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1. Introduction 

 

Nano-composites, as a new type advance material, have 

become as one of the hottest research topics in recent years. 

Nano-composites have the potential to be used in civil 

industry, but also for military, such as in aerospace industry. 

Such as for carbon nanotube reinforced composites, many 

investigations have been carried out. Liew et al. (2015) 

presented comprehensive review of mechanical analysis, 

such static, dynamic, linear and nonlinear and so on, of 

functionally graded carbon nanotube reinforced composites. 

Bahrami et al. (2018) investigated nonlinear forced 

vibration of FG-CNTs-reinforced curved microbeam based 

on strain gradient theory considering out-of-plane motion. 

Arani et al. (2018) presented buckling and free vibration 

analysis of sandwich micro plate (SMP) integrated with 

piezoelectric layers embedded in orthotropic Pasternak. Lei 

and Zhang (2018) examined the effect of matrix cracks on 

the buckling of a hybrid laminated plate which is composed 

of carbon nanotube reinforced functionally graded (CNTR-

FG) layers and conventional fiber reinforced composite 

(FRC) layers. Tahouneh (2018) studied the influence of 

carbon nanotubes (CNTs) waviness and aspect ratio on the 

vibrational behavior of functionally graded nanocomposite 

sandwich annular sector plates resting on two-parameter 

elastic foundations. Asadi and Beheshti (2018) investigated 

the nonlinear dynamic responses of FG-CNTRC beams 

exposed to axial supersonic airflow based on third-order 

piston theory. Vertuccio et al. (2017) designed and 
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characterized new electrically conductive adhesives based 

 

on Multi Wall Carbon Nanotubes (MWCNTs) and 

functionalized liquid rubber. The results showed that the 

inclusion of MWCNTs in the toughened adhesive can be 

advantageously employed for further enhancing adhesive 

properties simultaneously imparting electrical conductivity, 

which results of 11 orders of magnitude higher than the 

unfilled formulation. Mehri et al. (2016a) reported the 

bifurcation and vibration responses of a composite 

truncated conical shell with embedded SWCNTs. Gul and 

Aydogdu (2018) investigated free vibration and buckling of 

double-walled carbon nanotubes embedded in an elastic 

medium with simply supported boundary conditions using 

Doublet Mechanics. Jensen et al. (2018) investigated the 

effects of carbon nanotube continuity and interfacial 

bonding on composite strength and stiffness. Fantuzzi et al. 

(2017) conducted free vibration analysis of arbitrarily 

shaped Functionally Graded Carbon Nanotube-reinforced 

plates. Ansari et al. (2017) presented the buckling and 

vibration analysis of thermally pre-stressed functionally 

graded carbon-nanotube-reinforced composite annular 

sector plates resting on the elastic foundation via the 

variational differential quadrature method. Shen et al. 

(2017) investigated the small- and large-amplitude 

vibrations of thermally postbuckled carbon nanotube-

reinforced composite beams resting on elastic foundations. 

Liew et al. (2014) examined the postbuckling behaviors of 

carbon nanotube-reinforced functionally graded cylindrical 

panels under axial compression using a meshless approach. 

Song et al. (2016a, b) analytically investigated the dynamic 

responses of CNT composite plates subjected to impact 

loading and the active vibration control of carbon nanotube 

reinforced functionally graded plates using piezoelectric 

actuator and sensor pairs bonded on the top and bottom 

 
 
 

Semi-analytical solutions of free and force vibration behaviors 
of GRC-FG cylindrical shells 

 

Zuxiang Lei

 and Lihong Tong 

 
Institute of Geotechnical Engineering, School of Civil Engineering and Architecture, 

East China Jiaotong University, Nanchang, 330013, Jiangxi, P.R. China 
 
 

(Received April 29, 2019, Revised July 30, 2019, Accepted August 3, 2019) 

 
Abstract.  In this paper, free and force vibration behaviors of graphene-reinforced composite functionally graded (GRC-FG) 

cylindrical shells in thermal environments are investigated based on Reddy’s third-order shear deformation theory (HSDT). The 

GRC-FG cylindrical shells are composed of piece-wise pattern graphene-reinforced layers which have different volume fraction. 

Based on the extended Halpin-Tsai micromechanical model, the effective material properties of the resulting nanocomposites are 

evaluated. Using the Hamilton’s principle and the assumed mode method, the motion equation of the GRC-FG cylindrical shells 

is formulated. Using the time- and frequency-domain methods, free and force vibration properties of the GRC-FG cylindrical 

shell are analyzed. Numerical cases are provided to study the effects of distribution of graphene, shell radius-to-thickness ratio 

and temperature changes on the free and force vibration responses of GRC-FG cylindrical shells. 
 

Keywords:  vibration; graphene; HSDT; extended Halpin-Tsai model; analytical modeling 

 

687



 

Zuxiang Lei and Lihong Tong 

surfaces of the host plate based on Reddy’s high-order shear 

deformation theory. Mehri et al. (2016b), Asadi (2017), 

Asadi et al. (2017), Asadi and Wang (2017a, b), Keleshteri 

et al. (2017a, b), Mehri et al. (2017), Mohammadzadeh-

Keleshteri et al. (2017), Keleshteri et al. (2018, 2019) 

presented a comprehensive study about the linear, non-

linear, static, dynamic investigations of FG-CNTRC beam, 

plate and shell. Tornabene et al. (2018) presented the 

application of the first-order shear deformation theory 

(FSDT) to thermo-elastic static problems of functionally 

graded carbon nanotubes reinforced composite (FG-

CNTRC) cylindrical pressure vessels. Yang et al. (2018) 

investigated the free vibration of geometrically imperfect 

functionally graded car-bon nanotube-reinforced composite 

(FG-CNTRC) beams. Kumar and Srinivas (2018) presented 

the transient vibration behavior of functionally graded 

carbon nanotube (FG-CNT) reinforced nanocomposite plate 

resting on Pasternak foundation under pulse excitation. 

