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1. Introduction 

 

The stiffened FG cylindrical shells have more 

application in a wide range of engineering structures, 

including submarines, bridges, aircraft, satellites, ships and 

offshore structures. Thus, research in the field of these 

structures vibration analysis has been interested in scientists 

from many years ago, and a great number of researches 

have been done on vibration analysis of stiffened shell 

structures. 

Free vibration behavior of FG porous cylindrical shells 

by using a sinusoidal shear deformation theory (SDT) and 

the Rayleigh-Ritz method was investigated by Wang and 

Wu (2017). Lee and Kwak (2015) presented the vibration 

analysis of a cylindrical shell using the Rayleigh-Ritz 

method. They constructed the model of dynamic based on 

the Donnell–Mushtari theory. Sofiyev et al. (2017) analyzed 

the non-linear dynamic analysis of composite cylindrical 

shells with the elastic mediums and using the SDT. Non-

linear dynamic analysis of composite cylindrical shells 

under the periodic radial and axial loading was invoked by 

Dey and Ramachandra (2017). Free vibration analysis of 

FG cylindrical shells with different shell theories using the 

semi-analytical method was investigated by Khayat et al. 

(2018). Mochida et al. (2012) analyzed the vibration of 

shallow-shells with doubly curved by using the Galerkin-

method for several boundary conditions. Darabi et al. 

(2008) used the large deflection theory for analyzing the 
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dynamic response of FG shells with axial compression. The 

stability behavior of FG cylindrical shells under periodic 

axial loading was studied by Sofiyev (2005). In this work, 

the Love’s shell theory and Lagrange–Hamilton type 

principle was used. Sheng and Wang (2008) proposed the 

vibration analysis of fluid-conveying FG cylindrical shell 

and resting on an elastic foundation under thermo-

mechanical loading. Choe et al. (2018b) investigated the 

vibration behavior of the composite shell by considering 

axis-symmetric geometry with doubly-curved using the 

unified Jacobi-Ritz method. Also, Choe et al. (2018a) 

proposed the dynamic behavior of coupled FG doubly-

curved revolution shells. The effect of thermal gradient load 

on thermo-elastic vibrational behavior of sandwich plates 

reinforced by Carbon Nanotube agglomerations was 

analyzed by Safaei et al. (2018). Malikan et al. (2018) 

addressed the effect of sinusoidal corrugated geometries on 

the vibrational response of viscoelastic nanoplates. Safaei et 

al. (2019) investigated the Frequency-dependent forced 

vibration analysis of nanocomposite sandwich plate under 

thermo-mechanical loads. Qin et al. (2018) reported the free 

vibration analysis of rotating cylindrical shells coupled with 

moderately thick annular plate. The vibration analysis of 

FG composite shell reinforced by carbon nanotube was 

presented by Zghal et al. (2018). Shen et al. (2018) 

presented the vibration response of FG reinforced by 

graphene for composite cylindrical panels with elastic 

medium under thermal loading. Three-dimensional free 

vibration analysis of cylindrical shells with continuous 

grading reinforcement was presented by Yas and Garmsiri 

(2010). Kiani et al. (2018b) analyzed the free vibration 

behavior of FG-CNT reinforced composite skew cylindrical 

shells. They used the first shear deformation theory (FSDT) 

and Chebyshev-Ritz formulation. Javed et al. (2016) 

addressed the free vibration behavior of composite 
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cylindrical shells with non-uniform thickness walls. Kiani et 

al. (2018a) presented the free vibration study of composite 

conical panels reinforced with FG-CNTs. The higher order 

thermo-elastic analysis of FG-CNTRC cylindrical vessels 

surrounded by a Pasternak foundation was investigated by 

Mohammadi et al. (2019). 

In the studies mentioned above the effects of the 

stiffeners on dynamic analysis of cylindrical shells have not 

been considered. Some studies have been done on the 

dynamic behavior of cylindrical shells reinforced by 

stiffeners. 

Dung and Nam (2014) presented the dynamic stability 

of stiffened FG cylindrical shells with elastic foundations 

subjected to external loading using the Galerkin method. 

The non-linear dynamic behaviors of imperfect stiffened 

FG cylindrical shells with elastic foundations under 

damping and mechanical loads by using the FSDT, and 

Runge-Kutta method were studied by Duc and Thang 

(2015). Chen et al. (2015) investigated the vibration 

behavior of stiffened conical shells by using the Flügge 

theory. Duc et al. (2017) presented the vibration analysis of 

the orthogonal stiffened FG elliptical shells with elastic 

foundation under thermal loading. The free vibration 

demeanor of orthogonally stiffened cylindrical shells was 

investigated by Torkamani et al. (2009). They used the 

similitude theory for developing the scaling laws. Nejati et 

al. (2017) studied the thermal buckling of nanocomposite 

stiffened cylindrical shells reinforced by functionally 

graded wavy carbon nanotubes with temperature-dependent 

properties. 

