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1. Introduction 

 

Favorable qualities like high strength-to-weight and 

high stiffness-to-weight ratios combined with low 

operational cost have led to increased use of composites in 

the structural engineering field. Often, these composite 

structures act as the load carrying members and thus are 

subjected to various static and dynamic loads. 

Consequently, it is desirable that any machinery installed on 

these structures are not in resonance with them. A 

straightforward way to ensure this is by allowing the 

machinery to operate well outside the range of the intrinsic 

frequency of the structure. The ability to fine-tune 

structures in order to maximize or minimize its natural 

frequencies would thus be a lucrative option for design 

engineers. 

With the rapid advancement in computing power, there 

has been a competitive development of numerical tools and 

theories in the structural optimization field. A plethora of 

nature-inspired techniques has been developed in the last 

three decades to solve multimodal and computationally 

intensive optimization problems from heuristic approaches. 
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While such approaches are known to escape the pit of local 

optima— a serious drawback of classical optimization 

techniques, many of these metaheuristics (Boussaid et al. 

2013) are known to depend on several parameters to be set 

by the user a priori. The choice of these parameters 

considerably influences the success of the approach. For 

example, in case of Genetic Algorithm— a nature-inspired 

technique that has been around for almost four decades 

now, there is still considerable disagreement (Mills et al. 

2015) amongst researchers regarding the various tuning 

parameter settings. In fact, De Jong (2007) suggested that 

any numerical experimentation based on evolutionary 

algorithms should first conduct a few preliminary 

experiments to determine the optimal parameter settings. 

Thus, an optimization problem may need to be solved 

several times using different combinations of these tuning 

parameters in order to gain enough confidence in the 

predicted output. Though this can be easily done for 

problems involving just a few parameters and small search 

space, it can be a tedious and time-consuming exercise in 

case of structural optimization problems involving finite 

element simulations. Finite element approaches are known 

to be accurate but computationally intensive. 

A remarkable reduction in the total computational effort 

can be obtained by reducing the number of structural 

analyses. This can be done by developing globally robust 

approximation routines to simulate the relevant structural 
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evaluated using statistical metrics like   ,   
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     and   
  . By combining these surrogates with nature-inspired multi-

criteria decision-making algorithms, namely multi-objective genetic algorithm (MOGA) and multi-objective particle swarm 

optimization (MOPSO), the optimal combination of various design variables to simultaneously maximize fundamental 

frequency and frequency separation is predicted. It is seen that the proposed approach is simple, effective and good at 

inexpensively producing a host of optimal solutions. 
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phenomena. Such an approximation routine or surrogate 

metamodel eliminates the need to run the computationally 

intensive FE models iteratively (Abu-Odeh and Jones 

1998). By replacing the original FE model with a surrogate 

metamodel, the objective function can be evaluated at a 

fraction of the original cost (Pajunen and Heinonen 2014). 

Response surface methodology (RSM) (Box and Wilson 

1992), artificial neural network (ANN) (Haykin 2001) and 

radial basis functions (RBF) (Hardy 1971) are the most 

popular and widely studied metamodeling techniques in 

structural engineering. In RSM, the basis functions for 

approximation are polynomials chosen a priori. RSM is 

widely used in structural optimization problems like 

helicopter rotor (Ganguli 2002), truss (Ju et al. 2013) (Fang 

and Tee 2017), stiffened plates (Heinonen and Pajunen 

2011), marine structures (Pajunen and Heinonen 2014), 

laminated plates subject to stress and displacement 

constraints (Abu-Odeh and Jones 1998), lateral stability of 

arch bridge (Pan et al. 2011), FRP composite deck (Kim et 

al. 2009), composite shells (Dey et al. 2016) etc. 

Existing literature reveals that RSM metamodels are 

useful in structural engineering. However, metamodels have 

been sparingly used in the optimization of frequency 

parameters, where there is scope for further exploration. 

One exciting avenue is to test its applicability in a multi-

objective optimization scenario, along which there has been 

very little work. In tune with genetically modified 

organisms whose genetic material is altered to increase 
 

 

yield or quality, the present research work explores 

genetically optimized composite laminates, whose material, 

geometric or layup orientation has been altered with the 

help of the in-silico counterpart of genetic engineering, viz. 

multi-objective genetic algorithm (MOGA). The algorithm 

simultaneously maximizes the fundamental frequency and 

frequency separation between the first two modes. 

