model. 

Section 4 presents our concluding remarks about the 

applicability and effectiveness of the proposed model. 
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2. FE formulations 
 

2.1 Numerical simulation procedure 
 

The model is built with assumptions and corresponding 

explanations are listed as follows: 
 

(1) The mechanical behavior of girder is dominated by 

flexure, and the vertical shear deformation and 

shear failure are not considered. 

(2) For composite girders, steel beams and RC slab are 

assumed to work compatibly through full shear 

connection and the slip effect is neglected. 
 

Fig. 1 shows the geometry and notations of the proposed 

fiber beam element with the shear-lag effects. The x-axis of 

the element local coordinate system is established along 

with the longitudinal (i-j) direction. The y-axis and z-axis 

are built along with the height and transverse direction of 

the cross-section, respectively. The warping intensities f, g 

and the distribution shape functions (z), (z) account for 

the kinematic behavior of the shear lag of the reinforced 

concrete (RC) slabs. The element length is defined as L, and 

two nodes, named i and j, are located at opposite ends. Each 

node has five DOFs: axial displacement u, vertical 

displacement v, section angle , warping intensity f for the 

 

Fig. 1 Fiber beam element with the shear-lag effect 

658



 

A fiber beam element model for elastic-plastic analysis of girders with shear lag effects 

upper slab and warping intensity g for the lower slab. The 

cross-section of the element is described by a series of 

discrete fibers. Figs 1(a) and (b) show diagrammatic 

sketches of the fiber cross-section for a typical concrete box 

girder and the steel-concrete composite girders. The 

geometrical and material parameters of each fiber are 

specified, including the centroid coordinates of the fiber yk, 

zk, area of the fiber Ak, fiber elastic modulus Ek, and fiber 

shear modulus Gk. The values of the warping shape 

functions are calculated using the z coordinates of the 

fibers‟ centroid, and the physical meanings are the warping 

displacements with the unit warping intensity. 

Following the suggestions presented in an earlier study 

(Gara et al. 2009) and we utilize quadratic polynomials to 

express the shape functions (z) and (z), as shown in Eqs. 

(1) and (2), in which b1 and b2 are the geometrical 

parameters of the flange (Fig. 1). u and b represent the 

regions where the warping of the upper and lower slabs will 

occur, respectively. If the centroid coordinates of fiber k (yk, 

zk) are not in the region u or b, this fiber would not 

appear to warp and the corresponding warping shape 

function values should be 0, i.e., (zk) = 0 or (zk) = 0. For 

cases where only 1 warping DOF exists in the element, as 

shown in Fig. 1(b), the shape function value of the other 

warping DOF should be 0. 

 

2.2 Stiffness equations 
 

According to the definition, the nodal displacements 𝛿𝑒  

of this element can be expressed as a 10×1 vector, as shown 

in Eq. (3), in which the subscripts i and j represent the nodal 

numbers. The basic deformation vector 𝛿𝑏
𝑒  without rigid 

body displacement is defined as Eq. (4). Then, the 

transformation relation between 𝛿𝑏
𝑒  and 𝛿𝑒  is defined as 

Eq. (5). The deformation field inside the element can be 

interpolated by the basic displacement vector 𝛿𝑏
𝑒  with the 

Hermite polynomial interpolation method. For a two-node 

element, the angular deformation (x) can be interpolated 

by a quadratic polynomial, and the axial deformation du(x) 

and the warping intensities f(x) and g(x) can be interpolated 

by linear interpolation. The deformation field vector inside 

the element can be expressed as Eq. (6), in which  = x/L, x 

represents the local coordinates in the element, and 0 ≤  ≤ 

1. 

As shown in Fig. 2, the longitudinal deformation at any 

location in the element can be obtained by the superposition 

 

 

 

of four components: the axial deformation, bending 

deformation, and warping deformation of the upper and 

lower slabs, as expressed in Eq. (7). 

Based on the Euler-Bernoulli beam theory, the vertical 

(y-direction) shear deformation is ignored, i.e., γyz = γxy = 0. 

