
Steel and Composite Structures, Vol. 32, No. 4 (2019) 537-548 

DOI: https://doi.org/10.12989/scs.2019.32.4.537 

Copyright ©  2019 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=scs&subpage=6                                      ISSN: 1229-9367 (Print), 1598-6233 (Online) 

 
1. Introduction 

 

Steel-concrete composite structures have been widely 

used in various structures such as bridges and buildings, 

owing to the fact that each material of steel or concrete is 

used to take advantage of its best attributes to make 

composite structures very efficient and economical. 

However, these benefits of composite structures are based 

on having an efficient connection between the steel and 

concrete components, introduced in the form of mechanical 

shear connectors (Oehlers and Bradford 1999), because the 

shear connectors allow the shear transfer of the forces in 

concrete to steel and vice versa, and also prevent vertical 

separation of the steel and concrete components. 

Since the deformations, stress distributions, and failure 

modes of composite structures deeply depend on the 

behavior of the shear connection, various experimental and 

numerical studies of the slip behavior along the shear 

connectors have been extensively performed (Bärtschi and 

Fontana 2006, Bonilla et al. 2018, El-lobody and Lam 

2002, Lin et al. 2017, Winkler et al. 2006), and the obtained 

results have been implemented in the design codes such as 

AISC (2010) and Eurocode (2004). In particular, differently 

from civil structures usually designed with complete shear 

connection, building structures frequently adopt a partial 

shear connection, which causes a significant redistribution 

of stresses along the interface between the steel and 
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concrete components and affects the ultimate resisting 

capacity as well as the serviceability. This means that the 

slip behavior along the interface between the steel and 

concrete components cannot be ignored in the analysis and 

design of steel-concrete composite structures. 

To verify the slip behavior in the composite structures, 

many experimental studies have been performed (Bärtschi 

and Fontana 2006, Ding et al. 2017, Lam and El-Lobody 

2005, Loh et al. 2004), and Oehlers and Coughlan (1986) 

introduced a criterion to determine the strength of a shear 

stud at a partial composite state, and suggested the 

empirical load-slip relation of the shear stud on the basis of 

116 push-out tests. In addition, many analytical approaches 

to address a decrease in the resisting capacity and an 

increase in the deflection in the composite structures with a 

partial shear connection have been explored. Dezi et al. 

(1993) directly solved the governing differential equations 

by using the finite differential method to calculate the 

deflection change caused by the slip between the steel beam 

and concrete slab, and Roberts (1985) obtained slip and 

nodal displacements for typical composite beams with use 

of the finite differential method (FDM) constructed on the 

basis of the force equilibrium and compatibility condition. 

These numerical approaches generally yield very accurate 

results and are very useful in the analysis of partially 

composite structures, but also have numerous restrictions in 

application since the solution procedure is strongly 

dependent on the governing equation and boundary 

conditions. 

To overcome those limitations in considering the slip 

behavior in the partially composite structures, a few 

numerical models have been proposed on the basis of the 

finite element method (FEM) (Dias et al. 2015, Gara et al. 

2006, Ranzi and Zona 2007, Sousa and da Silva 2007, 
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Wang and Chung 2008), and the slip behavior has been 

simulated through the springs connected at the interface 

between the steel and concrete components. The direct 

adoption of the spring elements (Gattesco 1999, Queiroz et 

al. 2007), however, requires the use of a double node to 

represent the relative slip between both components. In 

spite of easy application into the finite element formulation, 

this method leads not only to an increase in the number of 

degrees of freedom but also to greater complexity in the 

mesh definition, especially in the case of a structure with 

numerous nodes and elements (Hwang and Kwak 2013). 

These restrictions in numerical modeling of the composite 

structures have discouraged researchers from including the 

slip effect in many previous numerical studies. 

To address this issue, this paper introduces an improved 

numerical approach that can consider the bond-slip effect 

without taking the double nodes along the interface between 

the steel and concrete components by incorporating the 

equivalent stiffness 𝐸𝑠
𝐸𝑄

 and yield strength 𝑓𝑦
𝐸𝑄

 of steel. 

In advance, the slip behavior is analyzed on the basis of a 

linear partial interaction theory (Oehlers and Bradford 

1999). Upon deriving the governing equation for the slip 

behavior, the transfer matrix relation is constructed at an 

element level, and the successive application of the 

compatibility condition and equilibrium equations at each 

node makes it possible to determine the nodal forces and 

displacements related to the slip behavior. The reliability of 

the proposed approach is verified by comparing the 

analytical predictions with results from experiments, and 

this approach can also be implemented into commercialized 

programs including ABAQUS (Simulia 2017) and ADINA 

(2015) as a user defined material model. 

 

 

2. Material properties 
 

Since the bending response of steel-concrete composite 

beams and/or slabs subjected to monotonic loadings is 

much more affected by the tensile behavior than by the 

compressive behavior of concrete, the stress-strain relation 

of concrete in compression is not of primary interest and 

can be defined with the use of a simplified relation. Among 

the numerous mathematical models used in the numerical 

analysis of concrete structures, accordingly, the monotonic 

envelope curve of stress-stain for concrete introduced by 

Kent and Park and later modified by Scott et al. (1982) is 

adopted in this paper, because of its simplicity and 

computational efficiency. This model describes the 

monotonic concrete stress-strain relation in compression as 

a second-degree parabola accompanying the linear 

descending branch after reaching the compressive strength, 

as shown in Fig. 1. 