Recently, graphene reinforced composites (GRCs), as 

advanced composite materials, attract much attention from 

researchers. Rafiee et al. (2009) presented an experimental 

study on buckling of graphene/epoxy nanocomposite beam 

structures. Their results showed that significant increase (up 

to 52%) in critical buckling load was observed with 

addition of only 0.1% weight fraction of graphene platelets 

into the epoxy matrix. An efficient strategy to achieve a 

high alignment of graphene nanosheets (GNSs) in GNS/Cu 

composites through a vacuum filtration method was 

reported Chu et al. (2018). Feng et al. (2017) studied the 

nonlinear bending behavior of a novel class of multi-layer 

polymer nanocomposite beams reinforced with graphene 

platelets (GPLs) that are non-uniformly distributed along 

the thickness direction. Wan et al. (2018) synthesized Nano-

silicon/graphene composites directly from silicon and 

graphite mixture as the raw materials with one-step process 

under atmospheric pressure by thermal plasma approach. 

Using molecular dynamics (MD) methods, Zhan et al. 

(2017) studied the mechanical properties of the 

SiC/graphene composites under tensile. Lei et al. (2018) 

investigated buckling behavior of graphene-reinforced 

composite functionally graded laminated plates. The small 

and large amplitude vibration behaviors of graphene-

reinforced composite laminated cylindrical panels 

supported was studied by Shen et al. (2018). Kiani (2018) 

proposed a nonlinear formulation to study the large 

amplitude free vibration of composite laminated plates 

reinforced by graphene sheets. Hosseini and Zhang (2018) 

examined the transient dynamic analysis and elastic wave 

propagation in a functionally graded graphene platelets 

(FGGPLs)-reinforced composite thick hollow cylinder. 

Closed cylindrical shells are very common and 

important structures in mechanical and civil engineering. In 

the literature, there are many investigations about vibration 

behaviors of closed cylindrical shells. Zhang et al. (2001) 

presented the vibration analysis of cylindrical shells using 

wave propagation method. Zhang et al. (2018) proposed a 

modified Fourier cosine series method for beams and plates 

for free vibration analysis of moderately thick cylindrical 

shell with general boundary conditions. Harbaoui et al. 

(2018) presented a new spectral element based on the 

dynamic stiffness matrix of a prestressed cylindrical shell. 

Shakouri and Kouchakzadeh (2017) proposed a simple 

analytical method for determination of natural frequencies 

of generally laminated conical and cylindrical shells with 

arbitrary boundary conditions. Sofiyev et al. (2017) 

examined the non-linear free vibration behavior of 

functionally graded orthotropic cylindrical shell interacting 

with the two-parameter elastic foundation. Liew et al. 

(2012) presented a postbuckling analysis of functionally 

graded cylindrical shells under axial compression and 

thermal loads using the element-free kp-Ritz method. 

Therefore, in this paper free and force vibration 

behaviors of graphene-reinforced composite functionally 

graded (GRC-FG) cylindrical shells in thermal 

environments are investigated based on Reddy’s third-order 

shear deformation theory (HSDT). The GRC-FG cylindrical 

shells are composed of piece-wise pattern graphene-

reinforced layers which have different volume fraction. 

Based on the extended Halpin-Tsai micromechanical model, 

the effective material properties of the resulting 

nanocomposites are evaluated. The motion equation of the 

GRC-FG cylindrical shells is formulated using the 

Hamilton’s principle and the assumed mode method. Free 

and force vibration properties of the GRC-FG cylindrical 

shell are analyzed based the time- and frequency-domain 

methods. Numerical cases are provided to study the effects 

of distribution of graphene, shell radius-to-thickness ratio 

and temperature changes on the free and force vibration 

responses of GRC-FG cylindrical shells. 

 

 

2. GRC-FG cylindrical shells 
 

As shown in Fig. 1(a), GRC-FG cylindrical shells with 

geometry properties as radius R, thickness h and length L 

are considered in this paper. The GRC-FG cylindrical shells 

are composed of the Piece-wise distribution types of GRCs 

layers. Three types of GRC-FG cylindrical shells, UD, FG-

O and FG-X, are shown in Fig. 1(b). The volume fractions 

of graphene of GRCs layers for UD, FG-O and FG-X GRC-

FG cylindrical shells are given [(0.07)/ (0.07)/ (0.07)/ 

(0.07)/ (0.07)/ (0.07)/ (0.07)/ (0.07)/ (0.07)/ (0.07; [(0.03)/ 

(0.05)/ (0.07)/ (0.09)/ (0.11)/ (0.11)/ (0.09)/ (0.07)/ (0.05)/ 

(0.03)]; [(0.11)/ (0.09)/ (0.07)/ (0.05)/ (0.03)/ (0.03)/ (0.05)/ 

(0.07)/ (0.09)/ (0.11)]. For the present GRC-FG cylindrical 

shells, the effective material properties are evaluated 

according to the extended Halpin-Tsai mode Shen et al. 

