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1. Introduction 

 

Insertion of one thicker and softer core between the 

stacking sequence of laminated composites provides 

sandwich structures with usually better stiffness, energy 

absorption, thermal behavior and vibration damping in 

comparison with regular laminated composites (Birmana 

and Kardomateas 2018). All these advantages offer 

sandwich structures with extreme applications in civil, 

military and aerospace fields. Furthermore, such sandwich 

structures usually have high strength-to-weight ratio which 

is their main advantage. Therefore, in order to increase 

strength-to-weight ratio, the reduction of structural weight 

could be an important goal in the design of such sandwich 

structures. In this regard, employing lightweight porous or 

FGP core instead of perfect core could be an applicable 

solution because the main contributions of core layer in the 

mentioned sandwich structures are resisting shear loads and 

establishing sufficient distance between outer layers (Aram 

and Mehdipour-Ataei 2016, Shahsavari et al. 2018, Shokri-

Oojghaz et al. 2019). The concept of FG distribution of 

fillers or porosities was came from functionally graded 

materials (FGMs) (Tornabene et al. 2009, 2011, 2015, 

Tornabene and Reddy 2013). The use of this concept in the 

distributions of fillers or porosities was resulted in a 

significant improvement in the mechanical behavior the 

resulted FG engineering structures (Frikha et al. 2018, 

Moradi-Dastjerdi and Pourasghar 2016, Pourasghar et al. 

2018, Pourasghar and Chen 016, 2019a, b, c). 
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Buckling analysis of engineering structures has been 

frequently considered by researchers. The free vibration and 

buckling behaviors of beams (Malekzadeh and Karami 

2008) and plates (Dehghan and Baradaran 2011) resting on 

elastic foundations have been investigated using an FEM in 

combination with differential quadrature (DQ) method. 

Zhao et al. (2009) presented thermal buckling analysis for 

plates made of functionally graded materials using an FSDT 

based element-free method. Topal (2012) developed a nine-

node FEM based on FSDT to optimize the critical buckling 

temperature of laminated composite plates. Thermal and 

mechanical buckling analyses of laminated composite plates 

have been presented using meshless method based on 

higher order shear deformation theory (HSDT) of plates 

(Singh et al. 2013). The buckling behavior of circular plates 

made of laminated composites resting on one-parameter 

elastic foundations has been studied using Ritz method in 

(Afsharmanesh et al. 2014). Zhang et al. (2015) presented 

buckling analysis of skew nanocomposite plates reinforced 

with FG distribution of carbon nanotubes (CNTs) using 

FSDT and meshless method. The effect of CNT parameters 

on the dynamic stability of nanocomposite columns using 

DQ method was reported in (Pourasghar and Kamarian 

2015). The buckling analysis of laminated composite plates 

including some holes has been conducted using an 

isogeometric FEM and refined shear deformation theory 

(RSDT) by (Yu et al. 2016). Fattahi and Safaei (2017) 

considered CNT-reinforced nanocomposite beams with 

arbitrary boundary conditions and investigated their 

buckling behaviors using various beam’s theories. Moradi-

Dastjerdi and Malek-Mohammadi (2017a) studied the free 

vibration and buckling behavior of FG nanocomposite 

plates reinforced with CNT agglomerations using an RSDT 

based analytical method. The effect of CNT agglomerations 
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was also investigated on the natural frequency of FG 

nanocomposite shells in (Tornabene et al. 2016). The 

buckling response of plates and panels made of CNTs 

reinforced nanocomposite was investigated using FE shell 
method in (Zghal et al. 2018). Trabelsi et al. (2019) 

presented thermal buckling analysis of CNT reinforced 

nanocomposite plates and shells using FE shell method and 

a modified FSDT. The buckling analysis of composite 

laminated plates has been conducted using a FSDT and 

HSDT based a meshless method in Zarei and Khosravifard 

(2019). For hexagonal plates, Ghanati and Safaei (2019) 

employed an energy method based on classical plate theory 

to conduct their buckling behavior. 

