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1. Introduction 
 

Among different advanced structural materials, light 

weight laminated composites have gained wide popularity 

in civil and other weight sensitive engineering applications 

from the second half of the last century due to their design 

versatility and high stiffness-to-weight and strength-to-

weight ratios. To utilize the composites in fabricating civil 

engineering shell roofing units and also to arrive at safe and 

economical design, the designer must be aware of the 

different limitations of the materials for which the failure 

characteristics are to be studied. Among the different shell 

configurations used as roofing units, the hyperbolic 

paraboloidal shell bounded by straight edges (commonly 

called a hypar shell as shown in Fig. 1(a)) has the special 

advantage of aesthetic elegance and this form also offers 

ease in fabrication being doubly ruled surface. In practice, 

roofs may have different combinations of boundary 

conditions and a comprehensive study of failure 

characteristics of this shell with different edge restraints is a 

prerequisite for using these forms efficiently. 

The composites subjected to static overloading may 

undergo large deflection at the onset of failure and hence 

the geometrically nonlinear strains are important to be 

considered. Using the nonlinear strains, a progressive 
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failure algorithm was proposed by Reddy et al. (1995) to 

report the first and ultimate ply failure of laminated 

composite plates. Singh and Kumar (1998) studied post 

buckling failure behaviour and progressive failure of thin 

simply supported symmetric rectangular laminates 

subjected to in-plane shear loads. Reinoso and Blázquez 

(2016) reported the post buckling failure responses of 

composite cylindrical stiffened panels subjected to uniform 

pressure load using geometric nonlinearity. A theoretical 

study on multiple failures of in-plane loaded composite 

laminates containing a through-width delamination was 

carried out by Xue et al. (2019). Xue et al. (2017) also 

presented a multiscale approach to study the nonlinear 

vibration of fiber reinforced composite laminates containing 

an embedded, through-width delamination. Pal and Ray 

(2002) and Prusty (2005) examined the progressive failure 

behaviour of laminated composite plates and composite 

stiffened and unstiffened panels respectively. Kelly and 

Hallström (2005) studied experimentally and numerically 

the behaviour of laminated composites subjected to 

transverse loads. Progressive failure of tapered laminated 

composite plates subjected to uniaxial compression was 

reported by Ganesan and Liu (2008). A progressive failure 

study of laminated composite plates using Tsai-Wu failure 

theories was reported by Ellul et al. (2014). The ultimate 

strength analysis of simply supported, rectangular, 

composite plates under in-plane compressive load was 

carried out by Yang and Hayman (2015). The authors 

established an efficient, semi analytical method based on 

large deflection theory and first order shear deformation 
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theory with linear degradation of the material properties. 

Nali and Carrera (2012) presented different case studies on 

failure of laminated composite plates corresponding to the 

different two dimensional popular failure criteria including 

Hashin’s criterion subjected to mono-axial and bi-axial 

loadings. Using the Hashin’s failure criterion, Coelho et al. 

(2015) reported damage initiation of punctured laminated 

composites under in-plane tension load. Chen et al. (2012, 

2014) proposed a finite element model to study progressive 

failure of laminated composites. The proposed model 

considered elasto plastic damage including plasticity effects 

exhibited by composite materials. The authors first 

developed the model considering in-ply damage only and 

later modified it to account for delamination damage also. 