(2018). The Young’s modulus and shear modulus are given 

as 
 

𝐸11 = 𝜂1

1 +  2𝑎𝐺 𝑕𝐺  𝛾11𝑉𝐺
1 − 𝛾11𝑉𝐺

𝐸𝑚  (1) 

 

𝐸22 = 𝜂2

1 +  2𝑎𝐺 𝑕𝐺  𝛾22𝑉𝐺
1 − 𝛾22𝑉𝐺

𝐸𝑚  (2) 

 

𝐺12 = 𝜂3

1

1 − 𝛾12𝑉𝐺
𝐺𝑚  (3) 

 

where aG, bG and hG are geometric parameters of the 
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(a) (b) 

Fig. 1 (a) Schematic diagram of GRC-FG cylindrical shell; 

(b) Configurations of GRC layers in the thickness 

direction 

 

 

graphene sheet. In Eqs. (1)-(3), a new parameter ηj (j = 1, 2, 

3), which are called the graphene efficiency parameters are 

introduced to consider the scale effect. The value of ηj (j = 

1, 2, 3) can be determined by matching the material 

properties of GRCs predicted from the traditional Halpin-

Tsai model to results from the MD simulations of Shen et 

al. (2018) 
 

𝛾11 =
𝐸11
𝐺 𝐸𝑚 − 1 

𝐸11
𝐺 𝐸𝑚 + 2𝑎𝐺 𝑕𝐺  

 (4) 

 

𝛾22 =
𝐸22
𝐺 𝐸𝑚 − 1 

𝐸22
𝐺 𝐸𝑚 + 2𝑏𝐺 𝑕𝐺  

 (5) 

 

𝛾12 =
𝐺12
𝐺 𝐺𝑚 − 1 

𝐺12
𝐺 𝐺𝑚 

 (6) 

 
where 𝐸11

𝐺  , 𝐸22
𝐺  and 𝐺12

𝐺  are the Young’s moduli and 

shear modulus of the graphene sheet, and 𝐸𝑚  and 𝐺𝑚  are 

the corresponding Young’s moduli and shear modulus of 

the. The volume fractions of graphene and matrix are 

defined as 𝑉𝐺  and 𝑉𝑚 = 1 − 𝑉𝐺 , respectively. The 

Poisson’s ratio is defined as 

 
𝜐12 = 𝑉𝐺𝜐12+

𝐺 𝑉𝑚𝜐
𝑚  (7) 

 
where 𝑣12

𝐺  and 𝑣𝑚  are the Poisson’s ratios of the 

graphene and matrix, respectively. 

The longitudinal and transverse thermal expansion 

coefficients of GRC-FG cylindrical shells can be shown as 

follow 
 

𝛼11 =
𝑉𝐺𝐸11

𝐺 𝛼11
𝐺 + 𝑉𝑚𝐸

𝑚𝛼𝑚

𝑉𝐺𝐸11
𝐺 + 𝑉𝑚𝐸

𝑚
 (8) 

 
𝛼22 =  1 + 𝜐12

𝐺  𝑉𝐺𝛼11
𝐺 +  1 + 𝜐𝑚  𝑉𝑚𝛼

𝑚 − 𝜐12𝛼11 (9) 

 
𝛼11
𝐺 , 𝛼22

𝐺  and 𝛼𝑚  are the thermal expansion 

coefficients of graphene and matrix. 

 

3. Formulation of motion 
 

The displacement field of GRC-FG cylindrical shells are 

expressed based Reddy’s third-order shear deformation 

theory by Reddy (1999) 

 

𝑢 = 𝑢0 + 𝜁𝜙𝑥 −
4

3𝑕2
𝜁3  𝜙𝑥 +

𝜕𝑤0

𝜕𝑥
  (10) 

 

𝑣 =  1 +
𝜁

𝑅
 𝑣0 + 𝜁𝜙𝑦 −

4

3𝑕2
𝜁3  𝜙𝑦 +

1

𝑅

𝜕𝑤0

𝜕𝑦
  (11) 

 
𝑤 = 𝑤0 (12) 

 
where (u0, vo, w0, ϕx, ϕy) are the displacement components of 

the neutral plane, and are the rotations of the transverse 

normal about q and x axes. z is the transverse coordinate. 

The strain components and strain-displacement of GRC-

FG cylindrical shells are given as Gong et al. (1994) 

 
𝛆 = 𝜺𝟎 + ζ𝛋1 + 𝜁3𝛋3 (13) 

 
𝛄 = 𝛄0 + 𝜁2𝛄2 (14) 

 

𝛆0 =

 
 
 

 
 

𝜕𝑢0

𝜕𝑥
1

𝑅

𝜕𝑣0

𝜕𝜃
+
𝑤

𝑅
𝜕𝑣0

𝜕𝑥
+

1

𝑅

𝜕𝑢0

𝜕𝜃  
 
 

 
 

,     𝛋1 =

 
 
 

 
 

𝜕𝜙𝑥

𝜕𝑥
1

𝑅

𝜕𝜙𝑦

𝜕𝜃
𝜕𝜙𝑦

𝜕𝑥
+

1

𝑅

𝜕𝜙𝑥

𝜕𝜃  
 
 

 
 

 (15) 

 

𝛋3 = −𝑐1

 
  
 

  
 

𝜕𝜙𝑥

𝜕𝑥
+
𝜕2𝑤0

𝜕𝑥2

1

𝑅

𝜕𝑦

𝜕𝜃
+

1

𝑅2

𝜕2𝑤0

𝜕𝜃2

𝜕𝜙𝑦

𝜕𝑥
+

1

𝑅

𝜕𝜙𝑥

𝜕𝜃
+

1

𝑅

𝜕2𝑤0

𝜕𝑥𝜕𝜃 
  
 

  
 

 (16) 

 

𝛄0 =  
𝜙𝑦 +

1

𝑅

𝜕𝑤0

𝜕𝜃

𝜙𝑥 +
𝜕𝑤0

𝜕𝑥

 ,     𝛄1 = −𝑐2  
𝜙𝑦 +

1

𝑅

𝜕𝑤0

𝜕𝜃

𝜙𝑥 +
𝜕𝑤0

𝜕𝑥

  (17) 

 

where 
 

𝑐2 = 3𝑐1     and     𝑐1 = 4 3𝑕2  (18) 

 
Then, we can calculate the stress resultants as 

 

 

𝐍0

𝐌0

𝐏0

 =  

𝐀0 𝐁0 𝐄0

𝐁0 𝐃0 𝐅0

𝐄0 𝐅0 𝐇0

  