Moreover, the buckling analysis of different sandwich 

structures have been reported. Pandit et al. (2008) 

suggested a sandwich plates with two laminated composite 

face sheets and a soft core and conducted their buckling 

behaviors using an isotropic FEM. Ćetković and 

Vuksanović (2009) considered the same sandwich plates but 

with honeycomb or isotropic cores and presented their 

mechanical behaviors using FEM based on layerwise 

displacement model. Nguyen et al. (2015) proposed a 

sandwich plate with a homogeneous core and two FGM 

face sheets and presented their mechanical behaviors using 

Navier and FE methods and a four-unknown RSDT. 

Considering circular sandwich plates with a tapered core 

and FG nanocomposite face sheets reinforced with CNT, 

Jalali and Heshmati (2016) reported buckling behavior 

using shooting method. Shokravi (2017) proposed 

sandwich plates including one orthotropic elastic core and 

FG nanocomposite layers subjected to magnetic fields and 

presented their buckling behaviors using Navier’s method 

and HSDT. Adopting the same method, Moradi-Dastjerdi 

and Malek-Mohammadi (2017b) presented biaxial buckling 

behaviors of sandwich plates with laminated composites 

core and FG nanocomposite face sheets reinforced with 

CNT agglomerations. The improvement of buckling 

behavior laminated sandwich panels due to the use of shape 

memory alloy fibers has been studied by (Katariya et al. 

2017). 

In order to reduce the structural weight or control the 

performance of structures, porosities can be created inside 

some engineering structures (Safaei et al. 2019a, Tang et al. 

2018). The buckling behavior of different porous structures 

 

 

has been reported. Jabbari et al. (2013) analytically 

presented the nonlinear buckling behavior of FGP circular 

plates integrated with piezoelectric layers. Also, nonlinear 

thermal buckling, and mechanical buckling and 

postbuckling behaviors of saturated FGP circular plates 

have been presented in (Feyzi and Khorshidvand 2017, 

Jabbari et al. 2014, Mojahedin et al. 2016). Karami et al. 

(2018) presented the effect of evenly dispersed pores on the 

critical buckling temperature of porous FG nanobeams 

integrated with piezoelectric layers using HSDT beam 

theory and Hamilton’s principle. Shafiei and Kazemi (2017) 

proposed a porous tapered Euler-Bernoulli micro and nano-

beams made of 2D-FGMs and evaluated their buckling 

behavior using generalized DQ method. Guessas et al. 

(2018) suggested porous plates made of FG CNT-reinforced 

nanocomposites and presented their buckling behavior 

using an FSDT based analytical approach. 

The successful application of FGM concept and foams 

in different industries, and the significance of designing 

lightweight structures have been motivated this paper to 

propose sandwich plates consisting of FGP cores and 

laminated composite face sheets. Particularly, this paper 

presents the buckling behavior of the proposed PSPs resting 

on elastic foundation subjected to in-plane compression 

loads. Using FEM and FSDT, the effects of porosity 

distribution and volume, the number and angles of 

laminated layers, sandwich plate geometrical dimensions, 

elastic foundation coefficients, loading and boundary 

conditions have been evaluated. 

 

 

2. Modeling of porous sandwich plate 
 

As shown in Fig. 1, the considered sandwich plates 

include one porous core with two laminated composite face 

sheets located on elastic foundations with normal kw and 

shear ks coefficients. The proposed PSPs with length a, 

width b, face sheet thickness hf, core thickness hc and total 

thickness h, are assumed to be under in-plane buckling 

loads Fx and Fy. It is worth noting that Fy = 0 and Fx = Fy 

represent uniaxial and biaxial buckling problems, 

respectively. 

Moreover, three different patterns are considered for the 

distributions of porosities including uniform distributed 

  

Fig. 1 The schematic of [θ1, θ2, θ3] sandwich plates with a porous core and two laminated composite face sheets 
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Fig. 2 The ratio of E / Epc along the thickness of FGP core 

 

 

 

porosity (UDP) and two types of FG distributions called 

FGP-I and FGP-II. In core, the Young’s modulus ratio of 

porous to perfect materials (E/Epc) can be evaluated as 

(Mojahedin et al. 2016) 
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where E, Epc and e0 are Young’s modulus of porous core, 

Young’s modulus of perfect (without porosity) core and 

porosity coefficient, respectively. The same equations have 

been also utilized for the shear modulus ratio of porous 

cores (G/Gpc). Fig. 2 illustrates the variation of E/Epc along 

the thickness of FGP cores. 