A review of studies shows that few researches have been 

presented on the free vibration of stiffened FG cylindrical 

shells utilizing analytical approaches. Soong (1969) 

emphasizes the importance of the spiral stiffener, as 

follows: “In the stability analysis of stiffened shells, the 

field has been completely devoted to the conventional-type 

stiffened shells, i.e., ring frames in the circumferential 

direction and/or stringers in the axial direction. The 

advantages of their geometric simplicity are obvious from 

an engineering point of view, but whether the conventional 

stiffening is most efficient as a least-weight design is 

questionable. Since the conventional stringers and rings are 

designed to resist deformations in the axial direction and the 

circumferential direction, respectively, their effectiveness 

cannot be fully utilized if the critical mode for a particular 

type of load is such that the average deformation occurs in a 

direction inclined to these two principal axes. An obvious 

example is a stringer stiffened cylinder under external 

pressure and, to a less extent, a ring- stiffened cylinder 

subjected to axial compression or a ring-and-stringer-

stiffened cylinder under torsion. With the rapid advance of 

space technology and the extreme importance of weight 

saving in aeronautical and space structures, other feasible 

stiffener arrangements should be explored for possible 

gains”. The main innovation of the present work is to study 

the influence of spiral stiffener on the behavior of non-

linear free vibration of FG cylindrical shells, which yields 

new and interesting results. The modeling of spiral stiffener 

in non-linear dynamic analysis of FG cylindrical shells was 

first proposed by the authors of this paper. 

In the present study, the Galerkin method is adopted for 

investigation of the non-linear free vibration behavior of 

stiffened FG cylindrical shells reinforced by spiral 

stiffeners, embedded in elastic media with damping force. 

The elastic foundation is formulated based on two linear 

parameters (Winkler and Pasternak) and a cubic 

nonlinearity. The material constitutive of the shell and 

stiffeners is continuously changed along the thickness 

direction based on a simple power law distribution. For 

modeling of shells, the classical plate theory of shells and 

smeared stiffeners technique are used. The presented results 

are compared with those available in the literature. The 

effects of the stiffener’s angle, geometrical and material 

parameters, elastic foundation, and damping coefficient are 

investigated on the vibration response of SSFG cylindrical 

shells. 

 

 

2. The basic formulation 
 

2.1 FG material properties 
 

The SSFG cylindrical shell with elastic foundation and 

linear damping that the coordinate system (x, y, z) is 

illustrated in Fig. 1, which the axes of x, y and z are the 

axial, circumferential, and radial coordinate variables of the 

SSFG cylindrical shell, respectively. The cylindrical shell 

has radius R, thickness h and length L and the stiffeners 

have thickness  hs , width d, spacing s and angle of 

stiffeners 𝜃, 𝛽. The cylindrical shell and the stiffeners are 

considered to consist of metals and ceramics mixture in two 

situations. The first case with external stiffeners, the inner 

surface of the cylinder shell (𝑧 = ℎ/2) is rich metal, and the 

outer surface (𝑧 = −ℎ/2) is rich ceramic and in order to 

keep material continuity, the lower surface of the stiffener is 

made of ceramic and the upper surface is made of metal. In 

the second case, a reverse order is used for internal 

stiffeners. 

The Young’s modulus (𝐸) and density (𝜌) of the FG 

shell and stiffeners can be written as follows (Foroutan et 

al. 2012, He et al. 2012, Dung and Nam 2014) 

 

Shell 

 

𝐸 𝑧 = 𝐸𝑜 + (𝐸𝑖 − 𝐸𝑜)  
2𝑧 + ℎ

2ℎ
 
𝑘

𝜌 𝑧 = 𝜌𝑜 + (𝜌𝑖 − 𝜌𝑜)  
2𝑧 + ℎ

2ℎ
 
𝑘

 

; −
ℎ

2
≤ 𝑧 ≤

ℎ

2
 (1a) 

 

 

 

 

Fig. 1 Presentation SSFG cylindrical shell resting on 

damping and elastic foundation 
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Stiffeners 
 

𝐸𝑠 𝑧 = 𝐸𝑖 +  𝐸𝑜 − 𝐸𝑖  
2𝑧 + ℎ

2ℎ𝑠
 
𝐾

 

𝜌𝑠 𝑧 = 𝜌𝑖 +  𝜌𝑜 − 𝜌𝑖  
2𝑧 + ℎ

2ℎ𝑠
 
𝐾

 

External: −  
ℎ

2
+ ℎ𝑠 ≤ 𝑧 ≤ −

ℎ

2
  

Internal: 
ℎ

2
≤ 𝑧 ≤  

ℎ

2
+ ℎ𝑠  

(1b) 

 

where 𝜌, 𝜌𝑠 , 𝐸 , 𝐸𝑠  and 𝑘, 𝐾 are the density, Young’s 

modulus and material index of the FG shell and stiffeners, 

respectively. 