The non-vanishing strain can be expressed as Eq. (8) by a 

geometric equation, in which (x, y, z) is the axial strain 

along the length of the element; γxz(x, y, z) is the shear strain 

of the concrete slab in the xOz plane; and ,z(z) and ,z(z) 

denote the partial derivative of the warping shape functions 

(z) and (z) with respect to the z coordinate, respectively. 

The stress vector in the element is expressed as s(x, y, z) 

= [(x, y, z) (x, y, z)]T, in which (x, y, z) represents the 

normal stress at a specified position and (x, y, z) represents 

the shear stress in the xOz plane. With the specified strain, 

the stress vector s(x, y, z) can be obtained from the material 

constitutive equation. 
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Fig. 2 Components of the longitudinal deformation in the element: (a) axial deformation; (b) angular deformation; 

(c) warping deformation of the upper slab; (d) warping deformation of the lower slab 
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As the displacement 𝛿𝑒  occurs, the potential energy of 

the element can be expressed as 

 

1
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in which FeT is the external load applied to the element, 

which can be obtained by integrating the product of load 

density and displacement shape function along the element 

length, as illustrated by the classical FE theory (Bathe 

2014). The stiffness equation of the element can be deduced 

by the variational of the potential energy. 

The tangent stiffness matrix K
e of the element can be 

deduced as 

 

( ) ( )e T T s

l
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(9) 

 

in which ks denotes the section tangent stiffness matrix. 

In addition, the element resisting force vector is needed 

 

 

 

to determine the convergence, as shown in Eq. (10), in 

which rs denotes the section resisting force vector. 
 

( )e T T s

l
x dx   R P B r

 
(10) 

 

For the fiber beam element, integrations of the section 

resisting force vector and stiffness matrix can be viewed as 

the algebraic sum of various fibers‟ contributions, as shown 

in Eqs. (11) and (12), respectively. In which, n is the total 

number of fibers in the section; Ek and k are the tangent 

modulus and normal stress of the kth fiber, respectively; Gk 

and k are the shear modulus and shear stress, respectively. 

By the definitions of the different fibers, the proposed 

model can be applied to structures with different types of 

cross-sections. The fiber stiffness can be updated with 

respect to the change of the stress states during the 

elastoplastic iterative process. The components in the 

section resisting force vector represent the axial force, 

bending moment, axial forces induced by the warping of the 

two slabs, and shear forces induced by the warping of the 

two slabs. 
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Fig. 3 Uniaxial constitutive relationships for materials 

660



 

A fiber beam element model for elastic-plastic analysis of girders with shear lag effects 

The element stiffness matrix and resisting force vector 

can be calculated by the Gauss-Lobatto integration method, 

with the ones of the sections at the integral points. The 

structural analysis can be conducted after the assembly. The 

size of the structural stiffness matrix is greatly reduced 

because the sectional warping is described by only two 

introduced DOFs, and the computational cost consequently 

decreases. 

The formulation is developed in a two-dimensional 

system, without conceptual difficulty in three dimensions. It 

should be noted that this model is also applicable to 

structures with only one warping DOF, as shown in Fig. 

1(b), which only needs to constrain the redundant warping 

DOF of the element. Similarly, if all the shear-lag warping 

DOFs were constrained, this model degenerates to the 

conventional fiber beam element. 

 

2.3 Constitutive relations 
 

The constitutive equations of four commonly adopted 

materials are considered in this study: the elastic material, 

concrete material, steel material, and reinforcement 

material. 

 

(1) Elastic material 

Elastic material was used to analyze the elastic shear-lag 

effect of structures. For the elastic material, the constitutive 

relations between the normal stress-strain and shear stress-

strain all satisfy Hooke‟s law, as shown in Fig. 3(a). 

 

 

 

(2) Concrete material 

Fig. 3(b) shows the uniaxial stress-strain curve of the 

concrete. The compressive stress-strain relationship is 

assumed in the parabolic-ascending linear-descending form 

proposed by Hognestad et al. (1955), as stated in Eq. (13). 

εc0 is the peak compressive strain; the peak compressive 

stress σc0 equals the cylinder concrete compressive strength 

𝑓𝑐
′ . The concrete softening stiffness is determined by the 

data point (cu, 0). To mitigate the mesh sensitivity 

problems, cu is set as a mesh adjusted strain, specified by 

characteristic length of the respective FE integration point 

and volume specific localized crushing energy (Wendner et 

al. 2015). The initial tangent modulus of concrete Ec = 

2c0/c0. 