 

 

3. Governing equations of porous sandwich plate 
 

3.1 Basic equations 
 

In plates subjected to in-plane buckling loads, total 

energy function Π includes potential energy caused by  

in-plane forces Wg and strain energy Uε and can be 

presented as (Tran et al. 2013) 
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where V is the total volume of sandwich plate and A is a 

part of volume contacted to elastic foundation. εb, γ, σ and τ 

are the vectors of in-plane strain, out of plane strain, in-

plane stress and out of plane stress, respectively. 
In the literature, different plate theories have been 

proposed to transform 3D solutions into 2D ones which 

result in a considerable reduction in computational cost. 

Based on the adopted FSDT in this work which has a good 

accuracy for thin and moderately thick plates, the 

displacement field of the proposed PSPs along x, y and z 

directions (u, v and w) can be defined as (Reddy 2004) 
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where u0, v0 and w0 are mid-plane displacements, and θx and 

θy represent transverse normal rotations around y- and x-

axes, respectively. According to the definition of 

displacement field, in-plane and out of plane strain vectors 

can be expressed as (Reddy 2004) 
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In addition to strain vector, the stress vector and the 

constitutive law of PSP can be divided as follows (Reddy 

2004) 
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where Qij are the components of elastic constant matrix of 

each layer which is location dependent for FGP core and 

fiber orientation dependent for laminated layers. These 

components for the isotropic porous core are defined as 
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where υ is Poisson’s ratio. For each layers of laminated 

composite, Qij are also evaluated as 
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where Cij (i, j = 1, 2,..., 6) are the components of elastic 

constant matrix for a transverse isotropic materials. By 

considering θ as the orientation of fiber in each layers of 

laminated composite and by the definitions of m = cos θ and 

n = sin θ, 𝐶 𝑖𝑗  could also be calculated as (Reddy 2004) 
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3.2 FEM formulation 
 

The displacement of PSP can be estimated using a 

combination of first order theory and FEM. In FEM, 

displacement field U is evaluated at some predefined nodes 

called nodal values as follows (Moradi-Dastjerdi and 

Momeni-Khabisi 2016) 
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where Ni are the values of utilized bilinear rectangular 

shape functions at each node. It should be mentioned that 

the selected four-node element is easy to define and causes 

low computational costs. Introducing Eq. (14) into Eq. (8) 

leads to following definition of strain vectors at predefined 

nodes (Safaei et al. 2019b) 
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Introducing Eqs. (5), (6), (10) and (15) into the total 

energy function (Eq. (4)) results in 
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By setting zero of the derivation of Eq. (17) with respect 

to nodal values of displacement fields U, the buckling 

eigenvalue equation of the proposed porous sandwich plates 

is defined as 
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where Fcr is the critical buckling value of PSPs. Also, K 

is stiffness matrix and KG is geometrical stiffness matrix 

which are given by 
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4. Results and discussions 
 
The following normalized parameters have been utilized 

through the present paper 
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Table 1 Comparison of the first four uniaxial 𝐹 𝑐𝑟  for the 

considered isotropic plate 

Mode Present FEM 

Analytical 

(Timoshenko and 

Gere 1961) 

Numerical 

(Zhao et al. 2009) 

1st 39.5499 39.4761 39.2040 

2nd 62.0989 61.6814 60.396 

3rd 111.7337 109.656 103.963 

4th 159.0604 157.904 151.987 
 

 

 

 

Fig. 3 The convergence of first uniaxial 𝐹 𝑐𝑟  for the 

considered isotropic plate 

 

 

4.1 Validation of models 
 

In order to examine the accuracy and convergence of the 

developed FEM, the obtained uniaxial critical buckling 

loads 𝐹 𝑐𝑟  have been compared with those obtained from 

analytical (Timoshenko and Gere 1961) and numerical 

(Zhao et al. 2009) methods. Table 1 shows this comparison 

for the first four buckling loads of simply supported 

isotropic plates with a = b = 10 in, h = 0.1 in, E = 3×106 psi 

 

 

and ν = 0.316. Very good agreements with analytical results, 

even better than the other numerical method (Zhao et al. 