 

2.2 The theoretical formulation 
 

2.2.1 Governing equations 
With regard to the relations of non-linear von Kármán 

strain- displacement Brush and Almroth (1975), the 

components of strain on the middle plane of cylindrical 

shells can be given by 
 

 

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

 =

 
 
 

 
 𝑢,𝑥 +

1

2
𝑤,𝑥

2

𝑣,𝑦 −
𝑤

𝑅
+

1

2
𝑤,𝑦

2

𝑢,𝑦 + 𝑣,𝑥 + 𝑤,𝑥𝑤,𝑦 
 
 

 
 

  &   

 𝜒𝑥
 𝜒𝑦
𝜒𝑥𝑦

 =  

𝑤,𝑥𝑥

𝑤,𝑦𝑦

𝑤,𝑥𝑦

  (2) 

 

where 𝑢 = 𝑢 𝑥, 𝑦, 𝑡 , 𝑣 = 𝑣 𝑥, 𝑦, 𝑡 , 𝑤 = 𝑤 𝑥, 𝑦, 𝑡  are the 

components of displacement through the axes of 𝑥, 𝑦, 𝑧, 

respectively. 𝜀𝑥
0, 𝜀𝑦

0 , and 𝛾𝑥𝑦
0  are the normal and shear 

strains at the middle plane, respectively and 𝜒𝑥 , 𝜒𝑦 , 𝜒𝑥𝑦  are 

the curvatures and twist change of the shell. 

The components of strain through the thickness at a 

distance 𝑧 from the middle plane of the shell are depicted 

by 
0

0

0

 

 

2

x x x

y y y

xy xy xy

z

  
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  

    
    

      
     
      

(3) 

 

According to Eq. (2), the compatibility equation can be 

presented as follows 

 
0 0 0 2

, , , , , , ,/x yy y xx xy xy xx xy xx yyw R w w w       
 

(4) 

 

The relations of stress-strain for FG cylindrical shells 

can be written as follows 
 

   

   

 

 

2 2

2 2

0
1 1

0
1 1

0 0
2 1

sh
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y y

sh

xy xy

E z E z
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E z



 
 


 

 
 



 
 

     
    

     
     

    
 

    

(5) 

where 𝜈  is the Poisson’s ratio and considered to be 

constant. 𝜍𝑥
𝑠ℎ , 𝜍𝑦

𝑠ℎ , and 𝜏𝑥𝑦
𝑠ℎ  are normal stress in axial (𝑥), 

circumferential ( 𝑦 ) directions and shearing stress of 

cylindrical shell, respectively. 

The stress-strain relations of the spiral stiffeners are as 

follow (Shaterzadeh and Foroutan 2016) 
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(7) 

 

where the 𝛾 is the sum of the two angles of stiffeners 

( 𝛾 = 𝜃 + 𝛽 ) and 𝜍𝑥
𝑠 , 𝜍𝑦

𝑠  and 𝜏𝑥𝑦
𝑠  are the normal and 

shearing stress components of the stiffeners, respectively. 

To consider the effect of the stiffeners on the shell, the 

smeared stiffeners technique is used. By integrating the 

stress-strain relations, the resultant forces, and moments for 

SSFG cylindrical shells can be obtained (Shaterzadeh and 

Foroutan 2016). 

The equilibrium equations of cylindrical shells with 

regard to the classical shell theory that in this, transverse 
shear deformation is ignored and assumed 𝑢 ≪ 𝑤  and 

𝑣 ≪ 𝑤, 𝜌1𝑢,𝑡𝑡 → 0, 𝜌1𝑣,𝑡𝑡 → 0 (Volmir 1972, Bich et al. 