The tension stress-strain relationship is shown in Eq. 

(14), and the curve is shown in Fig. 3(b). The peak tensile 

stress t0 = ft, in which ft is the concrete tensile strength; the 

peak tensile strain t0 = ft /Ec. The smeared crack model is 

employed to simulate the tensile softening behavior of 

concrete after cracking. According to the crack band theory, 

the ultimate tensile strain εtu can be determined with the 

concrete fracture energy Gf, which is provided in CEB-FIP 

(2010). The tension softening stiffness Ets can be expressed 

as Ets = t0/(tu-t0). 

Unlike the constitutive relation in the normal direction, 

the shear constitutive model in concrete is complicated due 

to the aggregate interlocking effect, dowel action, and 

contribution of the hoop reinforcements. A non-linear 

elastic relation, as shown in Fig. 3(b) is adopted for 

 

 

 

Fig. 4 Flow chart of the iterative computation process 
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concrete shear constitutive relation for that enough stirrups 

are usually arranged in practice to prevent the shear failure. 

c is the maximum shear stress, as shown in Fig. 3(b), in 

which fc denotes the concrete tensile strength, s and fs 

denote the reinforcement ratio and strength of stirrup 

respectively. The shear modulus Gc was calculated as Gc = 

Ec/2/(1+c), in which c is Poisson‟s ratio of concrete, 

which generally has a value of 0.2. As concrete cracked, Gc 

was multiplied by a shear retention factor  = 0.5 to 

consider diminished shear stiffness. 
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(3) Steel and reinforcement material 

The trilinear model with a yield plateau is adopted for 

the steel material, as shown in Fig. 3(c). Es is the initial 

tangent modulus; the hardening modulus is 0.005Es; h 

denotes the hardening strain generally valued 0.025. The 

elastic-perfectly plastic model is adopted for the 

reinforcement material, as shown in Fig. 3(d). The 

reinforcement fiber shear stiffness does not contribute to the 

ection stiffness in Eq. (12), i.e., the shear modulus of the 

reinforcement material is 0. 
 

2.4 Numerical simulation procedure 
 

For flexibility, extensibility, and portability, we 

developed the proposed model on the computational 

framework of OpenSees software (Gandelli et al. 2019), as 

a new derived Element class. The interpreter codes for the 

corresponding Tcl command were also developed. The full 

Newton iteration method was used to solve the structural 

non-linearity equations. In every iteration step, the stiffness 

and stresses of fibers were updated according to the 

different stress states. The stiffness matrices and resisting 

force vectors of the section level, element level, and 

structure level were updated in turn (Fig. 4). 
 

 

3. Case study 
 

To verify the validity of our theoretical model, the 

proposed model and the newly developed element were 

applied to some representative cases under the elastic or 

plastic loading states and compared with the solutions of 

existing theoretical models, tests, and the shell/brick refined 

FE model. 
 

3.1 Elastic shear-lag analysis 
 

(1) Simply supported box girder 

Luo et al. (2002b) tested the elastic shear-lag effect of 

scaled plexi-glass simply supported box girder. The cross-

section is shown in Fig. 5(a). The span is 800 mm, and the 

concentrated load P = 272.2 N is applied at the mid-span. 

The elastic modulus E = 3000 MPa, and the shear modulus 

G = 1083 MPa. Zhou (2010) presented the theoretical 

solution of the specimen based on the suggested model. 

A model containing 40 proposed elements is established 

according to the dimensions and material parameters of the 

specimen. The plexi-glass is simulated as elastic material 

reasonably due to that the stress level of the specimen is far 

below plastic stress during the tests (Luo et al. 2002b). The 

cross-section is discretized into a series of fibers with an 

approximate size of 5 mm. The analysis results are 

compared with the test data and Zhou‟s method (Zhou 

2010). 