On the other hand, the tensile behavior of concrete is 

assumed to be linear elastic until reaching the tensile 

strength. After the tensile strength, the tensile stress 

decreases linearly with increasing principal tensile strain to 

ε0 in Fig. 1, which is expected as the ultimate failure strain 

by cracking (Kwak and Kim 2010). To describe the 

cracking behavior, the damaged plasticity model (Lubliner 

et al. 1989) among the cracking models defined in 

 

Fig. 1 Stress-strain relation of concrete 
 

 

ABAQUS is adopted because this model shows not only 

less sensitivity to the mesh topology but also stable 

convergence to the solution even in the local failure zone 

where a stress concentration is expected. 

Steel is modeled as a linear elastic, linear strain 

hardening material with yield stress 𝑓𝑦 . The reasons for this 

approximation are: (1) computational convenience of the 

model; and (2) the behavior of composite structures is 

greatly affected by yielding of the steel component. It is, 

therefore, advisable to take advantage of the strain 

hardening behavior of steel in improving the numerical 

stability of the solution. More details of the material models 

for concrete and steel can be found elsewhere (Kent and 

Park 1971, Kwak and Hwang 2010). 

 
 

3. Implementation of slip behavior 
 

3.1 Load-slip relation of stud connection 
 

The entire structural responses from the flexural 

deformation to the slip behavior in steel-concrete composite 

flexural members are greatly influenced by the shear 

connectors because composite flexural members are 

equipped with shear connectors along the interface between 

a steel component and a concrete component to unify the 

behavior of the total structure. A dense arrangement of the 

shear connectors leads to a perfect bond condition but a 

loose arrangement allows the occurrence of slip along the 

interface. 

Since the behavior of slip is usually represented by the 

relation between the longitudinal shear load at the interface 

and the corresponding slip, many push-out tests for shear 

connectors especially for the stud connector, one of the 

most commonly used types of mechanical shear connector, 

have been performed to obtain the load-slip relations 

(Menzies 1971, Oehlers and Coughlan 1986, Shim et al. 

2004). As well documented in many experimental studies, a 

typical load-slip relation represents the linear variation 

nearly up to half of the ultimate strength. When slip 

increases further, the stiffness is reduced gradually and 

eventually reaches the ultimate shear strength (see dashed 

line in Fig. 2). Among a number of proposed empirical 

relations, a simple bilinear load-slip relation of the stud 

connector (see the continuous line in Fig. 2) is adopted in 

this paper for computational convenience. The maximum 
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Fig. 2 Idealized load-slip relation of a shear stud 

 

 

shear force 𝑃𝑚𝑎𝑥  is determined by 𝑃𝑚𝑎𝑥 = 0.8𝑓𝑢(𝜋𝑑𝑠𝑕
2
 

4)/1.25 mentioned in Eurocode 4 (2004), where 𝑑𝑠𝑕  is 

the diameter of the shear connector and 𝑓𝑢  is the ultimate 

tensile strength of studs. 

Concerning the linear behavior of the stud connector, 

the slip S corresponding to the applied horizontal shear 

force P(x) can be represented by Eq. (1) if the shear studs 

are assumed to be installed with uniform spacing 𝐿𝑆 in the 

longitudinal direction. 
 

S =
𝑃(𝑥)

𝑘𝑏
=

𝑞(𝑥) ∙ 𝐿𝑠

𝑘𝑏
 (1) 

 

where 𝑘𝑏  is the stiffness of the shear stud (see Fig. 2) and 

q(x) is the shear force transmitted per unit length of the 

structural member. This is known as the shear flow 

(q x = dP(x)/dx). 
 

3.2 Evaluation of equivalent stiffness and yield 
strength of steel 

 

To take into account the bond-slip behavior, defined by 

the displacement difference between a steel component and 

a concrete component in a composite structure, two 

basically different elements, the bond link element (Keuser 

and Mehlhorn 1988) and the bond zone element (de Groot 

et al. 1981) have been used in the finite element analyses 

(Dehestani and Mousavi 2015, Kwak and Kim 2001, Lowes 

et al. 2004). In spite of their ease of use, however, these 

elements necessitate the usse of a double node to represent 

the relative slip between the two components. In a complex 

structure, this requirement leads to not only a considerable 

increase in the number of degrees of freedom but also 

greater complicatedness of the mesh definition and has 

discouraged researchers from including the bond-slip effect 

in many studies to date. 

To address these limitations in using the classical bond-

slip elements, an equivalent steel stiffness that includes the 

bond-slip deformation is proposed in this paper. After 

separating a composite structure into two parts of the steel 

and concrete components, bond slip effect is taken into 

consideration by modifying the material properties of the 

steel component. As shown in Fig. 3(a), which represents a 

part of the steel component discretized with the finite 

element mesh size of ab, the steel area covered by the 

adjacent two nodes of node i and node j can be considered 

as an equivalent strut or tie. A convenient free body diagram 

 

 

(b) Before deformation 

 

(a) A part of steel component (c) After deformation 

Fig. 3 An idealized steel strut with bond-slip 

 