2013, Ghiasian et al. 2013, Vasiliev and Morozov 2018) 
 

𝑀𝑥 ,𝑥𝑥
+ 2𝑀𝑥𝑦 ,𝑥𝑦

+ 𝑀𝑦 ,𝑦𝑦
+ 𝑁𝑥𝑤,𝑥𝑥 + 2𝑁𝑥𝑦𝑤,𝑥𝑦  

+𝑁𝑦  𝑤,𝑦𝑦 +
1

𝑅
 − 𝑘𝑤 + 𝑘𝑠 𝑤,𝑥𝑥 + 𝑤,𝑦𝑦   

+𝑘𝑛𝑙𝑤
3 = 𝜌1𝑤,𝑡𝑡 + 2𝜌1𝑐𝑤,𝑡  

(8) 

 

where 𝑘𝑠 , 𝑘𝑤 , and 𝑘𝑛𝑙  are the Pasternak, Winkler, and 

non-linear cubic parameters of the elastic foundation, 

respectively. Also, 𝑐 is damping coefficient and the mass 

density 𝜌1 can be calculated as 
 

1 2
1 1

i o o i s

o i

dh
h

k K S

   
  

    
      

      

(9) 
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Substituting the force-moment relations versus to strain 

relations into Eq. (4) (compatibility equation) and the third 

part of Eq. (8) and using the Eq. (2) and a stress function 

(𝜑), the following equations of the system can be derived as 

(Shaterzadeh and Foroutan 2016) 
 

𝐴11
∗ 𝜑,𝑥𝑥𝑥𝑥 +  𝐴33

∗ − 𝐴12
∗ + 𝐴21

∗  𝜑,𝑥𝑥𝑦𝑦 + 𝐴22
∗ 𝜑,𝑦𝑦𝑦𝑦  

+𝐴21
∗∗𝑤,𝑥𝑥𝑥𝑥 +  𝐴11

∗∗ + 𝐴22
∗∗ − 2𝐴36

∗∗  𝑤,𝑥𝑥𝑦𝑦  

+𝐴12
∗∗𝑤,𝑦𝑦𝑦𝑦 +

1

𝑅
𝑤,𝑥𝑥 +  𝑤,𝑥𝑦

2 −𝑤,𝑥𝑥𝑤,𝑦𝑦   

−2𝑤,𝑥𝑦 + 𝑤,𝑥𝑥 + 𝑤,𝑦𝑦 = 0 

(10) 

 

𝜌1𝑤,𝑡𝑡 + 2𝜌1𝑐𝑤,𝑡 + 𝐵11
∗∗𝑤,𝑥𝑥𝑥𝑥  

+ 𝐵12
∗∗ + 𝐵21

∗∗ + 4𝐵36
∗∗ 𝑤,𝑥𝑥𝑦𝑦  

 +𝐵22
∗∗𝑤,𝑦𝑦𝑦𝑦 − 𝐵21

∗ 𝜑,𝑥𝑥𝑥𝑥  

− 𝐵11
∗ + 𝐵22

∗ − 2𝐵36
∗  𝜑,𝑥𝑥𝑦𝑦  

 −𝐵12
∗ 𝜑,𝑦𝑦𝑦𝑦 −

1

𝑅
𝜑,𝑥𝑥 − 𝜑,𝑦𝑦𝑤,𝑥𝑥 + 2𝜑,𝑥𝑦𝑤,𝑥𝑦  

−𝜑,𝑥𝑥𝑤,𝑦𝑦 + 𝑘𝑤𝑤 − 𝑘𝑠 𝑤,𝑥𝑥𝑤,𝑦𝑦  − 𝑘𝑛𝑙𝑤
3 = 0 

(11) 

 

The coefficients 𝐴𝑖𝑗
∗ , 𝐴𝑖𝑗

∗∗, 𝐵𝑖𝑗
∗  𝑎𝑛𝑑 𝐵𝑖𝑗

∗∗  are defined in 

Appendix. 

 

2.2.2 Boundary conditions 
Suppose the SSFG cylindrical shell is simply supported 

surrounded by the linear and non-linear elastic foundation. 

So, boundary conditions of the cylindrical shell are 

considered as 
 

𝑤 = 0,  𝑀𝑥 = 0,   𝑎𝑡  𝑥 = 0;   𝐿 (12) 
 

The deflection of the cylindrical shells is considered as 

(Volmir 1972, Bich et al. 2012) 
 

 
π

sin sin
m x ny

w f t
L R


 

(13) 

 

where 𝑓 𝑡  is the amplitude and 𝑛,𝑚 denote the number 

of full wave and half wave in the circumferential and axial 

directions, respectively. 