Fig. 5(b) shows the deformation curve of the simply 

supported beam under concentrated loading at the mid-span, 

and the results of the proposed model are consistent with 

those of Zhou (2010), but the elementary beam theory 

overestimates the beam stiffness. Fig. 5(c) shows the 

transverse distribution of the normal stress on the upper and 

lower slabs at the mid-span section, and the shear-lag effect 

is significant. The calculated stresses of the proposed model 

show a high accuracy compared with the results of tests and 

Zhou‟s study. To discuss the sensitivity of the element 

number, we create models by varying the mesh of the 

beam‟s longitudinal axis. The deflection results of the 2, 4, 

6, 8, and 10 element models are shown in Fig. 5(b). The 

comparisons show that the results tend to converge with the 

increasing element number, and good accuracy is obtained 

with more than 10 elements in the case of the mid-span 

point load. 

As defined by Zhou (2010), the shear-lag effect 

coefficient  is introduced as  = 𝜎𝑥/𝜎 𝑥  to quantify the 

influence of the shear-lag effects on stress, in which x is 

the stress of the proposed model with the shear-lag effects 

and 𝜎 𝑥  is the stress based on the elementary beam theory 

following the assumption of a planar cross-section. Figs. 

5(d) and (e) show the longitudinal distribution of  along 

the girder under concentrated load and uniformly 

distributed load respectively. The results show that the 

shear-lag effect coefficient is affected by the loading type. 

The shear lag effect at the end of simply supported beams is 

lower than mid-span section under concentrated load, while 

reverse under uniformly distributed load. The same results 

were obtained by Zhou (2010). 

 

(2) Continuous box girder 

Fig. 6 shows the results of an experimental study on the 

elastic shear-lag effect of a 3-span variable-height 

continuous box girder conducted by Luo et al. (2002a). The 

span arrangement of this girder is 460 mm + 860 mm + 460 

mm, and the height varies in a quadratic parabolic form, 

being 80 mm at the 2 internal supports and 40 mm at the 

middle of the main span. The specimen was made of plexi-

glass, whose Young‟s modulus is E = 2,600 MPa and the 

Poisson‟s ratio v = 0.4. A vertical uniformly-distributed load 

q = 0.5 kN/m was applied to the whole structure. Zhang and 

Lin (2014) proposed a model with an additional deflection 

as the generalized displacement for analysis of this test. 

662



 

A fiber beam element model for elastic-plastic analysis of girders with shear lag effects 

 

 

 

 

The proposed model is also applied to the test. The 

model is discretized into 178 elements, and the geometric 

properties of the cross-section of each element are chosen to 

be the average values of those at the two ends. The mesh 

size of the sectional discrete fibers is 6 mm, and the plexi-

glass is simulated as elastic material for the same reason 

with simply supported box girder case. Fig. 6(c) shows the 

transverse distribution of the normal stress at section I-I, 

and the results reveal that a significant shear-lag effect on 

the upper slab can be observed. The results of the proposed 

model are close to the theoretical results found by Zhang 

and Lin (2014) and the test performed by Luo et al. (2002a) 

on the whole. Due to some test deviation, some variances 

are observed at flange away from the web. Fig. 6(d) shows 

the structural deflection curve, and the comparisons indicate 

 

 

 

 

the applicability of the proposed model for a continuous 

box girder. We concluded that the elementary beam model 

underestimates approximately 30% of the deflection if the 

shear-lag effect is ignored, which proves that it is necessary 

to consider the shear-lag effect in structural analysis. 

 

(3) Steel-concrete composite girder 

A practical two-span steel-composite bridge is employed 

to verify the applicability of the proposed model to a steel-

concrete composite girder (Fig. 7). The cross-section 

parameters are shown in Fig. 7(a). The span arrangement 

and the boundary conditions are shown in Fig. 7(b). There 

were two lanes on the bridge, and the traffic live load 

(uniform load 10.5kN/m and concentrated load 330 kN for 

each lane) specified in Chinese code (JTG D60-2015) are 

 

Fig. 5 Elastic shear-lag effect analysis for the simply supported box girder: (a) cross-section of the box girder (unit: mm); 

(b) structural deflections; (c) transverse distribution of the normal stress on the upper and lower slabs at the mid-

span section; (d) shear-lag coefficient under a concentrated load ; (e) shear-lag coefficient under uniformly 

distributed load 

 

Fig. 6 Elastic shear-lag effect analysis for the continuous box girder (unit: mm): (a) span arrangement and typical cross-

section; (b) cross-sections; (c) transverse distribution of normal stress at section I-I; (d) structural deflection 
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applied to the bridge, as shown in Fig. 7. A fiber beam 

element model with 70 elements is built. The concrete slab 

was discretized as 100 fibers with a layout of 1 row and 100 

columns. 