 

that isolates the steel strut with the bond-link elements 

attached at its end points is then selected. Figs. 3(b) and 

3(c) show this element before and after deformation, where 

points ① and ③ are associated with the concrete 

component and points ② and ④ are associated with the 

steel component at nodes i and j, respectively. The 

corresponding degrees of freedom of the steel strut and 

concrete at each end are connected by the bond-link 

element, whose stiffness depends on the relative 

displacement between the steel component and the concrete 

component. With this assumption, the stiffness matrix that 

relates the end displacements along the axis of the steel 

component with the corresponding forces can be expressed 

as follows 
 

 
𝐹𝑐
𝐹𝑠
 =

 
 
 

 
 
𝐹

①

𝐹
③

𝐹
②

𝐹
④ 
 
 

 
 

=

 
 
 
 
𝑘𝑏𝑖 0 −𝑘𝑏𝑖 0
0 𝑘𝑏𝑗 0 −𝑘𝑏𝑗

−𝑘𝑏𝑖 0 𝑘𝑠 + 𝑘𝑏𝑖 −𝑘𝑠

0 −𝑘𝑏𝑗 −𝑘𝑠 𝑘𝑠 + 𝑘𝑏𝑗  
 
 
 

 

∙

 
 
 

 
 
𝑢

①

𝑢
③

𝑢
②

𝑢
④ 
 
 

 
 

 =  
𝐾𝐶𝐶 𝐾𝐶𝑆

𝐾𝐶𝑆 𝐾𝑆𝑆
  

𝑢𝑐

𝑢𝑠
  

(2) 

 

where, 𝑘𝑠 = 𝑎𝑡/𝑏 ∙ 𝐸𝑆  is the strut stiffness, 𝑘𝑏𝑖  and 𝑘𝑏𝑗  

are the stiffness of the bond-link element determined in Eq. 

(1), and t is the thickness of the steel component. 

By considering the steel degrees of freedom in Eq. (2), 

the following relation between concrete displacements and 

corresponding forces results in  𝐹𝑐
∗ = [𝐾𝐶𝐶

∗
]{𝑢𝑐}, where 

 𝐹𝑐
∗ =  𝐹𝑐 −  𝐾𝐶𝑆 ∙  𝐾𝑆𝑆 

−1 ∙ {Fs} , [𝐾𝐶𝐶
∗] =  𝐾𝐶𝐶 −

 𝐾𝐶𝑆 ∙  𝐾𝑆𝑆 
−1 ∙ [𝐾𝐶𝑆]. After evaluating the inverse of  𝐾𝑆𝑆  

and carrying out multiplications, the equivalent stiffness 
 𝐾𝐶𝐶

∗  is reduced to the following 

 

 𝐾𝑆
𝐸𝑄 =  𝐾𝐶𝐶

∗  

=
𝑘𝑠𝑘𝑏𝑖𝑘𝑏𝑗

𝑘𝑠 𝑘𝑏𝑖 + 𝑘𝑏𝑗  + 𝑘𝑏𝑖 ∙ 𝑘𝑏𝑗

 
1 −1
−1 1

  
(3) 

 

which is the local stiffness matrix of the steel strut element 

including the effect of bond-slip, and it is now apparent that 
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bond-slip reduces the stiffness of the steel strut element. 

Even when the steel component is modeled with plate or 

shell elements, its stiffness is directly proportional to the 

modulus of elasticity. Therefore, the equivalent modulus of 

elasticity for the steel component can be inferred from Eq. 

(3) as 
 

𝐸𝑠
𝐸𝑄 =

𝐸𝑠𝑘𝑏𝑖𝑘𝑏𝑗

𝑎𝑡/𝑏 ∙ 𝐸𝑠 𝑘𝑏𝑖 + 𝑘𝑏𝑗  + 𝑘𝑏𝑖 ∙ 𝑘𝑏𝑗

 (4) 

 

In the case of a perfect bond, the bond stiffness terms 

𝑘𝑏𝑖  and 𝑘𝑏𝑗  become infinitely large and the equivalent 

modulus of elasticity 𝐸𝑆
𝐸𝑄

 is increased to the elastic 

modulus of elasticity 𝐸𝑆. The use of 𝐸𝑆
𝐸𝑄

 instead of 𝐸𝑆 

makes it possible to consider the bond-slip effect without 

taking double nodes along the interface between the steel 

component and the concrete component. The substitution of 

the new material properties of steel and bond into Eq. (4) 

yields the equivalent elastic modulus of the steel 

component. In particular, differently from the linear load-

slip assumption considered in this paper, the use of any 

nonlinear load-slip relation makes it possible to take into 

account the change in the slip modulus after exceeding the 

elastic limit. 

Even though the equivalent steel stiffness 𝐸𝑆
𝐸𝑄

 

introduced in this paper can effectively describe the 

stiffness of the composite structure when the bond-slip 

effect is considered, there is a limitation in describing a 

decrease of the resisting capacity due to the partial shear 

connection. The proposed model cannot directly simulate 

the strength degradation caused by longitudinal slip or 

vertical separation because the model assumes a perfect 

bond at the interface. Nevertheless, upon adopting the 

equivalent yield strength of steel  𝐸𝑆
𝐸𝑄 , it is possible to 

consider a decrease of the resisting capacity due to shear 

stud failure or buckling of the steel plate. 