To obtain the stress function  𝜑 , the Eq. (13) is 

substituted into Eq. (10) and then the resulting partial 

differential equation is solved. If Eq. (11) is denoted by 

Γ = 0, with substituting 𝜑 and 𝑤  according to 𝑓 in Γ, 

and applying the Galerkin’s method in the ranges 

0 ≤ 𝑦 ≤ 2π𝑅 and 0 ≤ 𝑥 ≤ 𝐿, we have 
 

𝑤 =   sin
𝑚π𝑥

𝐿
sin

𝑛𝑦

𝑅

2𝜋𝑅

0

Γ𝑑𝑦𝑑𝑥
𝐿

0

 (14) 

 

After carrying out Galerkin’s orthogonality integration 

appeared in Eq. (14), the discretized equation of motion is 

obtained as 
 

𝑓  𝑡 + 2𝑐𝑓  𝑡 +  𝑎1 + 𝑎2𝑘𝑤 + 𝑎3𝑘𝑠 𝑓 𝑡  

+ 𝑎4 + 𝑎5𝑘𝑛𝑙  𝑓
3 𝑡 = 0 

(15) 

where 
 

𝑎1 =
1

𝐿4𝜌1
 𝐷 +

𝐵𝐵∗

𝐴
 ,   𝑎2 =

1

𝜌1
 

𝑎3 =
 𝜆𝑛 2 +  𝑚𝜋 2

𝐿2𝜌1
,   𝑎4 =

𝐺

𝐿4𝜌1
,   𝑎5 =

9

16𝜌1
 

(16) 

 

The constant coefficients 𝐴, 𝐵, 𝐵∗, 𝐷  and 𝐺  are 

defined in Appendix. 
 

 

3. Vibration analysis 
 

3.1 Linear analysis 
 

The linear form of Eq. (15) for investigation of free 

vibration of SSFG cylindrical shells without damping, 

becomes 
 

𝑓  𝑡 +  𝑎1 + 𝑎2𝑘𝑤 + 𝑎3𝑘𝑠 𝑓 𝑡 = 0 (17) 

 

The natural frequency of SSFG cylindrical shells is 

 

 1 2 3mn w sa a k a k   
 

(18) 

 

3.2 Non-linear analysis 
 

Consider the SSFG simply supported cylindrical shell 

with an elastic foundation and linear damping. 

If Eq. (15) is denoted by Λ = 0, by considering 𝑓 𝑡 =
𝜂𝑠𝑖𝑛 𝛺𝑡 and substituting in Λ, based on procedure like 

Galerkin’s method in the ranges 0 ≤ 𝑡 ≤
π

2𝜔
 we have 

 

 sinΩ𝑡Λ𝑑𝑡
𝜋 2𝜔 

0

 (19) 

 

After carrying out integration appeared in Eq. (19), the 

relation of frequency versus amplitude of SSFG cylindrical 

shell with an elastic foundation is obtained 
 

   2 2

1 2 3 4 5

4 3
Ω Ω

4
w s nlc a a k a k a a k 


     

 
(20) 

 

where 𝜂 is the non-linear vibration amplitude of 𝑓 𝑡 . 
By defining non-dimensional frequency ratio 

( 𝜉 = 𝛺 𝜔𝑚𝑛 ) in Eq. (20), the relation of frequency-

amplitude for non-linear free vibration is 
 

 4 52 2

2

4 3
ξ ξ 1

4

nl

mn mn

a a kc


 


  

 

(21) 

 

 

4. Numerical results 
 

4.1 Validation of this study 
 

To validation of the present study, in Tables 1 and 2, the 

obtained isotropic cylindrical shells natural frequencies with 

and without elastic foundation are validated with those 
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Table 1 Comparison of the natural frequency of cylindrical 

shells with Winkler foundation 

(𝑚 = 1, 𝐿 = 1 m, 𝑅 = 0.5 m, 𝐸 = 7 × 1010 N m2,  
𝜈 = 0.3, 𝑑 = 0.0025 m, ℎ𝑠 = 0.01 m) 

𝑛 Present 
Paliwal et al. (1996) Sofiyev (2009) 

 Erorrs (%)  Erorrs (%) 

1 0.67480 0.67882 0.60 0.67921 0.65 

2 0.36223 0.36394 0.47 0.36463 0.66 

3 0.20670 0.20526 0.70 0.20804 0.65 

4 0.13747 0.12745 7.29 0.13824 0.56 
 

 

 
Table 2 Comparison of the natural frequencies of 

cylindrical shell (𝐿 = 0.2 m, 𝑅 = 0.1 m, ℎ =
0.247 × 10−3 m,𝑚 = 1, 𝐸 = 7.12 × 1010 N m2 , 
𝜌 = 2796 kg m3 , 𝜈 = 0.31) 

m n Present 
Qin et al. (2017) Pellicano (2007) 

 Errors (%)  Errors (%) 

1 7 486.0 484.6 0.2 484.6 0.2 

1 8 490.3 489.6 0.1 489.6 0.1 

1 9 545.8 546.2 0.07 546.2 0.07 

1 6 555.8 553.3 0.4 553.3 0.4 

1 10 634.8 636.8 0.3 636.8 0.3 

2 10 962.3 968.1 0.5 968.1 0.5 

2 11 976.6 983.4 0.6 983.4 0.6 
 

 