For verification, a refined analysis model based on the 

beam and shell elements is also created in ABAQUS 6.14 

software (ABAQUS 2014). Fig. 7(c) illustrates the method 

for this refined analytical model, in which the concrete slab 

is simulated by the integral shell element (S4) and the steel 

girder is simulated by the Euler beam element (B32). Both 

the beam and shell element are modeled in the same plane 

with share-node method as shown in Fig. 7(c). The 

eccentricity of the sections is set to consider the offset 

between the center of sections and the location of nodes for 

both two types of element. The element stiffness is 

determined on the axis after eccentricity. The modeling 

approach of this refined model has been verified in several 

studies (Nie et al. 2011, Nie and Tao 2012). 

The normal stresses at the mid-surface of the concrete 

slab are extracted from the results of the refined model and 

the fiber beam model. The contour plot of the normal stress 

shown in Fig. 7(d) shows that the results of the fiber beam 

model are very close to those of the refined model 

throughout the entire slab region. 

The effective width coefficient  = beff/b is always 

adopted to evaluate the shear-lag effects, in which beff and b 

denote the effective and actual slab width respectively. 

Based on the definition of Zhu et al. (2015), the effective 

width coefficient of concrete slab was calculated with the 

 

 

two models and the suggested formula specified in 

Eurocode 4 (2004) was also presented for comparisons, as 

shown in Fig. 7(e). The results show that the proposed 

model has a good agreement with the refined model while 

the Eurocode 4 method shows some deviations. 

Fig. 7(f) reports the effect of slab thickness on the shear-

lag coefficient at mid-span. Another practical bridge with 

the same width and span but 2 more steel girders (section 

dimensions shown in Fig. 7(f)) was also analyzed to make a 

comparison. The shear-lag coefficient increase with the 

decreasing slab thickness and number of steel girders. 

 

3.2 Elastic-plastic shear-lag analysis 
 

(1) RC box girder 

Cao and Fang (2016) carried out an experimental study 

on the cracking process of a two-span RC continuous box 

girder under uniform load. The span arrangement of this 

girder was 4.425 m + 4.425 m. A uniform load q = 116.8 

N/m was loaded on the specimen in a stepwise manner. The 

cross-section is shown in Fig. 8(a). 

The proposed model and traditional fiber beam element 

model based on elementary beam theory were used to 

establish the numerical model for comparison. Fig. 8(b) 

shows the load-deflection curve at the mid-span. The 

elementary beam theory overestimates the initial tangent 

stiffness and cracked stiffness, and the proposed model is in 

good agreement with the experimental results. 

Fig. 8(c) presents the curves of the maximum tensile 

 

Fig. 7 Elastic shear-lag effect analysis for the steel-concrete composite girder:(a) cross-section (unit: mm); (b) load type; 

(c) beam-shell hybrid model; (d) contour plot of the normal stress of the concrete slab; (e) effective width 

coefficient of concrete slab; (f) shear-lag coefficient with varying slab thickness (unit: mm) 
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strain of the lower and upper concrete slabs as the load 

increases. The cracking loads of the two models were 

obtained with the cracking criterion of peak tensile strain. 

The results show that with increasing load, the girder cracks 

start from the upper slab of the mid-support section, which 

causes moment redistribution. Then cracks occur on the 

lower slab at the mid-span section, which causes bi-linear 

load-deflection curves at mid-span. Compared with the 

proposed model, the elementary beam model overestimates 

the cracking load on both sections, which indicates the 

necessity of considering the shear-lag effect during the 

analysis of a box girder with a wide flange. 