When the strength of shear stud is weaker than the yield 

strength of the steel plate, shear failure occurs prior to 

yielding of the steel plate and the shear force can no longer 

be transferred between the steel plate and the interior 

concrete matrix. Therefore, the maximum axial force that 

can act on a steel-concrete composite structure is 

determined based on the minimum of the strength of 

exterior steel plate and the strength of shear connection 

(Roberts et al. 1995). Accordingly, if the shear connection is 

sufficient, the yield strength of the exterior steel plate will 

directly be used as the equivalent yield strength. Otherwise 

the yield strength of the steel in the proposed model will be 

modified as shown in Eq. (5) such that the yield strength of 

steel plate is limited to the strength of shear connection, 

where n is the number of studs in the effective length, 

𝑃𝑚𝑎𝑥  is the maximum strength of a single stud determined 

from experiments or design codes (Eurocode 2004) and 𝐴𝑠 

is the cross-section area of exterior steel plate. 
 

 𝑓𝑦
𝐸𝑄 

𝑠𝑡𝑢𝑑
= 𝑚𝑖𝑛 𝑓𝑦  , 𝑛𝑃𝑚𝑎𝑥 /𝐴𝑠  (5) 

 

Different from a usual steel-concrete composite beam in 

which the concrete slab and the steel beam are designed to 

resist the compressive force and tensile force respectively, 

the resisting capacity of a steel-concrete sandwich panel in 

which both steel plates are attached to both sides of the 

concrete matrix will be dominantly affected by the buckling 

of steel plate on the compression side. Since the steel plate 

cannot resist additional stress after buckling has occurred, 

additional modification for the yield strength of steel must 

be considered if the critical stress is smaller than the yield 

strength of the steel plate. Zhang (2014) suggested using 

Euler’s column buckling equation with an effective length 

coefficient k equal to 0.7 to represent the critical stress 

𝜎𝑐𝑟 = 𝜋2𝐸𝑠/ 12𝑘2 𝑠/𝑡 2  for the steel-concrete sandwich 

panel, where E𝑠 is the elastic modulus of the steel plate, s 

is the stud spacing, and t is the thickness of the steel plate. 

Therefore, the equivalent yield strength of steel plate under 

compression is evaluated as Eq. (6). From Eqs. (5) and (6), 

the equivalent yield strength of the steel plate can finally be 

determined as 𝑓𝑦
𝐸𝑄 = 𝑚𝑖𝑛   𝑓𝑦

𝐸𝑄 
𝑠𝑡𝑢𝑑

 ,  𝑓𝑦
𝐸𝑄 

𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔
  

 

 𝑓𝑦
𝐸𝑄 

𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔
= 𝑚𝑖𝑛  𝑓𝑦  , 𝜋2𝐸/ 12𝑘2 𝑠/𝑡 2   (6) 

 

In the proposed model, the stiffness and strength of the 

composite flexural members are predicted by adopting the 

equivalent stiffness and yield strength of steel. 

Nevertheless, the slip distribution along the span is still not 

determined. To supplement this limitation and to make 

evaluation of the slip behavior possible, a solution 

algorithm for the bond slip analysis is designed and 

accompanied in this paper. 
 

3.3 Solution algorithm for the analysis of slip 
behavior 

 

Once the displacement and internal force increments at 

each node are determined for the current load increment, 

evaluation of the slip behavior along the interface between 

the steel component and the concrete component is 

followed. When a composite flexural member is subjected 

to lateral loads, the bending moment M(x) and shear force 

V(x) can be calculated at any section located at distance x 

from the support (see Fig. 4(a)), and the internal moment 

M(x) will develop the curvature κ in the corresponding 

section (see Fig. 4(b)). If the interface slip between the steel 

component and the concrete component is not totally 

prevented, the longitudinal strains of both components at 

the interface have different values from each other. Figs. 

4(b) and (c) show the strain and corresponding stress 

distribution across the section of a composite flexural 

member with partial bond. However, it will still be assumed 

that there is no separation between the two components, 

which means the curvatures of two components are 

identical. 

As shown in Fig. 4(c), when any section of a composite 

flexural member is subjected to axial force F and moment 

M, which act through the centroids of the concrete and steel 

components at distances 𝑕𝑐  and 𝑕𝑠  from the steel-

concrete interface, respectively, the elastic strains 𝜀𝑐𝑏  at 

the bottom face of the concrete component and 𝜀𝑠𝑡  at the 

top face of the steel component can be obtained from the 

elastic beam theory by 
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(a) A typical 

section 

(b) Strain 

distribution 

(c) Stress 

distribution 

Fig. 4 Slip behavior in partially composite beam 

 

 

𝜀𝑐𝑏 = −
𝐹𝑐

𝐸𝑐𝐴𝑐
+

𝑀𝑐𝑕𝑐

𝐸𝑐𝐼𝑐
,      𝜀𝑠𝑡 =

𝐹𝑠
𝐸𝑠𝐴𝑠

−
𝑀𝑠𝑕𝑠

𝐸𝑠𝐼𝑠
 (7) 

 

where 𝐴𝑠  and 𝐴𝑐  represent the areas of the steel and 

concrete components, respectively, while 𝐼𝑠 and 𝐼𝑐  are the 

moments of inertia of the cross-sectional area of each 

component with respect to their centroidal axes. 

From the horizontal force equilibrium which requires 

that  𝐹 = 0, 𝐹𝑠 must be the same as 𝐹𝑐  (see Fig. 4(c)). 