 
Table 3 Comparison of the natural frequencies of stiffened 

FG cylindrical shell resting on a linear elastic 

foundation (𝐿 = 0.75 m, 𝑅 = 0.5 m, 𝑅 ℎ = 250, 

𝑚 = 1, 𝐸𝑚 = 7 × 1010 N m2 , ρm = 2702 kg/
m3, 𝐸𝑐 = 38 × 1010 N m2 , 𝜌𝑐 = 3800 kg m3 ,
𝜈 = 0.3, 𝑑𝑠 = 𝑑𝑟 = 0.0025 m, ℎ𝑠 = ℎ𝑟 = 0.01 m,
𝑘 = 1, 𝐾 = 0) 

 Present 
Dung and 

Nam (2014) 
Errors 

(%) 

Un-stiffened 
   

kw = 105 ks = 104 1781.01 1781.01 0.00 

kw = 105 ks = 5 × 104 2121.24 2121.24 0.00 

kw = 106 ks = 104 1819.45 1819.45 0.00 

kw = 106 ks = 5 × 104 2153.62 2153.62 0.00 

External stiffeners    

kw = 105 ks = 104 2555.62 2555.62 0.00 

kw = 105 ks = 5 × 104 2689.42 2689.42 0.00 

kw = 106 ks = 104 2574.67 2574.67 0.00 

kw = 106 ks = 5 × 104 2707.53 2707.53 0.00 

External stiffeners    

kw = 105 ks = 104 2568.27 2568.27 0.00 

kw = 105 ks = 5 × 104 2665.83 2665.83 0.00 

kw = 106 ks = 104 2587.23 2587.23 0.00 

kw = 106 ks = 5 × 104 2684.10 2684.10 0.00 
 

present by Paliwal et al. (1996), Sofiyev (2009), Pellicano 

(2007) and Qin et al. (2017), respectively. Also, in Tables 3, 

the obtained natural frequencies of stiffened FG cylindrical 

shells with a linear elastic medium are compared with those 
of Dung and Nam (2014). They analyzed the stiffened 

circular shells consist of metal orthogonal stiffeners (Ring 

and stringer stiffeners). These comparisons show that good 

agreements are obtained. 

It should be noted that the error between the present 

result and that literature by Paliwal et al. (1996) for 𝑛 = 4 

is due to the fact that in this study for 𝑛 = 1, results have 

been computed by computer and for 𝑛 > 1, the natural 

frequencies are obtained by linear approximation. 

In Figs. 2-4, the natural frequencies of the cylindrical 

shells for the various number of full waves without 

stiffeners and with external and internal stiffeners are 

compared with those of Sewall and Naumann (1968) and 

Sewall et al. (1964). They experimentally analyzed the 

vibration response of the cylindrical shells. These 

comparisons also show that good agreements are obtained. 

 

4.1 Free vibration results of SSFG cylindrical shells 
 

In this sub-section, linear and non-linear dynamic 

analysis of SSFG cylindrical shells resting on a linear and 
 

 

 

Fig. 2 Comparison of the natural frequencies of isotropic 

cylindrical shells without stiffeners (𝑚 = 1) 
 

 

 

Fig. 3 Comparison of the natural frequencies of isotropic 

cylindrical shell with external stiffeners (𝑚 = 1) 
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Fig. 4 Comparison of the natural frequencies of isotropic 

cylindrical shells with internal stiffeners (𝑚 = 1) 

 

 

non-linear elastic medium along with linear damping are 

illustrated. The effect of various geometrical and material 

specifications such as the angle of stiffeners, radius, and 

thickness of the FG shells, the volume fraction of FG 

material, damping coefficient and also elastic foundation 

parameters on vibration responses of SSFG cylindrical 

shells are presented. Two different types of stiffened FG 

cylindrical shell are examined. In the first model, external 

stiffeners exist on the outer layer of the FG cylindrical shell, 

and the exterior layer of the cylindrical shell is rich metal 

while the interior layer is rich ceramic. The FG material 

direction is in reverse order in the second model, and the 

stiffeners are founded on the interior layer of the FG 

cylindrical shell. In the present study, unless defined, the 

number of stiffeners is assumed to be thirty (𝑛𝑠 = 30) 

which are distributed uniformly along the length of the FG 

cylindrical shell. The SSFG cylindrical shell with 

foundation parameters 𝑘𝑠 = 2.5 × 104N/m , 𝑘𝑤 = 5 ×
105 N/m3, 𝑘𝑛𝑙 = 3 × 1013  N/m5 is assumed to be made 

of aluminum ( Al ) 𝐸𝑚 = 70 GPa , 𝜌𝑚 = 2702 kg/m3 , 

𝜈𝑚 = 0.3  and alumina ( Al2O3 ) 𝐸𝑐 = 380 GPa , 𝜌𝑐 =
3800 kg/m3 , 𝜈𝑐 = 0.3  (by assumption the similar 

Poisson’s ratio for metal and ceramic). Also, the half waves 

number (𝑚) are assumed to be equal to 1. The geometrical 

specifications of the FG shell and stiffeners are assumed 

with  𝑅 = 0.5 m ,  𝐿 = 0.75 m ,  ℎ = 0.002 m ,  ℎ𝑠 = 0.01 m , 

𝑑 = 0.0025 m. 