Additionally, another robust swarm intelligence based 

multi-objective optimization algorithm, viz. multi-objective 

particle swarm optimization (MOPSO), is used alongside to 

predict the Pareto optimal solutions for comparison with 

one another. To the best of the authors’ knowledge, this is 

the first application of such multi-objective optimization 

using state-of-the-art nature-inspired heuristic algorithms 

with RSM metamodels. 

The rest of the paper is organized as follows: Section 2 

presents a brief overview of the overall design and 

optimization framework. The response surface model used 

in the research is discussed in detail to ensure 

reproducibility. A brief discussion of the two multi-

objective optimization algorithms (MOGA and MOPSO) 

are also included. In Section 3, the FE model is validated 

with published results. The validity and efficacy of the 

RSM metamodels built to replace the FE model are then 

illustrated. Subsequently, in the final part of Section 3, these 

second-order polynomial metamodels are used as objective 

functions in the MOGA and MOPSO algorithm to yield the 

multi-objective optimal solutions. Section 4 lists the key 
 

 

 

Fig. 1 Design and optimization framework used in the current study 
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findings and recommendations. 
 

 

2. Design and optimization framework 
 

A multi-objective multiparameter optimization 

procedure is developed by combining polynomial 

regression-based response surface models with robust 

metaheuristic algorithms, MOGA and MOPSO— the multi-

objective procedures for Genetic Algorithm and Particle 

Swarm Optimization. The RSM metamodel is developed by 

using the highly accurate numerical data from a finite 

element program developed by the authors. Fig. 1 shows the 

design and optimization framework for the current problem. 

Based on the design problem, the input and output 

parameters are identified. While the independent input 

parameters for each problem are presented in Table 1, the 

output parameters are taken as the fundamental frequency 

(  ) and frequency separation between the first two modes 

(   ) in each problem. A design of experimentation scheme 

based on the RSM design (described in section 2.2) is 

selected and the numerical experiments are conducted using 

the finite element formulation reported in section 2.1. A 

polynomial regression based metamodel is developed based 

on these RSM sampling points using the FE data. With the 

help of Box-Cox plots, the need for any data transformation 

is identified and subsequently implemented. The model is 

tested for the desired level of accuracy and analysis of 

variance (ANOVA) test is performed to remove the non-

significant terms from the metamodel. The metamodel is 

then used as the objective function for the multi-objective 

optimization using MOGA and MOPSO. 

To depict the efficacy of the developed approach, four 

design and optimization test problems (referred to hereafter 

as TP-01, TP-02, TP-03 and TP-04) are used. 
 

Test Problem 1: TP-01 is a 4-design variable 

optimization problem where the objective is to find an 

optimal combination of material constants (             
              ) such that    and     are simultaneously 

maximized. An all-side simply-supported, 8 layer 

symmetric ([45/-45/45/-45]s), 30° skew composite plate is 

chosen as the structure of interest. The aspect ratio (   ) is 

taken as 1, and the thickness-to-length ratio (   ) is taken 

as 0.01. 
 

 

Test Problem 2: The goal in TP-02 is simultaneous 

maximization of    and     by using optimal geometric 

parameters (          and  ) in an all-side clamped 

symmetric composite laminate. Since the number of 

plies     cannot be a fraction, additional constraints are 

imposed on it during the optimization phase, such that only 

integer values are considered. The material properties are 

chosen as                                  
and          . 

Test Problem 3: In TP-03 the 4 fiber angles (         

and   ) of an 8-layer symmetric all-sides simply-supported 

composite plate are chosen as the design variables. The 

material properties are the same as those used in TP-02. The 

composite plate is of rectangular in shape with an aspect 

ratio of 2 (i.e.,                      and    . 

Test Problem 4: TP-04 is developed as an 11-variable 

                                            

and   ) design and optimization problem for an all-side 

simply-supported 8-layer composite skew plate. 

The range of all the design variables used in the four test 

problems is reported in Table 1. 