2009), are observed for all four modes. In addition to the 

accuracy of the developed method, its convergence for the 

first buckling load of the same plates has been examined in 

Fig. 3. It can be seen that the developed method has a very 

good convergence as well such that the use of few numbers 

of elements along each direction leads to very accurate 

buckling loads. Fig. 3 shows that the use of 17 elements in 

each direction results in a very good accuracy. Therefore, 

we utilized 17×17 elements for the following simulations. 

 

4.2 Buckling loads of porous sandwich plates 
 

In the modelling of PSPs, unless otherwise specified, 

simply supported square PSPs including an FGP-I core and 

two laminated composite face sheets with a symmetric 

stacking sequence of [45, -45, 45, -45] with hc/a = 0.01, 

hf/hc = 0.1 and without elastic foundation Kw = Ks = 0 have 

been considered. FGP core and laminated composite face 

sheets are assumed to be made of Epoxy with Epc = 4.5 

GPa, υpc = 0.4 and Graphite/Epoxy (Gr/Ep) with E11 = 

132.38 GPa, E12 = E13 = 10.756 GPa, υ12 = υ13 = 0.24, υ23 = 

0.49, respectively (Dash and Singh 2009). It should also be 

mentioned that the normalized critical buckling loads 𝐹 𝑐𝑟  

of PSPs are calculated based on the material properties of 

perfect Epoxy (core). Moreover, S, C and F have been 

utilized for PSPs’ edge constrains which are simply 

supported, clamped and free, respectively. 

Fig. 4 shows the effect of porosity volume and 

distribution types on the uniaxial and biaxial critical 

buckling load parameters 𝐹 𝑐𝑟  of PSPs. It can be seen that 

the increase of porosity parameter e0 results in a similar 

reduction in uniaxial and biaxial buckling loads of PSPs. 

The maximum reduction in buckling loads is observed for 

the considered PSPs with UDP cores which is less than 9%. 

The substitution of UDP core with FGP cores results in a 

better buckling behavior such that critical buckling loads 

show only 5% reduction. Therefore, it can be seen that the 

use of FGP core can offer a PSP with half weight core and 

only 5% reduction in critical buckling loads. 

 

 

  

Fig. 4 (a) Uniaxial; (b) biaxial 𝐹 𝑐𝑟  as a function of porosity parameter for SSSS square PSPs with different porous 

cores and with hc/a = 0.01, hf/hc = 0.1, Kw = Ks = 0 and [45, -45, 45, -45] 
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Table 2 Biaxial 𝐹 𝑐𝑟  for SSSS square PSPs with different 

cores and stacking sequence of laminated 

composites with hc/a = 0.01, hf/hc = 0.1 and 

Kw = Ks = 0 

 
Perfect 

e0 = 0 

UDP 

e0 = 0.6 

FGP-I 

e0 = 0.6 

FGP-II 

e0 = 0.6 

[0, 90] 135.25 125.72 130.00 127.08 

[45, -45] 212.28 202.61 206.90 204.10 

[30, -30] 192.98 183.33 187.62 184.75 

[0, 45, 90] 154.03 144.03 148.52 145.48 

[45, 0, -45] 186.59 176.96 181.24 178.40 

[30, 0, -30] 173.68 164.06 168.34 165.42 

[0, 30, 60, 90] 152.42 142.09 146.73 143.57 

[45, -45, 45, -45] 212.61 202.96 207.23 204.44 

[0, 90, 0, 90] 135.25 125.72 130.00 127.09 

[0, 30, 45, 60, 90] 155.39 144.62 149.47 146.14 

[90, 60, 45, 30, 0] 155.39 144.62 149.47 146.14 

[45, -45, 45, -45, 45] 210.56 200.81 205.13 202.30 

[30, -30, 30, -30, 30] 191.63 181.91 186.23 183.34 
 

 

 

The effects of fibre orientation and the number of plies 

on the biaxial 𝐹 𝑐𝑟  of PSP are presented in Table 2 for 

perfect and porous cores. Maximum and minimum buckling 

parameters are observed for laminated composites with 

fibre orientations of ±45 and 0/90 degrees, respectively. It 

can be seen that fibre orientation can sharply improve 

buckling load parameters from 117.86 to 180.74, although 

the number of plies does not have a significant effect. In all 

cases, the critical buckling loads of PSPs with FGP cores 

are much higher than those with UDP core. 