In addition, the distribution of forces in the shear connectors 

can be determined by detaching the concrete component 

from the steel component. If a reference section of zero 

moment is chosen, namely the section at the external 

supports or at the contra-flexural points in a continuous 

flexural member, the total horizontal force on the shear 

connectors 𝐹𝑕𝑜𝑟𝑧  must equal the normal force at each 

component. That is, the relation of 𝐹𝑠 = 𝐹𝑐 = 𝐹𝑕𝑜𝑟𝑧  can be 

obtained from simple horizontal force equilibrium. 

As mentioned above, when the composite section is 

subjected to the bending moment, the relative movement 

across the interface that is induced by the sliding action is 

referred to as the slip of S = 𝑢𝑠 − 𝑢𝑐 , and the derivative of 

this relation with respect to the longitudinal distance x yield 

a slip strain of 𝜀𝑠𝑙𝑖𝑝 = 𝑑𝑆/𝑑𝑥 = 𝜀𝑠𝑡 − 𝜀𝑐𝑏 . Hence, from 

Eqs. (1) to (4) and (7), the following differential equation 

represented by the material constants and section 

dimensions can be obtained. 

 

𝐿𝑠

𝑘𝑏

𝑑2𝐹𝑕𝑜𝑟𝑧

𝑑𝑥2
= 𝐹𝑕𝑜𝑟𝑧  

1

𝐸𝑐𝐴𝑐
+

1

𝐸𝑠𝐴𝑠
 −  

𝑀𝑐𝑕𝑐

𝐸𝑐𝐼𝑐
+

𝑀𝑠𝑕𝑠

𝐸𝑠𝐼𝑠
  (8) 

 

From the rotational equilibrium of the internal moment, 

the total moment M(x) at the section being considered in 

Fig. 4 can be expressed by M x = 𝑀𝑐 𝑥 + 𝑀𝑠 𝑥 +
𝐹(𝑥)𝑕𝑜𝑟𝑧  𝑕𝑐+𝑕𝑠 . Moreover, the introduced assumption for 

the identical curvatures of two components leads to 

κ =
𝑀𝑐

𝐸𝑐𝐼𝑐
= −

1

𝑑𝑐
 𝜀𝑐𝑡 − 𝜀𝑐𝑏   where 𝑑𝑐  means the thickness 

of the concrete component. These two relations for M(x) 

and κ make it possible to express the curvature κ at a 

section located at distance xfrom the far end support in 

terms of internal force components as κ =  𝑀 𝑥 −
𝐹 𝑥 𝑕𝑜𝑟𝑧 (𝑕𝑐 + 𝑕𝑠) /  𝐸𝐼, where  𝐸𝐼 = 𝐸𝑐𝐼𝑐 + 𝐸𝑠𝐼𝑠. Eq. 

(8) yields the following ordinary linear differential equation 

for 𝐹 𝑥 𝑕𝑜𝑟𝑧  in advance. 

 

𝑑2𝐹 𝑥 𝑕𝑜𝑟𝑧
𝑑𝑥2

−
𝑘𝑏

𝐿𝑠

𝐸𝐼∗

𝐸𝐴∗  𝐸𝐼
𝐹 𝑥 𝑕𝑜𝑟𝑧  

= −
𝑘𝑏

𝐿𝑠

 𝑕𝑐 + 𝑕𝑠 

 𝐸𝑐𝐼𝑐 + 𝐸𝑠𝐼𝑠 
𝑀(𝑥) 

where 
1

𝐸𝐴∗
=

1

𝐸𝑐𝐴𝑐
+

1

𝐸𝑠𝐴𝑠
 

and 

𝐸𝐼∗ =  𝐸𝐼 + 𝐸𝐴∗(𝑕𝑐 + 𝑕𝑠)2 

(9) 

 

This constructed governing equation can also be 

rewritten as 

 

F′′  x + K ∙ F x = p(x) 

where 

K = −
𝑘𝑏

𝐿𝑠

𝐸𝐼∗

𝐸𝐴∗  𝐸𝐼
 

and 

p x = −
𝑘𝑏

𝐿𝑠

 𝑕𝑐 + 𝑕𝑠 

 𝐸𝑐𝐼𝑐 + 𝐸𝑠𝐼𝑠 
M x  

= −
𝑘𝑏

𝐿𝑠
∙ 𝑄 ∙ 𝑀(𝑥) 

(10) 

 

However, this approach is limited to the composite 

flexural members without axial deformations due to the pre-

stressing force or time-dependent deformations such as the 

creep and shrinkage of concrete. In the case of considering 

the axial deformations, all the derivation procedures from 

the numerical formulation to the force equilibrium 

mentioned in this paper should be modified to take into 

account the axial load effect. 

 

3.4 Solution procedure for bond-slip analysis 
 

After determination of internal forces at each loading 

step through the same solution procedures with those used 

in a typical non-linear finite element analysis (Gattesco 

1999), the bond-slip behavior in a composite structure is 

evaluated according to the analysis flow described in Fig. 5. 

As a result of the bond-slip analysis, the horizontal shear 

force developed along the interface of composite flexural 

members and the bond-slip distribution are determined and, 

in advance, the discontinuous strain distribution in the 

section can also be computed. 

Since the constructed governing equation of Eq. (10) is 

equivalent to the dynamic equation of motion M ∙ U′′  t +
C ∙ U′ t + K ∙ U t = p(t) with M = 1.0 and C = 0.0, it 

is possible to use one of the direct numerical integration 

methods that are popularly used in structural dynamic 

analysis (Chopra 2007). The average acceleration method of 

Newmark’s method on the basis of the non-iterative 

formulation is adopted in this paper, and more details of the 

solution procedure can be found elsewhere (Bathe 2007). 