The effect of angle of stiffeners on the natural frequency 

response of SSFG cylindrical shells with internal and 

external stiffeners is demonstrated in Figs. 5 and 6, 

respectively. In this research, the effects of different values 

of stiffener’s angle are examined. According to Figs. 5 and 

6, the effect of angle of stiffeners in the higher mode 

number is considerable. Also, for cylindrical shells with 

internal and external stiffeners, minimum of natural 

frequency response happen when the angle between both 

series of stiffeners is 0° (𝜃 = 𝛽 = 0°). 

As the angle of the stiffener increases to 90° the natural 

frequency increases, and these changes from angle 60°to 

the next, are not so noticeable. Therefore, it can be 

concluded that in order to achieve the maximum natural 

frequency for stiffened cylindrical shells, it is preferable 

 

Fig. 5 The natural frequency responses of internal SSFG 

cylindrical shells with various angle of stiffeners 

without elastic foundation (𝐾 = 𝑘 = 1) 
 

 

 

Fig. 6 The natural frequency responses of external SSFG 

cylindrical shells with various angle of stiffeners 

without elastic foundation (𝐾 = 𝑘 = 1) 
 

 

Table 4 Effect of 𝑅/ℎ ratio and volume-fraction index 𝑘 

on the fundamental frequency of natural vibration 

(rad/s) of SSFG cylindrical shells 

𝑅/ℎ 𝑘 Un-stiffened 
Internal 

stiffeners 

External 

stiffeners 

100 

0.2 2114.5 (6a) 3264.4 (6) 2642.9 (5) 

1 2597.4 (6) 2756.4 (5) 2987.6 (5) 

5 2981.9 (6) 2254.2 (5) 3183.8 (5) 

150 

0.2 1750.9 (7) 2720.6 (6) 2488.8 (5) 

1 21.38.3 (7) 2468.6 (6) 2797.7 (5) 

5 2455.6 (7) 2143.9 (5) 2829.4 (6) 

200 

0.2 1490.9 (7) 2495.5 (6) 2420.5 (5) 

1 1841.1 (7) 2365.6 (6) 2715.3 (5) 

5 2112.9 (7) 2109.7 (5) 2716.1 (6) 

250 

0.2 1353.6 (8) 2375.5 (6) 2376.5 (5) 

1 1654.1 (8) 2323.0 (6) 2665.4 (5) 

5 1899.5 (8) 2094.0 (5) 2675.4 (6) 
 

*The numbers in the parenthesis denote the number of full wave (𝑛) 
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that the angle of the stiffener be at least 60°. Also, it can be 

seen that increasing the 𝛾 (the sum of the two angles of 

stiffeners) leads to increasing the natural frequency.The 

effect of the volume-fraction index and radius-to-thickness 

ratio on the natural frequency of the FG cylindrical shells is 

demonstrated in Table 4. According to this table, when 𝑅/ℎ 

increases, the value of natural frequency decreases. When 

the metal proportion of the shells decreases, the natural 

frequency for SSFG cylindrical shells with external and 

internal stiffeners increases and decreases, respectively. 

The influence of the angle of stiffeners on non-linear 

free vibration of SSFG cylindrical shells with internal and 

external stiffeners is demonstrated in Figs. 7 and 8, 

respectively. According to Figs. 7 and 8, by increasing the 

amplitude of non-linear vibration, the values of the 

frequency increase. With notice to these figures, when the 

angle between both series of stiffeners is bigger than 60° 

the obtained vibration response is maximum. Also, 

minimum vibration response of SSFG cylindrical shells 

with internal and external stiffeners happen when the angle 

between both series of stiffeners is 0°. 
 