 

2.1 Finite element formulation 
 

A nine-node isoparametric plate bending element is used 

in the current finite element analysis. The rotary inertia and 

shear deformation effect are considered in the finite element 

analysis by considering first order shear deformation theory. 

In literature, this finite element formulation has been used 

by the authors for free vibration analysis of various plate 

structures (Kalita and Haldar 2017) (Kalita et al. 2019a) 

(Kalita et al. 2016). In those past works, the FEM procedure 

has been shown to be in very close approximation to exact 

solutions and thus it is not presented here. 

 

2.2 Response surface methodology 
 

Response surface methodology (RSM) generates an 

approximate equation relating the independent (input) 

parameters to the dependent (output) parameters. The 

inherent statistical and mathematical analysis fits an 

equation of the following form 

 

                     (1) 
 

 

Table 1 Range of design variables 

Variable type Design variable Symbol Range 

Material 

parameters 

Orthotropy ratio               

Major shear modulus to Young’s modulus ratio                  

Minor shear modulus to Young’s modulus ratio                  

Poisson's ratio                 

Geometric 

parameters 

Height-to-width ratio           

Thickness-to-width ratio                

Skew angle          

Number of plies          

Layup angles Fiber angles   ,   ,   ,             
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Here,   denotes the approximate response surface and 

  is the normally distributed statistical error. Each    

represents an independent parameter, while   is the 

maximum number of independent parameters. In RSM, a 

second-order polynomial form of the model is fitted as 
 

        

 

   

          

 

   

 

   

            

 

   

  
    (2) 

 

In this manuscript, all sampling data are modeled using 

D-optimal criteria. D-optimality is achieved if the 

determinant of         is minimal. Here, X denotes the 

design matrix as a set of value combinations of coded 

parameters, and    is the transpose of   (Mukhopadhyay 

et al. 2015). 

Since a second-order polynomial may not be able to 

capture the high degree of nonlinearity in some systems, an 

appropriate data transformation technique is used. The Box-

Cox transformation (Box 1964) represents a family of 

power transformations that incorporates and extends the 

traditional options to help researchers easily find the 

optimal normalizing transformation for each variable. A 

Box-Cox plot can reveal the needed transformation for the 

data. The minimum point of the curve generated by the 

natural log of the sum of squares of the residuals at various 

powers of transformation (   represents the appropriate 

transformation parameter. Thus, wherever needed the 

training dataset is transformed using Box-Cox 

transformations calculated as 
 

     
      

       
     

      
      

 (3) 

 

Where   is a constant and   is the power of 

transformation. 

The RSM model is then constructed using the D-optimal 

design identified, where FEM simulations are carried out at 

the required design points and fitted using the multiple 

regression technique. The difference between the FE design 

points (  ) and the RSM model predicted points (   ) is 

called residual. 
 

          (4) 
 

The    estimates in Eq. (2) is selected such that the 

sum of squares of the residuals is minimized. 
 

             
 

 

   

 (5) 

 

The statistically non-significant terms are screened and 

removed from the RSM model. This is done with analysis 

of variance (ANOVA), where the effect of each independent 

variable on the entire model variance is quantitatively 

evaluated.  The accuracy of the model is evaluated using a 

goodness of fit criteria like R2,    
    and    

    . These 

can be calculated as 
 

      
   

   
                       

 

   

 (6) 

 

  
       

   

     
       (7) 

 

  
       

       

   
   

               
             

 

 

   

 

(8) 

 

      is the observed     calculated by the model when 

the  th sample is left out from the training set. This 

corresponds to the leave-one-out cross validation scheme. 

Since R2,    
    and    

     are based on use or re-

use of the training dataset, an additional metric   
   based 

on the use of independent test data is used. For calculation 

of   
  , 100 independent test sample points are randomly 

generated for each test problem and the corresponding 

  
   metric proposed by Consonni et al. (2010) and 

suggested for structural metamodels in (Kalita et al. 2019b) 

is calculated. 
 