Upon the assumptions that the horizontal force and 

corresponding relative slip are continuous along the span 

length and the structure is subdivided into n elements, the 

continuous distribution of moment determined through a 

numerical analysis such as a beam analysis can be assumed 
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to be linear at each element. Once the moment value 

required to evaluate the component of p(x) in Eq. (10) is 

determined, the transfer solution procedure is followed. 

Considering that the first step of the solution procedure 

for the dynamic equation is started from the evaluation of 

the initial acceleration U′′ (0) on the basis of the initial 

conditions of U′(0) and U(0), the solution procedure for 

Eq. (10) is initiated with the assumption for F′(0) and 

F(0) at one end of the first element in a structure, and gives 

increments for ∆F, ∆F′  and ∆F′′ at the first element. The 

superposition of these increments into the assumed initial 

conditions will serve as the boundary conditions for the 

second element, and this sequential solution procedure can 

advance until reaching the far end of the structure. If the 

obtained value at the other end point does not satisfy the 

given boundary condition, then the same solution procedure 

is restarted with the change in the assumption for F′(0) 

and F(0) . This iteration is repeated until reaching the 

converged result, and the flow diagram of Fig. 5 shows 

some details related to the analysis of slip behavior. 
 

 

4. Verification of proposed bond-slip model 
 
The verification of the proposed bond-slip model has 

been performed through comparison of the numerical 

results with experimental data for shear connectors and 

analytical solution for a composite beam. 

ABAQUS 6.17 (Simulia 2017) is used in the numerical 

analyses, and 8-node 3D solid elements (named C3D8R 

 

 

element in ABAQUS) are adopted in the numerical 

modeling of both steel and concrete components. Moreover, 

to ensure consistency in the numerical modeling of all of 

the specimens considered in this paper, the mesh size of 

each finite element is based on an equal length of 20 mm 

regardless of the difference in the specimen size. The 

dimensions of 20 mm × 20 mm × 20 mm are chosen for the 

modeling of the concrete matrix, and this size is determined 

through a convergence test for the FE mesh size. The same 

principle underlying numerical modeling is also applied to 

the steel plate. 

 

4.1 Slip behavior of stud shear connectors 
 

First, in order to investigate the validity of the proposed 

slip model, the experimental results of stud shear 

connectors tested by Shim et al. (2004) have been 

compared. This test specimen was designed according to 

the description for the standard push-out test specimen 

defined in Eurocode 4 (2004), and Figs. 6 and 7 show 

details of the configuration and corresponding finite 

element idealization of the test specimen. In particular, 

since bonding at the interface between the concrete slab and 

the steel beam was prevented by greasing the flange of the 

steel beam because the object of this experiment was to 

derive the load-slip relation of a stud shear connector, no 

bond between the steel plate and concrete matrix was 

assumed in numerical modeling of the specimen. The 

compressive strength of concrete is 49.3 MPa, and the shear 

stud with a diameter of 25 mm has a yield strength of 328 

 

Fig. 5 Flow chart for bond-slip analysis 
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Fig. 6 Configuration of test specimen 

 

 

  

 

(a) FE model (b) Mesh of FE model (c) Mesh of studs 

Fig. 7 Finite element idealization 

 

 

 

MPa and a tensile strength of 426 MPa. In advance, 

𝐸𝑐 = 40 GPa and 𝐸𝑠 = 213 GPa are used for concrete and 

steel components upon the experiment. More details related 

to the experiment can be found elsewhere (Shim et al. 

2004). 

Fig. 8 shows the numerical prediction of the developed 

slip (Curve B in Fig. 8) compared with the experimental 

data (Curve A in Fig. 8) and it indicates that the application 

of the finite element idealization adopted in this paper is 

sufficient to exactly simulate the slip behavior by the shear 

studs along the interface between the steel and concrete 

components. In advance, to simplify the numerical 

formulation for the slip behavior, the linearized load-slip 

relation of Curve C in Fig. 8 is introduced and Curve D 

shows the corresponding numerical results obtained by 

assuming a perfect bond between the steel and concrete 

components upon the use of the equivalent steel stiffness at 

the flange area of the steel beam. For reference, moreover, 

the numerical prediction obtained by assuming a perfect 

bond along the interface without considering the equivalent 

steel stiffness is added as Curve E. 

 

 

 

 

Fig. 8 Load-slip relation of shear stud 

This figure not only gives very satisfactory agreement 

between the results of the analyses and experimental data 

but also demonstrates the applicability of the introduced 

model of the equivalent steel stiffness. In particular, the 

introduced model, which does not use double nodes, can 

yield significant savings in the number of degrees of 

freedom required to account for the bond-slip effect and 

will remove the difficulty arising in constructing a FE mesh 

in three dimensional FE modeling. On the other hand, this 

figure also shows that the numerical results determined on 

the basis of the perfect bond assumption present remarkable 

differences from the experimental data, and this indicates 

that the perfect bond assumption has a limitation in 

predicting the structural behavior of composite structures. 

Accordingly, the bond-slip effect must be considered to 

exactly evaluate the composite action of structures. In 

advance, the equivalent steel stiffness can effectively be 

used to simulate the bond-slip behavior without taking the 

double nodes. 
 