The failure aspects of composite plates of uniform thickness 

subjected to uniaxial compression and in-plane positive and 

negative shear loadings were considered in the work of 

Singh et al. (1997, 1998a, b). Xiong et al. (2014) also 

discussed the failure behaviour of sandwich walled 

cylindrical shells with metallic lattice truss cores and fiber 

reinforced composite face sheets under uniaxial 

compression. Chang and Chiang (2010) studied 

experimentally and theoretically the first ply failure loads of 

anti-symmetrically built laminated composite plates. The 

first ply failure study of laminated composites by different 

well-established failure criteria and comparison between 

these failure criteria were reported by Kober and Kuhhorn 

(2012) and Lopez et al. (2009). Linear first ply failure loads 

of laminated composite singly and doubly curved shell 

panels subjected to static load were suggested by Adali and 

Cagdas (2011). Reddy and Reddy (1992) used the 

geometrically nonlinear finite element formulation to study 

first ply failure of laminated composite plates. The von-

Karman nonlinearity was used by the authors to study the 

linear and nonlinear failure loads for varying thicknesses 

and boundary conditions of composite plates. A tensor 

based geometrically nonlinear finite element formulation 

considering transverse stretching, thus establishing a 3D 

constitutive relationship, was reported by Arciniega and 

Reddy (2007). An extension of Karman-Donnell’s theory 

for non-shallow, long cylindrical shells undergoing large 

deflection was presented by Xue et al. (2013). The 

governing equation was derived by considering the 

influence of initial curvature of the shell. Bakshi and 

Chakravorty (2014) reported the first ply failure behaviour 

of composite cylindrical shells considering geometrically 

nonlinear strains. The first ply failure stresses of laminated 

composite plates and cylindrical shell panels with modified 

Tsai-Wu’s and Hashin’s failure criteria taken together with 

nonlinear finite element method were discussed by 

Chróścielewski et al. (2016). A stochastic nonlinear failure 

analysis of laminated composite plates under compressive 

transverse loading was reported by Lal et al. (2012). This 

stochastic first ply failure study considering material 

nonlinearity under hygro thermal environment and different 

biaxial loadings was used by Gadade et al. (2016a, b). 

Puck’s failure criterion was used in these research works. 

Dong et al. (2014) reported the applicability of Puck’s 

failure theory by proposing simple methods for evaluating 

various parameters required and this failure theory was 

extended up to three dimensional stress analysis by 

Matthias and Kröplin (2012). The 3D-version of the Puck’s 

failure criterion was also used in the research work of 

Reinoso et al. (2017) for anisotropic damage model of 

laminated fiber-reinforced composites. Lee et al. (2015) 

used this Puck’s criterion for progressive damage analysis 

of composite laminates. First ply failure prediction of an 

internally pressurized shell was carried out by Gohari et al. 

(2015). They studied theoretical and analytical failure loads 

of unsymmetrically laminated ellipsoidal woven GFRP 

composite shell. Gohari et al. (2012) studied failure of a 

circular cylindrical thin walled shell made of GFRP 

composite subjected to static internal and external 

pressures. Deformation, delamination, shear deformation 

and micro buckling failure were investigated. 

Priyadharshani et al. (2017) analysed the glass fiber 

reinforced polymer (GFRP) stiffened composite plates with 

and without rectangular cutouts under axial, lateral and 

combined axial and lateral loadings using finite element 

method. Oterkus et al. (2012) proposed a combination of 

the finite element method and the peri-dynamic theory to 

predict the initial and final failure loads of a stiffened 

composite cylindrical panel with a central slot under 

combined internal pressure and axial tension. 

A number of researchers worked on industrially 

important shells structures like the conoidal, conical and 

hypar forms and the associated literature may be studied in 

details to identify the untouched areas. The performances 

considering deflection, governing force and moment 

resultants of cross and angle ply conoidal shells with 

different boundary conditions and lamina stacking 

sequences were reported by Das and Chakravorty (2007). 

The authors also investigated the rank wise performances of 

shell options and proposed a selection guideline to the 

practicing engineers by giving a relative performance 

matrix. Again, relative performances of laminated 

composite conoidal shells under static bending, free and 

forced vibration responses were studied by Bakshi and 

Chakravorty (2013) considering geometric linear strains. 

Dey and Karmakar (2012) studied the dynamic responses 

under hygrothermal environment and the effect of rotational 

speeds on free vibration characteristics of delaminated 

twisted graphite–epoxy cross ply composite conical shells. 

For this type of shell, the bending characteristics were 

studied by Bandyopadhyay and Karmakar (2015). The 

dynamic low velocity impact study and the static responses 

including the deflections and stresses on composite hypar 

shells were reported by Neogi et al. (2011) and Kumar et al. 

(2013) respectively. 