  
     

          
      

         

                      
      
   

 (9) 

 

2.3 Multi-objective optimization 
 

In most design and optimization problems, there are 

several objectives that often need to be tackled 

simultaneously. Such optimization problems are called 

multi-objective optimization. One way to solve them is by 

converting them into an equivalent single objective 

optimization using the weighted sum approach. By 

multiplying each normalized objective by a suitable weight 

and then combining them would lead to an equivalent single 

objective optimization (Abachizadeh and Tahani 2009) 

(Jakob and Blume 2014). However, such optimal solutions 

are dependent on the choice of weight. Another approach is 

to predict a host of non-dominated solutions, referred to as 

Pareto optimal solutions which together constitute a Pareto 

front. Each solution of the Pareto front is a chosen such that 

solution to one objective function can be improved only by 

worsening at least one of the other objective functions. 
 

2.3.1 Multi-objective genetic algorithm 
Genetic Algorithm (GA) is good at taking colossal 

search spaces and navigating them, looking for the best 

combinations of parameters and predicting optimal 

solutions. It works on Darwin’s principle of natural 

selection (Goldberg 2006). GA is superior to most 

conventional search techniques in three significant ways. It 

does not get trapped in local optima as it performs parallel 

search throughout the population of solutions. Secondly 

rather than optimizing the parameters themselves, GA 

works on chromosomes which constitute an encrypted form 

of a potential solution, effectively bringing about a faster 

convergence. Thirdly the algorithm uses a fitness score 

based on the objective function to predict a feasible 

solution, which invites better performing solutions to 

influence successive searches. The user typically chooses 

the best structure from the last generation as the optimal 
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solution if the algorithm is set to terminate after a certain 

tolerance level is reached. However, running the algorithm 

for a predetermined number of times is more common 

among researchers. In this case, the algorithm terminates 

when the total predetermined number of iterations is 

reached, and it reports back the best solution encountered 

among all the generations. The implementation scheme of 

the multi-objective genetic algorithm (MOGA) used in the 

current study is highlighted in Fig. 2. 

 

 

 

 

 

2.3.2 Multi-objective particle swarm optimization 
Particle Swarm Optimization (PSO) originally 

developed by Eberhart and Kennedy in 1995 (Eberhart and 

Kennedy 1995), is an algorithm that was first used to model 

the social behavior of birds and fish communicating among 

themselves in search for food. The standard PSO (SPSO) 

algorithm is relatively straightforward. It has since 

developed into a widely researched algorithm to optimize 

solutions to many kinds of problems. It works by first 

 

Fig. 2 Implementation scheme of MOGA 

 

Fig. 3 Implementation scheme of MOPSO 
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assuming a swarm, St of n particles. These particles are 

analogous to individual birds or fish in the real world. 

These particles use the information available to them to 

either explore new solutions or move closer to already 

known solutions. By doing this over an extended period, the 

particles eventually find or get very close to the optimal 

solution to a problem. Every particle that makes up the 

swarm has access to some information. Firstly, they know 

the current value of their solution and their current position 

 

 

 

 

which is a solution to the problem the algorithm is trying to 

solve. Each particle tracks its personal best value it has 

attained (‘pBest’) and the position that was achieved. Each 

particle also has access to the global best solution value 

(‘gBest’) and the position at which this was discovered. 

Lastly, a particle is aware of its current velocity, i.e., how 

fast its position is changing (Kalita et al. 2017). Any kth 

particle continuously updates its velocity and position as 

follows 

 

 

Table 2 Performance of the RSM metamodels 

Test problem→ TP-01 TP-02 TP-03 TP-04 

Metric ↓                             

    1.0000 1.0000 0.9925 0.9938 0.9941 0.9499 0.9747 0.8886 

   
    1.0000 1.0000 0.9862 0.9901 0.9905 0.9075 0.9607 0.8384 

   
     1.0000 1.0000 0.9644 0.9808 0.9829 0.7758 0.9374 0.7491 

   
  1.0000 1.0000 0.9795 0.9165 0.8090 0.7793 0.8802 0.6124 

 

 

Fig. 4 Normal probability plot of residuals for all    metamodels 
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(10) 

 

    
    

      
  (11) 

 

In Eqs. (10) and (11), the subscripts               

represent the current and the next iteration,       

generates random numbers between 0 and 1,            are 

the cognitive and social parameters respectively. Similarly, 

        represent velocity and position respectively, while 

  is inertia weight, which controls the influence of the last 

velocity on the current velocity. The implementation 

scheme of multi-objective particle swarm optimization 

(MOPSO) used in the current study is highlighted in Fig. 3. 