4.2 Slip behavior of composite flexural beam 
 

Because there is little experimental data for the slip 

behavior along the interface of composite flexural members, 

comparisons of the partial slip behavior for the verification 

of the numerical model mentioned in Eq. (10) were 

conducted with the analytical results introduced by Oehlers 

and Bradford (2013), Kwak and Hwang (2010). The first 

example structure is a simply supported one span beam with 

a span length of 12 m that is subjected to a concentrated 

load of 9.8 kN at the mid-span. The geometry and sectional 

dimensions are shown in Fig. 9, and the material properties 

used are 𝐾𝑠/𝐿𝑠 = 150  MPa , 𝐸𝑐 = 33.3 GPa  and 

𝐸𝑠 = 200 GPa . The concrete slab and steel beam are 

assumed to behave linearly up to its compressive strength 

and yield strength, respectively, as was assumed in a 

previous study (Kwak and Hwang 2010). 

As shown in Fig. 10, the numerical results obtained in 

this paper show good agreement with the analytical 

solutions by Oehlers and Bradford (2013), and the 

difference in the maximum structural response between the 

numerical results and those of previous researchers (Roberts 

1985) is hardly noticeable. This means that the introduced 

numerical model can effectively simulate the slip behavior 

along the interface of composite flexural members. 

Moreover, differently from the analytical approach which 

requires the predetermined known boundary conditions to 

obtain a closed form solution, the introduced numerical 

model has no restriction in application to various structures 

subjected to arbitrary lateral loadings due to the use of the 

iterative solution scheme. 
 

 

 

Fig. 9 Cross section of the example structure 
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(a) Deflection 
 

 

(b) Slip 

Fig. 10 Structural response of the example structure 

 

 

 

  

Fig. 11 Two-span continuous composite beam CCB4 

 

 

 

In the case of this example structure, the boundary 

conditions for the horizontal shear force are already known 

at both end points ( F 0 = 0  and F L = 0 ), and the 

iteration starts with the initial assumption for the slip at 

x = 0 (F′ 0 = 0). The sequential application of Eq. (10) 

from the first element to the last element then yields the 

horizontal force and slip at the other end point at x = L. As 

one boundary condition at that end is already known 

(F 0 = 0), the initial assumption of F′ 0  needs to be 

corrected until F(L/2) = 0  is satisfied based on the 

boundary condition and symmetry. More details related to 

the iteration procedure can be found in Fig. 5. 

In addition, a comparison of the two-span continuous 

beam CCB4 in Fig. 11, which was tested by Lizhong et al. 

(2008) and numerically analyzed by Hwang and Kwak 

(2013), is conducted. Two concentrated loads of P = 20 kN 

are applied at the middle of each span, and the values of the 

modulus of elasticity for concrete and steel are assumed to 

be the same as those used in the previous example structure. 

However, studs in beam CCB4 are equipped at different 

distances for three areas: 𝐿𝑠 = 90 mm from the end 

support to the position where a load is applied; 𝐿𝑠 =
70 mm from the load-position to the position where the 

 

 

(a) Slip distribution 
 

 

(b) Horizontal shear flow distribution 

Fig. 12 Slip and shear flow distribution of beam CCB4 

 

 

 

 
bending moment is zero; and 𝐿𝑠 = 110 mm from the zero-

moment position to the interior support. 

Fig. 12 represents the slip and horizontal shear flow 

distribution. Notably, the slip distribution show a good 

agreement between both analytical results in spite of using 

the different solution procedure. Fig. 12(a) shows that, in 

the case of the continuous beam, the slip values developed 

at some points within the span (point A in Fig. 12(a)) are 

larger than those at the far end positions(point B in Fig. 

12(a)). Fig. 12(b) shows that direct application of a linear 

elastic analysis for the horizontal shear flow q x = V(x) ∙
𝑄𝑇/𝐼𝑇 assuming a full connection along the interface to a 

partially composite beam may cause improper arrangement 

of the shear connectors, where the subscript T denotes the 

transformed section. A beam with a partial shear connection 

or with flexural shear studs represents the four extremal 

values of horizontal shear flow at the far end supports and 

two points within the span, while a beam with full shear 

connections represents a constant distribution between the 

loading point and support. Since the partially composite 

beams give very little horizontal shear flow at the interior 

support, the difference in horizontal shear force will be 

greatest at this position, and this will accompany an 

excessive arrangement of shear connectors at the region 

around the interior support in the case of partially 

composite beams. Accordingly, the slip behavior should be 

considered in order to reach a more reasonable shear design 

of partially composite beams. 
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Fig. 13 Simply supported composite beam 

 

 

 

Fig. 14 Load-deflection relation of beam E1 

 

 

 

5. Numerical applications 
 

Additional comparison of the introduced numerical 

model with experimental data is conducted for three 

different steel-concrete composite structures that represent 

typical structural behaviors according to the bond-slip 

characteristics. These specimens are Beam E1, Beam 

CTB4, and Sandwich Plate experimented by Chapman and 

Balakrishnan (1964), Ansourian (1981), and Shin and 

Hwang (2016), respectively. The material properties of each 

specimen are listed in Table 1, and the finite element and its 

mesh size adopted in numerical modeling of each specimen 

are the same as those mentioned before (see 4. 

Experimental Verification). 

The first example structure is a simply supported one-

span beam subjected to a concentrated load P at the 

midspan. The details of the geometry including the 

placement of the shear studs and cross-sectional dimensions 

are shown in Fig. 13. 