𝛜0

𝛋2

𝛋3

 +  
𝐍𝑇

𝐌𝑇

𝐏𝑇

  (19) 

 

 
𝐐0

𝐑0
 =  

𝐀1 𝐃1

𝐃1 𝐅1
  
𝛄0

𝛄2
  (20) 

 
where the matrices A0, B0, D0, E0, F0, H0, A1, D1, F1, NT, 

MT and PT are given as 
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 𝐀0, 𝐁0, 𝐃0, 𝐄0, 𝐅0, 𝐇0  

=  𝐐 𝑏(𝜁)(1, 𝜁, 𝜁2, 𝜁3, 𝜁4, 𝜁6)
𝑕 2 

−𝑕 2 

𝑑𝜁 
(21) 

 
 𝐀0, 𝐁0, 𝐃0, 𝐄0, 𝐅0, 𝐇0 

=  𝐐 𝑏(𝜁)(1, 𝜁, 𝜁2, 𝜁3, 𝜁4, 𝜁6)
𝑕 2 

−𝑕 2 

𝑑𝜁 
(22) 

 

 𝐍𝑇 , 𝐌𝑇 , 𝐏𝑇 =  𝐐 𝑏(𝜁)𝛂0(1, 𝜁, 𝜁3)𝑑𝜁
𝑕 2 

−𝑕 2 

 (23) 

 

where 
 

𝐐 𝑏 𝜁 =

 
 
 
 
 

𝐸11

1 − 𝜐12𝜐21

𝜐21𝐸11

1 − 𝜐12𝜐21
0

𝜐21𝐸11

1 − 𝜐12𝜐21

𝐸11

1 − 𝜐12𝜐21
0

0 0 𝐺12 
 
 
 
 

 (24) 

 

𝐐 𝑠 𝜁 =  
𝐺23 0

0 𝐺13
 , 𝛂0 =  

𝛼11

𝛼22

0
  (25) 

 
Based on the Hamilton’s principle of Li et al. (2009), 

the equation of motion of GRC-FG cylindrical shells is 

expressed as 
 

  𝛿(𝑇 − Π + 𝑊) 𝑑𝑡
𝑡

0

= 0 (26) 

 
where T, U, W are the kinetic energy, potential energy and 

work of the external loads which are given as 

 

𝑇 =
1

2
 𝜌(𝜁)(𝑢 2 + 𝑣 2 + 𝑤 2)𝑑𝑉 (27) 

 

𝑈 =
1

2
 (𝐍0

𝑇𝛆0+𝐌0
𝑇𝛋1+𝐏0

𝑇𝛋3+𝐐0
𝑇𝛄0 + 𝐑0

𝑇𝛄2)𝑑𝐴 (28) 

 

𝑊 = −
𝑅

2
  𝐹𝑇𝑥  

𝜕𝑤

𝜕𝑥
 

2

+ 𝐹𝑇𝜃  
𝜕𝑤

𝑅𝜕𝜃
 

2

+ 2𝐹𝑇𝑥𝜃
𝜕𝑤

𝜕𝑥

𝜕𝑤

𝑅𝜕𝜃
 𝑑𝑥𝑑𝜃 

+𝑘1𝜆 𝑡 𝑤| 𝑥0 ,𝜃0 + 𝑘2  𝜆(𝑡)𝑤𝑑𝐴 

(29) 

 
where A and V are the surface area and volume of the GRC-

FG cylindrical shells, (FTx, FTq, FTxq) are the in-plane 

thermal load, k1 and k2 are the thermal coefficients, and λ(t) 

is the external load. In the present study, the assumed mode 

method (AMM) is applied to formulate the equation of 

motion for the GRC-FG cylindrical shells. Then the 

displacement fields of the GRC-FG cylindrical shells can be 

written as 

 

𝑢 𝑥, 𝜃, 𝑡 =   𝜙𝑖𝑗  𝑥, 𝜃 𝑝𝑖𝑗  𝑡 

𝑛

𝑗=1

𝑚

𝑖=1

= 𝛗𝑇(𝑥, 𝜃)𝐩(𝑡) (30) 

 

𝑣 𝑥, 𝜃, 𝑡 =   𝜓𝑖𝑗  𝑥, 𝜃 𝑞𝑖𝑗  𝑡 

𝑛

𝑗=1

𝑚

𝑖=1

= 𝛙𝑇(𝑥, 𝜃)𝐪(𝑡) (31) 

 

𝑤 𝑥, 𝜃, 𝑡 =   𝜛𝑖𝑗  𝑥, 𝜃 𝑟𝑖𝑗  𝑡 

𝑛

𝑗=1

𝑚

𝑖=1

= 𝛡𝑇(𝑥, 𝜃)𝐫(𝑡) (32) 

 

𝜙𝑥 𝑥, 𝜃, 𝑡 =   𝜗𝑖𝑗  𝑥, 𝜃 𝑓𝑖𝑗  𝑡 

𝑛

𝑗=1

𝑚

𝑖=1

= 𝛝𝑇(𝑥, 𝜃)𝐟(𝑡) (33) 

 

𝜙𝑦 𝑥, 𝜃, 𝑡 =   𝜉𝑖𝑗  𝑥, 𝜃 𝑔𝑖𝑗  𝑡 

𝑛

𝑗=1

𝑚

𝑖=1

= 𝛏𝑇(𝑥, 𝜃)𝐠(𝑡) (34) 

 

where (φ, ψ, ϖ, ϑ, ξ) are the column vectors of the assumed 

mode and (p, q, r, f, g) are the generalized coordinate 

vectors. m and n are the mode numbers in the x and θ 

directions. 