The above review reveals that extensive investigations 

were carried out on failure analysis of laminated composite 

plates and cylindrical shells only. Some of the researchers 

(Das and Chakravorty 2007, Bakshi and Chakravorty 2013, 

Dey and Karmakar 2012, Bandyopadhyay and Karmakar 

2015, Neogi et al. 2011, Kumar et al. 2013) worked on 

different structural behaviours of industrially important 

conoidal, conical and hypar shells but the failure aspects of 

these shell forms remain totally unattended. Hence, the 

industrially preferred and aesthetically appealing doubly 

ruled hypar shell roofs have drawn a special attention from 
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the present authors. In this paper, a finite element method is 

employed to study the geometrically nonlinear first ply 

failure behaviour of laminated composite hypar shell roofs 

with different edge conditions and the results are examined 

critically from practical point of interest. Though the 

concept of giving ranks of different shell options in terms of 

their governing design criteria considering linear strain 

terms was suggested by earlier researchers (Das and 

Chakravorty 2007) but such rankings did not consider the 

criterion of failure probability. The present research 

focusses on the geometrically nonlinear failure behaviour of 

composite hypars from practical design angle and also 

suggests the selection guidelines to the practicing designers 

for different shell options with various boundary conditions. 

Laminated composite skewed hypar shells are being 

investigated recently but only linear failure theories (Ghosh 

and Chakravorty 2014, 2017) and bending behaviour 

aspects (Sahoo and Chakravorty 2004) have received 

 

 

attention. Failure study of composite hypar shells using 

nonlinear strains has been left out totally. The present paper 

aims to fulfil this lacuna. 

 

 

2. Mathematical formulation 
 

A laminated composite skewed hypar shell (Figs. 1(a) 

and (b)) of uniform thickness h and twist radius of curvature 

Rxy is considered. For a given thickness, the shell may 

consist of any number of thin laminae each of which may 

be arbitrarily oriented at an angle θ with reference to the X 

axis of the coordinate system. The surface equation of a 

typical hypar shell (Sahoo and Chakravorty 2004) is of the 

form 
 

  22
4

byax
ab

c
z   (1) 

 

(a) 
 

 

(b) 

Fig. 1 (a) A typical hypar shell surface; (b) Hypar shell in plan showing fiber orientation of a single lamina 
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2.1 Finite element formulation 
 

An eight noded isoparametric curved quadratic 

Serendipity element having five degrees of freedom per 

node (u, v and w are the displacements along X, Y and Z 

axes respectively and αx and αy are the rotations along X and 

Y axes respectively) is used for the present skewed hypar 

shell analysis. The element geometry and the expressions of 

interpolation functions [Ni] as presented by Owen and 

Hinton (1980) are used here. 

Following Sanders’ nonlinear strain-displacement 

relations and von-Karman type geometric nonlinearity 

(Reddy 2004), the strain components for a lamina situated 

at a distance z from the lamina mid-plane of thin shell are 

evaluated in global axes as 
 

;
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The generalized strain vector {ε} is expressed by its 

linear and nonlinear parts as 
 

     nll    (3) 

 

where the nonlinear components of strain are given as 
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The linear strain field can be expressed in terms of nodal 

displacements and the resulting relations are 
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Now, the generalised strain displacement relations are 

expressed as 
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where, [B] is the linear part and [B'], dependent on 

displacement, is the nonlinear part of the strain 

displacement matrix [𝐵 ]  and {de} is the displacement 

vector. 

Now, 
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2.2 Lamina constitutive relations 
 

The force and moment resultant vector {F} is expressed 

as 
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where Qij are elements of the off-axis elastic constant 

matrix which is given by 
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in which 
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Fi and Fj of Eq. (9) are two factors presently taken as 

unity for thin shells and 
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2.3 Governing nonlinear equilibrium equations and 
solution procedure 

 

The equilibrium equations may be obtained by 

application of virtual work principle (Chattopadhyay et al. 

1995) as 
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where {ϕ} denotes the resultants of internal and external 

generalised forces {P} and with the help of Eqs. (6), (7) and 

(8), Eq. (12) becomes 
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where, the secant stiffness matrix [K]s is given by 
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Taking appropriate variation of Eq. (12) with respect to 

{de} the following may be obtained 
 

           

     PdddK

PddAFdBdAFBdd

eT

A

T

A

T



 
 (14) 

 

Using the relations as given in Eqs. (6), (7) and (8) into 

Eq. (14), one gets 
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where 
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[K]F is a symmetric matrix dependent on the stress level. 