 

 

Fig. 7 The frequency ratio according to amplitude for non-

linear free vibration of SSFG cylindrical shells with 

various angle of internal stiffeners without elastic 

foundation (𝐾 = 𝑘 = 1) 
 

 

 

Fig. 8 The frequency ratio according to amplitude for non-

linear free vibration of SSFG cylindrical shells with 

various angle of external stiffeners without elastic 

foundation (𝐾 = 𝑘 = 1) 
 

 

Fig. 9 The frequency ratio according to amplitude for non-

linear free vibration of SSFG cylindrical shells 

(𝐾 = 𝑘 = 1) 
 

 

The effect of stiffeners and non-linear elastic medium on 

the vibration analysis of SSFG cylindrical shells is shown in 

Fig. 9. One can show that stiffeners increase the non-linear 

free vibration amplitude, but the non-linear elastic medium 

decreases the non-linear free vibration amplitude. 

In Fig. 10, the effects of linear elastic medium 

parameters on the non-linear vibration response of SSFG 

cylindrical shells is demonstrated. According to this figure, 

the parameter of Pasternak elastic medium has a more 

considerable effect on non-linear vibration results with 

respect to the Winkler elastic medium coefficient. 

The influence of material constitutive of the SSFG 

shells on the natural frequency is shown in Fig. 11. 

According to this figure, full ceramic stiffened shells and 

full metallic stiffened shells have the highest and the lowest 

natural frequency, respectively. 

In Fig. 12 the result of damping coefficient on the non-

linear free vibration behavior is shown. According to this 

figure, increasing the damping coefficient leads to reduce 

the amplitude of vibration. 

The effect of damping on the frequency and amplitude 

of the non-linear free vibration responses of SSFG 

cylindrical shells are investigated in Fig. 13. Considering 

this figure, damping leads to decreasing the amplitude 

exponentially with time, but the effect of damping on the 

frequency is very small. Also, Nayfeh and Mook (2008) 

presented that for the first approximation, the frequency 
 

 

 

Fig. 10 The influence of linear elastic foundation 

coefficients on the non-linear free vibration 

response of internal SSFG cylindrical shell 

(𝜃 = 0°, 𝛽 = 90°, 𝐾 = 𝑘 = 1) 
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Fig. 11 The effect of material properties on the natural 

frequency of internal SSFG cylindrical shells 

without elastic foundation (𝜃 = 0°, 𝛽 = 90°) 

 

 

 

 

Fig. 12 The influence of damping coefficient on non-

linear free vibration responses (𝜃 = 0°, 𝛽 =
90°, 𝐾 = 𝑘 = 1) 

 

 

 

 

Fig. 13 The nonlinear free vibration responses of SSFG 

cylindrical shell (𝜃 = 0°, 𝛽 = 90°, 𝐾 = 𝑘 = 1) 

 

 

 

is not affected by the damping. In more investigations, it 

was observed that in the high initial condition and high 

damping coefficient, the linear damping has a low effect on 

the frequency, and weakly leads to decreasing the 

frequency. 

5. Conclusions 
 

An analytical method was used to study the non-linear 

free vibration behavior of SSFG cylindrical shells. The 

SSFG shell is resting on linear and non-linear elastic 

foundation with damping force. The elastic foundation for 

the linear model is according to Winkler and Pasternak 

parameters, and for the non-linear model, one cubic term is 

added. Meanwhile, it is assumed the cylindrical shell is 

surrounded by linear damping, too. The material 

constitutive of the shell and stiffeners was considered to be 

continuously varied along the thickness direction. 

According to the location of the stiffeners, two different 

models of stiffened FG cylindrical shells with internal and 

external stiffeners were formulated. The effect of various 

parameters including material properties, geometrical 

dimensions, angle of stiffeners, damping coefficient and 

elastic foundation parameters on the non-linear free 

vibration response of the SSFG cylindrical shells was 

examined and the following conclusions were obtained 
 

 The maximum natural frequency and amplitude of 

SSFG cylindrical shells are occurred when the angle 

between both series of stiffeners is 90°. But when the 

angle between both series of stiffeners is 60° to 90°, 

the significant difference is not observed in the 

answer. 

 The minimum natural frequency and the frequency-

amplitude response of SSFG cylindrical shell happen 

when the angle between both series of stiffeners is 

0°. 

 Increasing 𝛾 leads to increase the natural frequency 

of SSFG cylindrical shells. 

 Linear elastic foundation and stiffeners increase the 

value of frequency-amplitude response of FG 

cylindrical shells while the non-linear elastic 

foundation has the reverse effect. 

 When the metal proportion of shells decreases, the 

natural frequency of shell with external stiffeners 

increases and with internal stiffeners decreases, 

respectively. 

 The Pasternak elastic foundation coefficient has a 

more considerable effect on frequency-amplitude 

response rather than the Winkler elastic foundation 

coefficient. 

 The natural frequency decreases by increasing the 

radius-to-thickness ratio. 

 Increasing the damping coefficient leads to reduce 

the amplitude of vibration. 
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