By substituting the Eqs. (10)-(12), (13)-(17), (19)-(20) 

and (30)-(34) into Eq. (13), and the results into Eq. (26), we 

can obtain the equation of motion by taking the variation 

calculations as follow 

 

𝐌𝐗  𝑡 +  𝐊 + 𝐊∆T 𝐗 𝑡 = 𝑘1𝜆 𝑡 𝐅𝑐 + 𝑘2𝜆 𝑡 𝐅𝑑  (35) 

 

where X(t) =(p(t)T, q(t)T, r(t)T, f(t)T, g(t)T) is the 

generalized coordinate vector. M, K, KΔT, Fc and Fd are the 

modal mass, stiffness matrices, the thermal stiffness matrix 

and the force vectors, which can be calculated as follow 

 

𝐌 =

 
 
 
 
 
 
𝐌𝑢𝑢 0 𝐌𝑢𝑤

0 𝐌𝑣𝑣 𝐌𝑣𝑤

𝐌𝑢𝑥 0
0 𝐌𝑣𝜃

𝐌𝑢𝑤
𝑇 𝐌𝑣𝑤

𝑇 𝐌𝑤𝑤

𝐌𝑢𝑥
𝑇 0 𝐌𝑤𝑥

𝑇

0 𝐌𝑣𝜃
𝑇 𝐌𝑤𝜃

𝑇

𝐌𝑤𝑥 𝐌𝑤𝜃

𝐌𝑥𝑥 0
0 𝐌𝜃𝜃  

 
 
 
 
 

5𝑚0× 5𝑚0

 (36) 

 

𝐊 =

 
 
 
 
 
 
𝐊𝑢𝑢 𝐊𝑢𝑣 𝐊𝑢𝑤

𝐊𝑢𝑣
𝑇 𝐊𝑣𝑣 𝐊𝑣𝑤

𝐊𝑢𝑤
𝑇

𝐊𝑢𝑥
𝑇

𝐊𝑢𝜃
𝑇

𝐊𝑣𝑤
𝑇

𝐊𝑣𝑥
𝑇

𝐊𝑣𝜃
𝑇

𝐊𝑤𝑤

𝐊𝑤𝑥
𝑇

𝐊𝑤𝜃
𝑇

𝐊𝑢𝑥 𝐊𝑢𝜃

𝐊𝑣𝑥 𝐊𝑣𝜃

𝐊𝑤𝑥

𝐊𝑥𝑥

𝐊𝑥𝜃
𝑇

𝐊𝑤𝜃

𝐊𝑥𝜃

𝐊𝜃𝜃  
 
 
 
 
 

5𝑚0× 5𝑚0

 (37) 

 

𝐊∆𝑇 =

 
 
 
 
 
0
0

0
0

0
0
0

0
0
0

0
0

0
0

0
0

𝐊𝑤𝑤
∆𝑇

0
0

0
0
0

0
0
0 
 
 
 
 

5𝑚0× 5𝑚0

 (38) 

 

𝐅𝑐 =  0 0 𝜛𝑇(𝑥0, 𝜃0) 0 0 5𝑚0× 1
𝑇  (39) 

 

𝐅𝑑 =  0 0  𝜛𝑇𝑑𝐴 0 0 
5𝑚0× 1

𝑇

 (40) 

 

where (x0, θ0) is the point where the concentrated forced is 

applied, m0 = m×n, and, the components of the mass and 

stiffness matrix are presented in appendix A. 
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For above equations, coefficients muu, muw, mux, mvv, mvw, 

mvθ, mww1, mww2, mww3, mwx, mwθ, mxx, and mθθ can be 

calculated based on the distributions of graphene. For FGX- 

GRC-FG cylindrical shells, these coefficients are given in 

appendix B. 

We assume X(t) = X0eωt as the general solution of 

homogeneous differential equation of Eq. (15), in which X0 

and ω are the eigenvector and eigenvalue. Substituting X(t) 

= X0eωt into the homogeneous differential equation of Eq. 

(15), and the natural frequency of the GRC-FG cylindrical 

shells can be derived by letting the coefficient determinant 

to be zero. 

For free vibration responses (k1 = 1 and k2 = 0) of the 

GRC-FG cylindrical shells, through the function ode45 or 

impulse of MATLAB software, the free vibration responses 

(k1 = 1 and k2 = 0) of the GRC-FG cylindrical shells can be 

obtained. For the forced vibration responses (k1 = 0 and k2 = 

1) of the GRC-FG cylindrical shells, the distributed external 

load in the transverse direction is given as 

 
𝜆 𝑥, 𝜃, 𝑡 = 𝜆1 sinΩ𝑡 + 𝜆2 cosΩ𝑡 (41) 

 
where λ1, λ2 and Ω are the amplitude and frequency of the 

dynamic load. The steady-state solution of Eq. (15) under 

the external dynamic load can be expressed as 

 
𝐗 𝑡 = 𝚷1 sinΩ𝑡 + 𝚷1 cosΩ𝑡 (42) 

 
where Π1 and Π2 are the amplitude values of forced 

vibration responses (k1 = 0 and k2 = 1) of the GRC-FG 

cylindrical shells. Substituting Eqs. (19) and (20) into Eq. 

(15), we can obtain the following equation 

 

 
𝐊 + 𝐊∆𝑇 − Ω2𝐌 0

0 𝐊 + 𝐊∆𝑇 − Ω2𝐌
  
𝚷1

𝚷1
 =  

𝜆1𝐅𝑑
𝜆2𝐅𝑑

  (43) 

 
from which the forced vibration amplitude Π1 and Π2 can 

be obtained. 

For the present GRC-FG cylindrical shells, the boundary 

conditions are simply supported on its two ends. Therefore, 

modes satisfying the simply supported boundary conditions 

are assumed as 
 

𝜑𝑖𝑗 = 𝜗𝑖𝑗 = cos
𝑖𝜋𝑥

𝐿
cos 𝑗𝜃 (44) 

 

𝜓𝑖𝑗 = 𝜉𝑖𝑗 = sin
𝑖𝜋𝑥

𝐿
sin 𝑗𝜃 (45) 

 

 

Table 1 Material properties for monolayer graphene in 

different temperature environments of Shen et al. 