 

(2) Steel-concrete composite girders subjected to the 

sagging bending moment 

The mechanical behavior of steel-concrete composite 

girders under elastic-plastic loading states was studied by 

Amadio et al. (2004). Fig. 9 shows the sectional dimensions 

and material of the test girder subjected to the sagging 

bending moment, which is named B-4 in the literature 

(Amadio et al. 2004). The B-4 specimen was a simply 

supported girder with a 3800 mm span, and two vertical 

concentrated loads 1 m apart are applied in symmetric 

positions with respect to the mid-span, as shown in Fig. 10. 

 

 

 

A proposed model containing 76 elements is built to 

analyze the elastic-plastic behavior of the B-4 specimen up 

to collapse. The concrete slab section is divided into 250 

fibers, with five divisions along with the height and 50 

divisions along the width. The steel girder is divided into 20 

fibers along the height direction, and the longitudinal 

reinforcements are inserted as rebar fibers. For verification, 

a fine beam-shell element model, as presented in Section 

3.1, is also built with ABAQUS 6.14 to conduct the non-

linear analysis. In the beam-shell model, the rebar layers are 

inserted into the shell element based on the area 

equivalence principle to evaluate the contribution of 

reinforcement to the compressive behavior of the concrete 

slabs (ABAQUS 2014). The Concrete Damaged Plasticity 

(CDP) material model is adopted in the beam-shell model to 

simulate the non-linear behavior of concrete, and the 

reinforcements and steel beams are simulated by the 

isotropic hardening plastic material model. The uniaxial 

constitutive relationships among concrete, steel beams, and 

steel bars for both models are consistent with those 

presented in Section 2.3. 

Fig. 10 shows the load-deflection curves (mid-span 

deflection) and the deviations of two numerical models. The 

proposed model agrees well with the beam-shell model with 

 

Fig. 8 Elastoplastic analysis of the RC box girder: (a) cross-section (unit: mm); (b) load-deflection curves; (c) cracking 

loads of the upper and lower slabs 

 

Fig. 9 Sectional dimensions and material for the B-4 specimen 
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deviations less than 1.71%, especially in terms of the initial 

stiffness and ultimate bearing capacity of the girder. 

Compared with the experimental results, the analysis results 

are close on the whole with deviations less than 9.23%. The 

deviations are acceptable for the material variance may be 

existed due to initial imperfection. 

Fig. 11 shows the stress contour plot of the upper 

concrete slab under various loading stages. With the 

increasing load, the plastic deformation of the concrete slab 

develops, and the stress distribution in the pure bending 

section of the span gradually becomes uniform, that is, the 

stress lag effect decreases. The stress distribution of the 

proposed model is close to that of the beam-shell model, 

under both the elastic and elastoplastic loading states. 

Due to the compression soften effect after the concrete 

peak compressive strain reached, the adjacent fibers (such 

as from 0 to 1400 mm in Fig. 11) near the crushing region 

would unload. In the Beam-shell model, the unloading 

process occurred locally and gradually. While in the 

proposed model, the process is coinstantaneous and slower 

 

 

 

 
than the refined model for that only one DOF is employed 

to describe the warping deformation for high efficient 

analysis. As shown in Figs. 11(c) and (d), the unloading 

phenomena can be observed in both models. Even though 

some deviations exist in shear span for two models, well 

agreement can be observed in pure bending sections which 

need specifically concerned. The proposed model is 

applicable for analyzing the stress distribution of concrete 

slabs up to the compression failure. 

 

(3) Steel-concrete composite girders subjected to the 

hogging bending moment 

Fig. 12 shows another specimen, named B-1 in the 

literature (Amadio et al. 2004). It is a simply supported 

composite girder subjected to a hogging bending moment. 

The span is 3800 mm, and a vertical upward load is applied 

at the mid-span. Figs. 12(a) and (b) show the structural 

dimensions and material parameters. 