 

 

 

 

 

 

 

 

3. Results and discussion 
 

3.1 Metamodel building & validation 
 

Metamodel building and validation is an iterative 

process. First, using multiple regression fitting scheme, the 

sampling data is fitted in simple second-order polynomial 

forms as reported in Eq. (2). Then by looking at the normal 

probability plots of the externally studentized residuals, the 

outliers are identified. In the presence of significant outliers, 

Box-Cox plots are constructed which helps in identifying 

suitable data transformations to improve the model. 

Normal probability plots of the externally studentized 

residuals for all    and     metamodels are shown in Figs. 

4 and 5 respectively. The residual normality plots do not 

have any outliers or clusters, implying that the sampling 

data is appropriate (i.e., they do not contain any ties) and 

thus the measuring resolution is adequate. In Box-Cox 

plots, as reported in Figs. 6 and 7, the minimum point of the 

curve generated by the natural log of the sum of squares of 

 

 

 

 

Fig. 5 Normal probability plot of residuals for all     metamodels 

461



 

Kanak Kalita, Partha Dey, Milan Joshi and Salil Haldar 

 

 

the residuals represents the appropriate Box-Cox 

transformation parameter. As already discussed in section 

2.2, this helps in capturing the high non-linearity in certain 

design problems. ANOVA is then performed on the 

metamodels to remove any statistically insignificant terms. 

The four model accuracy metrics, namely   ,   
   , 

  
     and   

   are reported in Table 2. Another effective 

way to visually gauge the metamodels’ predictive power is 

by plotting actual versus predicted responses. The 

predictive performance of all metamodels versus their 

respective finite element models is shown in Fig. 8. The 

closer the data points are to the diagonal line of the plot, 

better are the estimations. Both Table 2 and Fig. 8 reveal 

that TP-01 and TP-02 show excellent performance on the 

training as well as the independent test data. TP-03 and TP-

04 on the other hand are highly nonlinear problems as well 

as are modelled for a very large design space and thus it 

would be unfair to expect near-ideal response surface 

approximations on them. In fact, simply by looking at Fig. 

8(c) it is clear that in TP-03 despite the metamodel having 

 

 

a near-ideal performance on training data, the metamodel is 

in general over-predicting    and under-predicting    . 

 
3.2 Optimization using MOGA and MOPSO 

 
To predict the Pareto optimal solutions for the 4 test 

problems, MOGA and MOPSO computer codes are 

implemented in a MATLAB environment. The second-order 

non-linear equations developed using the RSM approach for 

the four test problems are used as the objective functions. 

Based on a pilot study conducted on TP-04, the various 

parameters used for MOGA are selected as: population size 

500, crossover and mutation probabilities 0.9 and 0.1 

respectively. A tournament selection scheme is implemented 

and the MOGA algorithm is allowed to iterate for 100 

generations. The pilot study was run on TP-04 because it is 

a high-dimensional problem containing 11 variables and 

thus, is likely to be the most complex amongst all the test 

problems. Similarly, based on a separate pilot study on TP-

04 for the MOPSO algorithm, a swarm of 200 particles 

 

Fig. 6 Box-Cox plots for all    metamodels 
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iterating for 100 generations was found to be the most 

beneficial. The other MOPSO parameters are taken as: 

          and       as per the suggestion of 

Ragavendran et al. (2018). 

The Pareto optimal solutions for the four test problems 

using MOGA and MOPSO are reported in Fig. 9.  