(2018) 

T 
𝐸11
𝐺  

(Gpa) 

𝐸22
𝐺  

(GPa) 
𝐺12
𝐺  

(Gpa) 

𝛼11
𝐺  

(/K) 

𝛼22
𝐺  

(/K) 

300 1812 1807 683 -0.90×10-6 -0.95×10-6 

400 1769 1763 691 -0.35×10-6 -0.40×10-6 

500 1748 1735 700 -0.08×10-6 -0.08×10-6 
 

 
 

𝜛𝑖𝑗 = sin
𝑖𝜋𝑥

𝐿
cos 𝑗𝜃 (46) 

 

 

4. Numerical results and discussion 
 
In this section, detailed parametric studies are conducted 

for free and force vibration of the GRC-FG cylindrical 

shells. The zigzag graphene sheets with properties aG = 

14.76 nm, bG = 14.77 nm, hG = 0.188 nm, rG = 4118 

kg/m3and 𝑢12
𝐺  = 0.11 are selected as reinforcements. The 

material properties of zigzag graphene sheets in different 

temperature environments are given in Table 1. 

Poly (methyl methacrylate), referred to as PMMA, is 

selected for the matrix with the material properties rm = 

1150 kg/m3, vm = 0.34 and Em = (3.52 ‒ 0.0034T) GPa, in 

which T = T0 + ΔT and T0 = 300K. The graphene efficiency 

parameters ηj (j = 1, 2, 3) for different volume fractions the 

GRC-FG cylindrical shells in different temperature 

environments are obtained by matching the material 

properties of GRCs predicted from the Halpin-Tsai model to 

those from the MD simulations of Shen et al. (2018), which 

are listed in Table 2. 

Firstly, the accuracy of the proposed method was 

verified through the comparison study. Isotropic cylindrical 

shell with L = 0.41 m, R = 0.3015 m, h = 0.001 m, r = 7850 

kg/m3, v = 0.3 and E = 210 GPa are considered. Table 3 

shows the natural frequencies of the isotropic cylindrical 

shell with m = 1 and n changing from 7 to 15. It is 

obviously seen that the present natural frequencies agree 

well with those in the literature of Dym (1973), Gasser 

(1987), Shen and Xiang (2012) which indicates that the 

method used in this study is accurate and effective. 

A further convergence study is carried out for free 

vibration for UD GRC-FG cylindrical shell. Fig. 2 shows 

 

 

Table 2 Efficiency parameters for different volume 

fractions GRC-FG plates in different temperature 

environments of Shen et al. (2018) 

T VG h1 h2 h3 

300 K 

0.03 2.929 2.855 11.842 

0.05 3.068 2.962 15.944 

0.07 3.013 2.966 23.575 

0.09 2.647 2.609 32.816 

0.11 2.311 2.260 33.125 

400 K 

0.03 2.978 2.867 13.929 

0.05 3.129 3.024 15.230 

0.07 3.061 3.028 22.589 

0.09 2.702 2.604 28.870 

0.11 2.406 2.338 29.528 

500 K 

0.03 3.389 3.383 16.713 

0.05 3.545 3.415 16.019 

0.07 3.463 3.340 23.429 

0.09 3.059 2.937 29.755 

0.11 2.737 2.666 30.774 
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Table 3 Comparison of natural frequencies (Hz) for the 

isotropic cylindrical shell with different values of 

assumed mode n 

n Present 
Gasser 

(1987) 

Shen and Xiang 

(2012) 

Dym 

(1973) 

7 303.3358 318 306.73 305.32 

8 280.9185 278 283.30 281.37 

9 288.6769 290 290.59 288.28 

10 318.3476 334 320.04 317.51 

11 363.2488 362 364.83 362.22 

12 419.0646 418 420.59 417.96 

13 476.9604 478 484.84 482.23 

14 554.7735 550 556.24 553.67 

15 632.6257 626 634.08 631.59 
 

 

 

the free vibration responses for UD GRC-FG cylindrical 

shell with (m = 8, n = 8) and (m = 13, n = 13). It is evident 

that there is a large difference between the free vibration 

responses of the UD GRC-FG cylindrical shell computed by 

(m = 8, n = 8) and (m = 13, n = 13). Fig. 3 presents free 

vibration responses for UD GRC-FG cylindrical shell with 

(m = 13, n = 13) and m = 15, n = 15. It can be seen that the 

free vibration responses of UD GRC-FG cylindrical shell 

with (m = 13, n = 13) and (m = 15, n = 15) are almost the 

same. Therefore, in the following cases, unless otherwise 

stated, (m = 13, n = 13) are used for the free and force 

 

 

 

Fig. 2 Free vibration responses for UD GRC-FG cylindrical 

shell with (m = 8, n = 8) and (m = 13, n = 13) 

 

 

 

Fig. 3 Free vibration responses for UD GRC-FG cylindrical 

shell with (m = 13, n = 13) and (m = 15, n = 15) 
 

 

Fig. 4 Free vibration responses for various types of GRC-

FG cylindrical shells 

 

 
vibration of the GRC-FG cylindrical shells. 

Fig. 4 depicts the free vibration responses for UD, FG-O 

and FG-X of GRC-FG cylindrical shells. It is seen from the 

figure that the free vibration amplitude of FG-O GRC-FG 

cylindrical shell is higher than that of FG-X GRC-FG 

cylindrical shell while the free vibration amplitude of UD 

GRC-FG cylindrical shell is higher than the frequency of 

FG-X GRC-FG cylindrical shell. Therefore, it can be 

concluded that the strengthening of the stiffness near the 

surfaces of GRC-FG cylindrical shells is more effective in 

reducing the vibration amplitude of the cylindrical shell 

structure. 