The fiber beam model was built with the method used in 

the example for B-4 presented above, while the shell-solid 

 

 
 

 

 

Fig. 10 Load-deflection curves for the B-4 girder 

 

Fig. 11 Stress contour plot of the upper concrete slab under various loading stages 
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Fig. 12 Dimensions and analysis model for the B-1 specimen 

 

Fig. 13 Load-deflection curves at the mid-span of the B-1 specimen 

 

Fig. 14 Cracking regions of the concrete slab under various loading stages 
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model was set up with ABAQUS 6.14 to conduct the refined 

analysis for the comparisons. In the refined model, an 8-

node reduced integral solid element (C3D8R) was used to 

simulate the concrete slab, a 4-node fully integrated shell 

element (S4) was used to simulate the steel girder, and a 2-

node linear bar element (T3D2) was used to simulate the 

steel bar. The steel bar was coupled with the adjacent nodes 

of the concrete elements using the *embedded method 

provided in ABAQUS 6.14, and the *tie method in ABAQUS 

6.14 was used to model the rigid connection between the 

concrete slab and steel girder (ABAQUS 2014). The slip 

effect was ignored in the models. 

Fig. 13 reports the load-deflection curves (mid-span 

deflection) and deviations of two numerical models. Well 

agreement is observed between the proposed model and the 

refined model with max deviations of 5.35%. Some 

deviations (within 12.6%) between the proposed model and 

tests exist and the reason is that local buckling behavior of 

steel beam occurred in the experiment while it is not 

considered in this study. 

The fibers‟ tensile strain of the upper concrete slab was 

extracted from the shell-solid model and the proposed 

model. Taken the peak tensile strain as the cracking 

criterion, the cracking regions under various load levels for 

the two models are plotted, as shown in Fig. 14. Because of 

the shear-lag effect, the concrete slab cracks at the center of 

the mid-span section firstly; then, the cracking regions 

develop throughout the entire slab width with the increasing 

load. The comparisons between the two models show that 

the proposed model is relatively accurate for predicting both 

the cracking load and the evolution of the cracking regions. 

Fig. 15 shows the stress distribution of the 1012 steel 

bars in the concrete slabs under various loading levels. It 

shows that the results of the two analysis models are almost 

identical at the initial cracking stage (as shown in Fig. 15 

(a)-(b)) and the stress distribution shows a „„bell-like‟‟ 

shape. With the development of the plastic deformations (as 

shown in Fig. 15(c)), the stresses show a slight difference 

but have the same increasing trend. The reason can be 

explained as that less degree of freedom is employed to 

consider the warping deformation leading to the slower 

 

 

plastic development compared with the refined model. 

While with the plastic further development, the results show 

good agreement again under the load close to collapse (Fig. 

15(d)). 

 

 

4. Conclusions 
 

A 10-DOF fiber beam element model considering the 

shear-lag effect and material non-linear behaviors is 

proposed for the elastic-plastic analysis of wide flange 

girders. The FE formulations and the computational 

procedure are presented. Several case studies under elastic 

and plastic loading states are analyzed. The effectiveness is 

verified by comparison with existing theoretical models, 

test results, and shell/solid element models. The main 

conclusions of our work are as follows: 

 

 The case analysis results reveal that the shear-lag 

effect has a significant effect on the structural 

stiffness and stress distributions; the shear-lag effect 

cannot be neglected, particularly for wide flanged 

structures. 

 Discrete fibers are employed in the proposed model 

to define the cross-section, which makes it 

applicable for structures with different types of 

cross-sections, such as concrete box girders and 

steel-concrete composite girders. 

 The typical material non-linear behaviors are 

considered in the proposed model, like concrete 

cracking, crushing, and plastic deformation of steel 

bars and steel beams. A good agreement with the 

shell/solid refined element model is observed under 

the elastic and plastic hardening stage. Despite of 

some deviations under the plastic softening stage, 

the proposed model provides a high-efficient way to 

analyze the elastoplastic behavior of girders with 

shear lag effect. Especially for the calculation of 

initial stiffness and ultimate bearing capacity, this 

paper provides a unified analytical model. 

 The proposed model and the developed OpenSees 

 

Fig. 15 Stress distribution of the reinforcements in the concrete slab under various loading levels 
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program simplified the modeling process and 

improved analysis efficiency. The proposed model 

ran for less than 1 or 2 s for the elastic shear-lag 

analysis and less than 1 min for the elastoplastic 

analysis with an Intel Core i7 CPU @ 2.50 GHz 

processor. For the shell/solid FE model in ABAQUS 

6.14, the time costs were typically 1-2 min and 1-2 

h, respectively. 
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