This matrix is referred to as the initial stress matrix or the 

geometric matrix. Nx, Ny and Nxy are in-plane force and 

shear resultants as described Eq. (8). Thus, the tangent 

stiffness matrix consists of three parts and is expressed as 
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       FLTLT KKKK   (16) 

 

In order to solve nonlinear equilibrium equation Eq. (12) 

by the Newton-Raphson iteration procedure, the improved 

solution of {de}n+1 is reached in terms of Taylor’s series and 

the higher order terms are ignored. 
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where 
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In the above equation 
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Improved values of {de}
n+1 are obtained from Eq. (18) 

by calculating 
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Now, the convergence of this procedure may be checked 

by using a pre-set tolerance limit (1% is adopted here) 

which is expressed in Eq. (20). Similar convergence criteria 

were adopted earlier by Palazotto and Dennis (1992) and 

Chattopadhyay et al. (1995). 

 

          TolerancePP
TT

100  (20) 

 

2.4 Lamina stress calculations 
 

Lamina strains are transformed from the global axes of 

the shell to the local axes of the lamina using transformation 

matrix (Eq. (21)). Lamina stresses are obtained using the 

constitutive relations of the lamina (Eq. (22)). 

 

 

 

Fig. 2 Algorithm of first ply failure load 
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The stress resultants are evaluated at the Gauss points (2 

× 2). Lamina stresses and strains are used in well accepted 

failure theories like maximum stress, maximum strain, Tsai-

Hill, Tsai-Wu, Hoffman’s, Hashin’s and Puck’s failure 

criterion, given below, to evaluate the first ply failure load 

of the composite skewed hypar shells. The schematic 

algorithm for computing the first ply failure loads for hypar 

shells is shown in Fig. 2. 

 

2.5 Maximum stress failure criteria 
 

According to maximum stress theory, the failure 

initiates if at least one of the criteria is satisfied 
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2.6 Maximum strain failure criteria 
 

According to maximum strain theory, the failure 

initiates if at least one of the criteria is satisfied 
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2.7 Tsai-Hill failure criteria 
 

According to Tsai-Hill failure theory, a lamina fails if at 

least one of the following conditions is satisfied 
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2.8 Tsai-Wu failure criteria 
 

Tsai-Wu criterion can be expressed as 
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2.9 Hoffman’s failure criteria 
 

Hoffman’s criterion is expressed as 
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2.10 Hashin’s failure criteria 
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2.11 Puck’s failure criteria 
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In case of interactive failure theories such as Tsai-Hill, 

Tsai-Wu and Hoffman’s failures criteria, none of the 

individual lamina stress components reach the permissible 

values but their interaction leads to failure. In case of such 

failures, the individual stress values developed may be 

compared to their corresponding permissible values to 

investigate that which stress component contributing to a 

particular interactive criterion plays the most significant 

role in the failure. The stress component for which the ratio 

of the developed to permissible stress is nearest to unity 

may be identified as the most significant component 

contributing to the failure following the corresponding 

failure mode also. 
 

2.12 Step by step solution procedure of first ply 
failure analysis 

 

Step 1: The static displacement fields of shells are 

calculated for the external load {P}. To obtain the linear 

 

 

first ply failure load values the linear displacement fields 

are used while the converged nonlinear displacement fields 

are used for getting the nonlinear failure load values. 

Step 2: The strain vectors considering the linear and 

nonlinear terms are calculated at four Gauss points from the 

linear and nonlinear displacement fields and these strains 

are combined to obtain the mid-surface strain vector 

following Eq. (6). 

Step 3: The in-plane and transverse strains are 

transformed from global to local axes system using Eq. 

(21). 

Step 4: Using Eq. (22) the lamina stresses are calculated 

at Gauss points. Linear strains are used to compute the 

linear failure load values. The nonlinear failure load values 

are calculated using the nonlinear strain terms. 

Step 5: The stresses are extrapolated from Gauss point 

locations to the element node points. 

Step 6: The lamina stresses are incorporated in the 

different failure theories and the failure index is calculated 

(refer Reddy and Reddy 1992). 

Step 7: The initial external load is appropriately 

increased or decreased depending on whether the failure 

index value is lesser than or greater than unity respectively. 