Therefore, stiffness of the GRC-FG cylindrical shells 

can be designed by using different distributions of graphene 

in the composite, and the vibration frequencies and 

vibration amplitudes can be also devised by the 

distributions of graphene. In other words, suitable 

distribution of graphene can suppress the vibration of the 

shell. From the view of passive vibration control, changing 

distribution is effective. This can be helpful of some 

practical application requirement. 

For the UD GRC-FG cylindrical shells with different 

value of shell radius-to-thickness ratio R/h, the free 

vibration responses are shown in Fig. 5. It can be seen that 

with the GRC-FG cylindrical shells become relatively large, 

the free vibration amplitude become higher. That is obvious 

because large cylindrical shells are easier to deform. For 

FG-O and FG-X of GRC-FG cylindrical shells with 

different value of shell radius-to-thickness ratio R/h, the 

 

 

 

Fig. 5 Free vibration responses for UD GRC-FG cylindrical 

shells with different value of R/h 
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Fig. 6 Free vibration responses for FG-O GRC-FG 

cylindrical shells with different value of R/h 

 

 

 

Fig. 7 Free vibration responses for FG-X GRC-FG 

cylindrical shells with different value of R/h 

 

 
free vibration responses are shown in Figs. 6 and 7. Similar 

change trend is also obtained for of radius-to-thickness ratio 

R/h for FG-O and FG-X GRC-FG cylindrical shells. As the 

stiffness and vibration responses are significantly affect by 

the geometry of GRC-FG cylindrical shells, we can choose 

suitable size GRC-FG cylindrical shells to design the 

stiffness and vibration properties of the resulting 

nanocomposites. 

Fig. 8 shows the free vibration responses for UD GRC-

FG cylindrical shells in different temperature environments. 

It can be seen that with the temperature environments 

changing from 300 K to 500 K, the free vibration amplitude 

of UD GRC-FG cylindrical shells increases. That because 

the material properties of the resulting GRC-FG cylindrical 

shells decrease when the temperature increases. Figs. 9 and 

10 present the corresponding free vibration responses for 

 

 

 

Fig. 8 Free vibration responses for UD GRC-FG cylindrical 

shells in different temperature environments 
 

 

Fig. 9 Free vibration responses for FG-O GRC-FG 

cylindrical shells in different temperature 

environments 

 
 

 

 

Fig. 10 Free vibration responses for FG-X GRC-FG 

cylindrical shells with different value of R/h 

 
 

 

 

Fig. 11 Forced vibration responses for various types of 

GRC-FG cylindrical shells 

 
 

 

 

Fig. 12 Forced vibration responses for UD GRC-FG 

cylindrical shells with different value of R/h 
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Fig. 13 Forced vibration responses for FG-O GRC-FG 

cylindrical shells with different value of R/h 

 

 

 

Fig. 14 Forced vibration responses for FG-X GRC-FG 

cylindrical shells with different value of R/h 
 

 

FG-O and FG-X GRC-FG cylindrical shells in different 

temperature environments. 

Fig. 11 shows the forced vibration responses for various 

types of GRC-FG cylindrical shells. It can be seen that for 

the forced vibration responses for various types of GRC-FG 

cylindrical shells, the forced vibration amplitude is largest 

for FG-O GRC-FG cylindrical shells, lowest for FG-X 

GRC-FG cylindrical shells. Then we can reach the same 

conclusion for the distribution of graphene for the forced 

vibration compared with the conclusion of free vibration. 

Figs. 12-14 presents the forced vibration responses for 

UD, FG-O and FG-X GRC-FG cylindrical shells with 

different value of shell radius-to-thickness ratio R/h. It can 

be seen that with the decrease of shell radius-to-thickness 

ratio R/h, the forced vibration amplitudes for UD, FG-O 

and FG-X GRC-FG cylindrical shells decrease. 
 

 

 

Fig. 15 Forced vibration responses for UD GRC-FG 

cylindrical shells in different temperature 

environments 

 

 

Fig. 16 Forced vibration responses for FG-O GRC-FG 

cylindrical shells in different temperature 

environments 

 

 

 

Fig. 17 Forced vibration responses for FG-X GRC-FG 

cylindrical shells in different temperature 

environments 

 

 

Figs. 15-17 presents the forced vibration responses for 

UD, FG-O and FG-X GRC-FG cylindrical shells in 

different temperature environments. As it is expected, with 

the increase of the temperature, the force vibration 

amplitude of the shell UD, FG-O and FG-X GRC-FG 

cylindrical shells increases. From these figures, we can also 

find that with the increase of the temperature, the 

frequencies of the UD, FG-O and FG-X GRC-FG 

cylindrical shells increases. As shown in Fig.1, the material 

properties of graphene decrease with the increase of 

temperature, also the material properties of matrix decrease. 

Therefore, the resulting material properties of the GRC-

FG cylindrical shells which lead lower stiffness in higher 

temperature. Then GRC-FG cylindrical shells deform 

largely in higher temperature environment. 

 

 

5. Conclusions 
 

In this paper, the time- and frequency-domain methods 

are implemented for free and force vibration behaviors of 

graphene-reinforced composite functionally graded (GRC-

FG) cylindrical shells in thermal environments based on 

Reddy’s third-order shear deformation theory (HSDT). The 

GRC-FG cylindrical shells are composed of piece-wise 

pattern graphene-reinforced layers which have different 

volume fraction. Based on the extended Halpin-Tsai 

micromechanical model, the effective material properties of 

the resulting nanocomposites are evaluated. Using the 

Hamilton’s principle and the assumed mode method, the 
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motion equation of the GRC-FG cylindrical shells is 

formulated. Numerical examples are presented to 

investigate the effects of distribution of graphene, shell 

radius-to-thickness ratio and temperature changes on the 

free and force vibration responses of GRC-FG cylindrical 

shells. Some typical conclusions are obtained as follow: 

 

(a) The strengthening of the stiffness near the surfaces 

of GRC-FG cylindrical shells is more effective in 

reducing the vibration amplitude of the cylindrical 

shell structure. Therefore, suitable distribution of 

graphene can suppress the vibration of the shell. 