However, as reported in Fig. 9(a), a unique optimal solution 

for TP-01 exists, rather than a Pareto front. A higher 

orthotropy ratio         and a high major shear modulus 

to Young’s modulus ratio          is beneficial for the 

simultaneous maximization of the fundamental frequency 

and frequency separation in TP-01. Except for TP-01, 

MOPSO has a superior performance as compared to MOGA 

in all the test problems. The Pareto optimal front obtained 

using MOPSO appears to be smoother and more continuous 

compared to the MOGA Pareto front. In TP-02, higher skew 

angles ( ) in general lead to simultaneous maximization of 

the fundamental frequency and frequency separation. This 

is possibly due to the increase in stiffness of the plate with 

an increase in skew angle. Similarly, lower length-to-width 

 

 

ratios       and thickness-to-width ratios       are 

beneficial in increasing the frequency parameters. As the 

length-to-width ratios       decreases, the stiffness of the 

composite plate increases which causes an increase in the 

frequency parameters. There is a decline in frequency 

parameters with an increase in thickness-to-width ratios 

      due to an increase in the mass of the plate. TP-03 in 

a highly non-linear NP-hard problem. To the best of 

authors’ knowledge, there exist no closed form equation to 

directly correlate the effect of fiber angles on frequency 

parameters. In fact, in the closed-form equations, as 

reported in (Shooshtari & Razavi, 2010), though the number 

of layers and the layup angles do not appear directly, they 

seem to have an effect of increasing the complexity and 

lengthiness of the closed form equations. As such, 

particularly for such NP-hard problem MOGA and MOPSO 

are well suited in finding a range of optimal solutions in the 

form of a Pareto front as reported in Fig. 9(c). In TP-04 a 

combination of high orthotropy ratio        , low minor 

shear modulus to Young’s modulus ratio         , low 

 

Fig. 7 Box-Cox plots for all     metamodels 

463



 

Kanak Kalita, Partha Dey, Milan Joshi and Salil Haldar 

 

 

 

 
height-to-width ratios       and high skew angles ( ) is 

advantageous in maximizing both the objective functions. 

The fiber angles               also seem to have a 

significant effect on the final solution, with    being 

 

 

 

 
observed to be around     in most cases. 

Though MOPSO predicts a truly continuous Pareto front 

in TP-02, the superiority of MOPSO over MOGA in terms 

of magnitude is marginal. The superiority in terms of both 

 

Fig. 8 Predictive performance of all metamodels vs. finite element models 

 

Fig. 9 Pareto front of the optimal solutions for simultaneously maximized   and     

464



 

A response surface modelling approach for multi-objective optimization of composite plates 

continuity of Pareto front and the magnitude of objective 

functions is more profound for MOPSO in TP-03 and TP-

04. One plausible reason is the huge search space for TP-03 

and TP-04, where MOPSO, owing to its intrinsic scattering 

of particles, is better equipped at finding the optimal 

solution. The Pareto optimal fronts represent a 

comprehensive set of non-dominated optimal solutions for 

each test problem. From a mathematical perspective, each 

Pareto optimal solution is an equally feasible option. The 

best alternative among these Pareto solutions may be 

chosen based on the problem at hand or user experience. 
 

 

4. Conclusions 
 

In this paper, a multi-objective genetic algorithm 

(MOGA) and a multi-objective particle swarm optimization 

(MOPSO) is used in designing composite plates for the 

simultaneous maximization of the fundamental frequency 

and frequency separation between the first two modes. 

Instead of a conventional Rayleigh-Ritz or finite element 

method to carry out intensive numerical calculations, a 

metamodeling approach is used. The polynomial regression 

based metamodel is rigorously constructed using statistical 

techniques. While Box-Cox transformation augments the 

normality of non-linear data, ANOVA helps remove 

insignificant terms. Further, the performance of the 

metamodels is evaluated on the training data and the testing 

data using residual-based statistical metrics like 

R2,    
   ,    

      and   
  .The study successfully 

applies the metamodel based multi-objective optimization 

approach for the first time in structural engineering to the 

prediction of frequency parameters, resulting in a drastic 

reduction of computation cost with marginal loss of 

accuracy. Comparison of results on four test problems 

reveals that MOPSO is superior to MOGA in finding a 

continuous and smooth Pareto front. Thus, by carefully 

building an appropriate metamodel and coalescing it with 

MOGA or MOPSO, the present research work highlights 

the potential of a robust multi-objective optimization tool 

that can be developed to optimally engineer the composite 

laminates for desired maximum frequency and maximum 

frequency separation. 
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