Step 8: Steps 1 to 7 are repeated till the percentage 

difference between the first ply failure load values obtained 

from two successive iterations is less than unity. 

 

 

3. Numerical examples 
 

In order to validate the geometrically nonlinear finite 

element formulation the authors compare the 

nondimensional static central deflection values, considering 

geometric nonlinear strains of simply supported isotropic 

plates, obtained by Palazotto and Dennis (1992) with the 

values obtained from present formulation. The comparison 

of these results is shown in Fig. 3. The uniformly 

distributed transverse load and central deflection are 

nondimensionalized as 𝑞  = (q0a
4)/(E11h

4) and 𝑤 = 𝑤/ℎ 

respectively. 

The nonlinear first ply failure load values of laminated 

composite plate with partially clamped edge condition 

 

Fig. 3 Nonlinear deflection of isotropic plate 
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reported by Kam et al. (1996) are compared with those 

obtained from present formulation in Table 1. The 

composite plate is subjected to a central point load. 

Table 2 furnishes the nondimensional fundamental 

frequency values of composite twisted plates. Different 

angle of twists and stacking orders were considered to 

calculate the frequency values by Qatu and Leissa (1991)) 

 

 

 

 

 

 

 

 

which are compared with the values obtained by the present 

code. This validation problem is chosen to ensure the proper 

incorporation of the skewed hypar shell geometry in the 

present computer code. 

Apart from benchmark problems, a number of numerical 

experiments are carried out for different graphite-epoxy 

[material properties are shown in Table 3 (refer Kam et al. 

 

 

 

Table 1 Comparison of first ply failure loads in Newton for a (02
0/900 )2 plate 

Failure criteria 
Length/ plate 

thickness 

Experimental failure 

load (Kam et al. 1996) 

First ply failure loads 

(Kam et al. 1996) 

First ply failure loads 

(present formulation) 

Maximum stress 

105.26 157.34 

147.61 139.94 

Maximum strain 185.31 194.58 

Hoffman’s 143.15 137.12 

Tsai-Wu 157.78 150.71 

Tsai-Hill 144.42 151.22 
 

* Length = 100 mm; load details = central point load 

Table 2 Nondimensional natural frequencies for (θ / ‒θ / θ) graphite-epoxy twisted plates 

Angle of 

twist 
θ (degree) 0 15 30 45 60 75 90 

ϕ = 15° 
Qatu and Lessia (1991) 1.0035 0.9296 0.7465 0.5286 0.3545 0.2723 0.2555 

Present formulation 0.9985 0.9250 0.7444 0.5280 0.3542 0.2720 0.2552 

ϕ = 30° 
Qatu and Lessia (1991) 0.9566 0.8914 0.7205 0.5149 0.3443 0.2606 0.2436 

Present formulation 0.9501 0.8841 0.7180 0.5143 0.3446 0.2611 0.2446 
 

* E11 = 138 GPa; E22 = 8.96 GPa, G12 = 7.1 GPa; v12 = 0.3; a/b = 1; a/h = 100 

Table 3 Material properties of Q–1115 graphite-epoxy 

Material constants 

values 

E11 

142.5 GPa 

E22 = E33 

9.79 GPa 

G12 = G13 

4.72 GPa 

G23 

1.192 GPa 

v12 = v23 

0.27 

v13 

0.25 

Strengths 

values 

𝜎1𝑇
𝑢  

2193.5 MPa 

𝜎1𝐶
𝑢  

2457 MPa 

𝜎2𝑇
𝑢  

41.3 MPa 

𝜎2𝐶
𝑢  

206.8 MPa 

𝜏13
𝑢  

61.28 MPa 

𝜏12
𝑢 = 𝜏23

𝑢  

78.78 MPa 

𝜀1𝑇
𝑢  

0.01539 

𝜀1𝐶
𝑢  

0.01724 

𝜀2𝑇
𝑢  

0.00412 

𝜀2𝐶
𝑢  

0.02112 

𝛾13
𝑢  

0.05141 

𝛾12
𝑢 = 𝛾23

𝑢  

0.01669 
 

 