(b) The stiffness and vibration responses are 

significantly affected by the geometry of GRC-FG 

cylindrical shells. We can choose suitable size 

GRC-FG cylindrical shells to design the stiffness 

and vibration properties of the resulting 

nanocomposites. 

(c) Temperature increase will lead decrease of the free 

and force vibration responses of GRC-FG 

cylindrical shells. 
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𝑑𝑥𝑑𝜃
2𝜋

0

𝐿

0

+
c2

2𝐻66 − 2𝑐2𝐹66 + 𝐷66

𝑅
  

𝜕𝛝

𝜕𝜃

𝜕𝛝

𝜕𝜃

𝑇

𝑑𝑥𝑑𝜃
2𝜋

0

𝐿

0

+  c2
2𝐹55 − 2𝑐2𝐷55 + 𝐴55 𝑅  𝛝𝛝𝑻𝑑𝑥𝑑𝜃

2𝜋

0

𝐿

0

 

(A25) 

 

𝐊𝜃𝜃

=  c1
2𝐻66 − 2𝑐1𝐹66 + 𝐷66 𝑅  

𝜕𝛏

𝜕𝑥

𝜕𝛏

𝜕𝑥

𝑇

𝑑𝑥𝑑𝜃
2𝜋

0

𝐿

0

+
c1

2𝐻22 − 2𝑐1𝐹22 + 𝐷22

𝑅
  

𝜕𝛏

𝜕𝜃

𝜕𝛏

𝜕𝜃

𝑇

𝑑𝑥𝑑𝜃
2𝜋

0

𝐿

0

+  c2
2𝐹44 − 2𝑐2𝐷44 + 𝐴44 𝑅  𝛏𝛏𝑻𝑑𝑥𝑑𝜃

2𝜋

0

𝐿

0

 

(A26) 

 

𝐊𝜃𝜃

=  c1
2𝐻66 − 2𝑐1𝐹66 + 𝐷66 𝑅  

𝜕𝛏

𝜕𝑥

𝜕𝛏

𝜕𝑥

𝑇

𝑑𝑥𝑑𝜃
2𝜋

0

𝐿

0

+
c1

2𝐻22 − 2𝑐1𝐹22 + 𝐷22

𝑅
  

𝜕𝛏

𝜕𝜃

𝜕𝛏

𝜕𝜃

𝑇

𝑑𝑥𝑑𝜃
2𝜋

0

𝐿

0

+  c2
2𝐹44 − 2𝑐2𝐷44 + 𝐴44 𝑅  𝛏𝛏𝑻𝑑𝑥𝑑𝜃

2𝜋

0

𝐿

0

 

(A27) 
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𝑚𝑢𝑢 =
1

2
𝑕 𝑉∗𝜌𝐶𝑁𝑇 − 𝑉∗𝜌𝑚 + 𝜌𝑚  (B1) 

 

𝑚𝑢𝑥 = 0,       𝑚𝑢𝑣 = 0 (B2) 

 

𝑚𝑣𝑣 =
1

2
𝑕 𝜌𝑚 + 𝑉∗𝜌𝐶𝑁𝑇 − 𝑉∗𝜌𝑚 

+
1

48

𝑕3

𝑅2
 2𝜌𝑚−3𝑉∗𝜌𝑚 + 3𝑉∗𝜌𝐶𝑁𝑇  

(B3) 

 

𝑚𝑣𝑣 =
1

240

𝑐1𝑕
5

𝑅2
 5𝑉∗𝜌𝑚 − 5𝑉∗𝜌𝐶𝑁𝑇 − 3𝜌𝑚  (B4) 

 

𝑚𝑣𝜃 =
1

240

𝑐1𝑕
5

𝑅2
 5𝑉∗𝜌𝑚 − 5𝑉∗𝜌𝐶𝑁𝑇 − 3𝜌𝑚  

+24
𝑕3

𝑅
 2𝜌𝑚 + 3𝑉∗𝜌𝐶𝑁𝑇 − 3𝑉∗𝜌𝑚  

(B5) 

 

𝑚𝑤𝑤1 =
1

2
𝑕 𝑉∗𝜌𝐶𝑁𝑇 − 𝑉∗𝜌𝑚 + 𝜌𝑚  (B6) 

 

𝑚𝑤𝑤2 ≈ 0,       𝑚𝑤𝑤3 ≈ 0 (B7) 

 

𝑚𝑥𝑥 =
1

24
𝑕3𝜌𝑚 −

1

80
𝑐1𝑕

5𝜌𝑚 +
1

16
𝑕3𝑉∗𝜌𝐶𝑁𝑇  

−
1

16
𝑕3𝑉∗𝜌𝑚 +

1

48
𝑐1𝑕

5𝑉∗𝜌𝑚 −
1

48
𝑐1𝑕

5𝑉∗𝜌𝐶𝑁𝑇  

(B8) 

 

𝑚𝜃𝜃 =
1

24
𝑕3𝜌𝑚 −

1

80
𝑐1𝑕

5𝜌𝑚 +
1

16
𝑕3𝑉∗𝜌𝐶𝑁𝑇  

−
1

16
𝑕3𝑉∗𝜌𝑚 +

1

48
𝑐1𝑕

5𝑉∗𝜌𝑚 −
1

48
𝑐1𝑕

5𝑉∗𝜌𝐶𝑁𝑇  

(B9) 
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