 

 

 

Fig. 15 Slip distribution of beam E1 along the span 

 

 

Fig. 14 shows a comparison of the numerical results 

with experimental data (Chapman and Balakrishnan 1964) 

for the midspan deflection. Good agreement between the 

experiment and analysis is observed, regardless of the 

consideration of the bond-slip effect along the interface. In 

particular, the numerical results obtained by considering the 

bond-slip effect and by the perfect bond assumption are 

almost the same, and this result seems to be caused by the 

location of the interface, where bond-slip between the steel 

and concrete components is expected. Since the interface is 

located very closely to the centroid of a composite section 

in the case of this example structure, relatively large slip 

cannot develop under the flexural behavior. 

The bond-slip behavior can also be evaluated on the 

basis of the introduced numerical model even though the 

developed slip is expected to be small. Fig. 15 represents 

the bond-slip distribution along the span with an increase of 

the applied load. As shown in this figure, the slip 

distribution is enlarged in proportion to the magnitude of 

the applied load up to reaching the yielding of the steel 

girder, but the yielding of the girder accompanies larger slip 

at the interface and the nonlinear slip distribution as well, 

because the flexural deformation rapidly increases after 

yielding of the steel beam. 

The next example structure is a two-span continuous 

composite beam subjected to two identical concentrated 

loads at each midspan, and details of this specimen are 

presented in Fig. 16. The responses represented in Fig. 17 

compare the load-displacement relations obtained by the 

proposed numerical model with the experimental data, and 

Table 1 Material properties of test specimens 

Specimen   E1 CTB4 SCP 107 

Concrete 

Modulus of elasticity (MPa)  33000 33000 43000 

Compressive strength (MPa)  32.7 34.0 48.32 

Tensile strength (MPa)  3.07 3.15 2.96 

Steel 

Modulus of elasticity (MPa)  206000 206000 210000 

Yield stress (MPa) 
Flange 250 236 460 

Web 297 238  

Ultimate tensile stress (MPa) 
Flange 465 393 600 

Web 460 401  
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Fig. 16 Two span continuous composite beam CTB4 

 

 

 

Fig. 17 Load-deflection relation of beam CTB4 

 

 

 

Fig. 18 Slip distribution of beam CTB4 along the span 

 

 

the bond-slip distribution along the span with an increase of 

the applied load is represented in Fig. 18. The results of the 

proposed numerical model, which include the partial bond-

slip effect display very satisfactory agreement with the 

experimental data. Meanwhile, the numerical results 

without consideration of the bond-slip effect upon the 

perfect bond assumption represent an overestimation of the 

resisting capacity of the example structure. In particular, the 

difference between the two numerical results of considering 

and ignoring the bond-slip effect increases when compared 

with that obtained for the previous example structure Beam 

E1. This appears to be caused by the dominant slip behavior 

developed at the regions located nearby the interior support. 

The same comparison is conducted for a steel-concrete 

panel (SCP). This panel is designed to test the flexural 

resisting capacity of a SCP because it will be used as a part 

of a composite liquid natural gas (LNG) tank. To reserve the 

composite action between the exterior steel plates and the 

interior concrete matrix, steel studs are uniformly placed in 

80 mm × 80 mm grids except the corner studs, as shown in 

 
 

 

Fig. 19 Geometry and section dimensions for SCP 

 

 

 

Fig. 20 Load-deflection relation of SCP 

 

 

Fig. 19. Two concentrated loads are symmetrically applied, 

and details related to the composition of the SCP section 

can be found in Fig. 19. As shown in Fig. 19, steel plates 

are placed at the bottom and top surfaces, so the strength 

reduction due to buckling of the steel plate on top surface is 

investigated. Nevertheless, the yield strength of steel is not 

modified because the specimen has a dense arrangement of 

studs and critical stress is larger than the yield strength of 

the steel. 

Fig. 20 compares the analytical and experimental results 

for the midspan deflection. Similarly to the previous results, 

the inclusion of the bond-slip effect gives more improved 

results in estimating the structural response with load 

increase up to the ultimate load. In particular, this figure 

shows that SCP is still dominantly affected by the bond-slip 

effect in spite of the placement of many shear studs. 

However, because of the lack of experimental data for the 

slip behavior, additional comparison related to the slip 

distribution along the span was not conducted. More 

examples of structural behavior of SCP can be found in the 

companion paper. (Lee et al. 2019) 

 
 

6. Conclusions 
 

This paper introduces a simplified numerical model to 

take into account the bond-slip effect without using a 

double node in steel-concrete composite structures. Unlike 

many other numerical models that have restrictions in the 
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numerical modeling when the bond-slip effect is 

considered, the proposed model, which uses the equivalent 

modulus of elasticity for steel, can yield significant savings 

in the number of nodes needed to account for the slip 

behavior and can be easily implemented into 

commercialized programs including ABAQUS and ADINA 

as a user defined material model. The validity of the 

proposed numerical model is verified through correlation 

studies between the analytical results and experimental data, 

and the additional numerical analyses yield the following 

conclusions: (1) the inclusion of the bond-slip effect is 

important to precisely simulate the structural response of 

partially bonded composite flexural structures; (2) the bond-

slip effect is minor when the the steel-concrete interface is 

located close to the centroid of a composite section; and (3) 

the proposed numerical model can be effectively used to 

simulate the bond-slip behavior, while remarkably reducing 

the complexity in numerical modeling of structures. 
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