The effect of PSPs’ edge constrains on the first four 

uniaxial and biaxial buckling loads 𝐹 𝑐𝑟  of PSPs with 

perfect and FGP-I cores are presented in Table 3. As 

expected, PSPs with more constrains have higher values of 

𝐹 𝑐𝑟 . Also, the use of FGP-I core, which is very lighter than 

perfect core, results in only about 7% reduction in almost 

all cases of PSPs. Fig. 5 illustrates the effects of edges 

constrains and buckling loading conditions of PSPs on the 

first four mode shapes of buckling responses. It is observed 

that these two parameters can totally change the buckling 

mode shapes of PSPs. 

 

    
(a) 

    
(b) 

    
(c) 

    
(d) 

    
(e) 

Fig. 5 First four mode shapes of square [45, -45, 45, -45] PSPs with (a) SSSS, uniaxial (b) SSSS, biaxial (c) CSCS, 

uniaxial (d) CFCF, uniaxial (e) SFSF, uniaxial 
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Table 3 Uniaxial and biaxial 𝐹 𝑐𝑟  of square PSPs with 

different boundary conditions and with hc/a = 0.01, 

hf/hc = 0.1, Kw = Ks = 0 and [45, -45, 45, -45] 

  Uniaxial Biaxial 

B.C. Mode 
Perfect 

e0 = 0 

FGP-I 

e0 = 0.6 

Perfect 

e0 = 0 

FGP-I 

e0 = 0.6 

CSCS 

1st 695.18 672.66 346.066 335.38 

2nd 767.85 743.63 541.94 524.65 

3rd 990.85 954.29 725.85 700.27 

4th 1494.71 1433.15 885.48 853.05 

FCFC 

1st 250.79 240.74 225.13 216.93 

2nd 480.72 466.84 229.98 223.42 

3rd 533.66 511.64 329.01 318.41 

4th 753.37 727.03 505.16 484.81 

SSSS 

1st 425.21 414.47 212.61 207.23 

2nd 579.33 561.81 459.24 445.22 

3rd 925.78 892.64 469.60 455.53 

4th 1451.82 1393.13 828.14 799.56 

FSFS 

1st 54.44 52.31 52.21 50.21 

2nd 243.56 233.85 127.57 125.19 

3rd 293.39 287.79 235.68 226.40 

4th 473.99 460.33 246.94 240.74 
 

 

 

Fig. 6 shows the effects of geometrical dimensions on 

the uniaxial and biaxial 𝐹 𝑐𝑟  of PSPs with perfect cores. As 

shown in Fig. 6(a), both uniaxial and biaxial 𝐹 𝑐𝑟  are 

significantly increased by the increase of face sheet 

thicknesses. The reason is the elasticity moduli of Gr/Ep 

(outer layers material) are much higher than that of Epoxy 

(core material). Moreover, the increase of hf increases the 

moment of inertia and the resultant moment along PSP’s 

thickness. Furthermore, Fig. 6(b) shows that the increase of 

b/a dramatically decreases both uniaxial and biaxial 𝐹 𝑐𝑟  of 

PSPs. Because by the increase of this ratio, the plate is 
 

 

transformed into a beam and it is already well established 

that beams have much less stiffness than plates. 

Finally, the effects of shear and normal coefficients of 

elastic foundation on the uniaxial and biaxial buckling 

parameters of PSPs with perfect core are plotted in Fig. 7. It 

can be seen that for the considered ranges of Kw and Ks, the 

increase of each coefficient linearly improves the 𝐹 𝑐𝑟  of 

the considered PSPs. However, the effect of shear 

coefficient is much stronger than that of normal one. 
 

 

5. Conclusions 
 

This paper presented the buckling behavior of 

lightweight porous sandwich plates with FGP cores and 

laminated composite face sheets. The proposed PSPs were 

assumed to be under in-plane compression loads and rested 

on elastic foundations. According to the adopted FSDT and 

using FEM, governing equations were discretized, and the 

following results were obtained from the simulations of the 

proposed PSPs: 
 

 Increase of porosity parameter decreases critical 

buckling loads. 

 The use of FGP cores shows better buckling 

responses than UDP ones. 

 The highest values of buckling loads are observed 

when stacking sequences only include fibers with 

±45 orientations. 

 The number of plies does not have a significant 

effect on buckling behavior 
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