Fig. 4 Schematic representation of all boundary conditions 
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1996)] skewed hypar shell options obtained by combining 

different boundary conditions of clamped (C) and simply 

supported (S) edges and laminations under uniformly 

distributed load. The present study considers the shallow 

hypar shell options only (height to shorter span ratio is 

equal to 0.2) as, from practical engineering point of view, 

shells with deep curvatures are difficult to cast and 

fabricate. The failure loads are obtained for two regular 

(SSSS and CCCC) and two irregular (SCSC and CSSC) 

boundary conditions which are described in Fig. 4. For each 

boundary condition, two and three layered anti-symmetric 

(AS) and symmetric (SY), cross (CP) and angle ply (AP) 

laminations are taken up. The 00/900 (ASCP), 00/900/00 

 

 

(SYCP) cross ply laminates and 450/-450 (ASAP), 450/-

450/450 (SYAP) angle ply laminates are considered here to 

obtain the first ply failure load values (FL) which are 

nondimensionalized as 𝐹𝐿    = (𝐹𝐿/𝐸22)(𝑎/ℎ)4 . The plies 

are numbered from top to bottom of the laminate. Other 

related information are furnished in Tables 4 to 7. 

According to the above mode of designating the shell 

options, a SCSC/SYAP symbol means a symmetric angle 

ply shell simply supported along x = 0, clamped along y = 

b, simply supported along x = a and clamped along y = 0 

taken in order. 

 

 

Table 4 Nondimensionalized nonlinear collapse failure loads 𝐹𝐿     for SSSS 

Laminations Failure criteria 𝐹𝐿     
Failure 

zone 

Failed 

ply 

Failure mode / 

failure tendency 

ASCP Maximum stress 7990.81 A 1 Matrix shear failure 

 

Maximum strain 7990.81 A 1 Matrix shear failure 

Hoffman’s 7540.35 A 1 Matrix shear failure 

Tsai-Hill 7941.78 A 1 Matrix shear failure 

Tsai-Wu 7557.71 A 1 Matrix shear failure 

Hashin’s 7932.58 A 1 Matrix cracking 

Puck’s 7804.90 A 1 Matrix cracking mode A 

Serviceability 2642.49 A … … 

SYCP Maximum stress 7431.05 A 1 Matrix shear failure 

 

Maximum strain 7431.05 A 1 Matrix shear failure 

Hoffman’s 6842.70 A 2 Matrix shear failure 

Tsai-Hill 7386.11 A 1 Matrix shear failure 

Tsai-Wu 6846.78 A 2 Matrix shear failure 

Hashin’s 7379.98 A 1 Matrix cracking 

Puck’s 7263.53 A 1 Matrix cracking mode A 

Serviceability 2636.36 D … … 

ASAP Maximum stress 8372.83 A 1 Matrix cracking 

 

Maximum strain 6309.50 A 1 Matrix cracking 

Hoffman’s 8229.83 A 1 Matrix cracking 

Tsai-Hill 8921.35 A 1 Matrix cracking 

Tsai-Wu 7515.83 A 1 Matrix cracking 

Hashin’s 8357.51 A 1 Matrix cracking 

Puck’s 8355.46 A 1 Matrix cracking mode A 

Serviceability 9751.79 D … … 

SYAP Maximum stress 12233.91 A 1 Matrix cracking 

 

Maximum strain 10103.17 A 1 Matrix cracking 

Hoffman’s 12052.09 A 1 Matrix cracking 

Tsai-Hill 13162.41 A 1 Matrix cracking 

Tsai-Wu 11398.36 A 1 Matrix cracking 

Hashin’s 12213.48 A 1 Matrix cracking 

Puck’s 12210.42 A 1 Matrix cracking mode A 

Serviceability 16377.94 C … … 
 

* a/b = 1; a/h = 100; c/a = 0.2 
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Table 5 Nondimensionalized nonlinear collapse failure loads 𝐹𝐿     for CCCC 

Laminations Failure criteria 𝐹𝐿     
Failure 

zone 

Failed 

ply 

Failure mode / 

failure tendency 

ASCP Maximum stress 11908.07 C 2 Matrix shear failure 

 

Maximum strain 11908.07 C 2 Matrix shear failure 

Hoffman’s 10879.47 A 1 Matrix shear failure 

Tsai-Hill 11646.58 D 2 Matrix shear failure 

Tsai-Wu 11066.39 C 2 Matrix shear failure 

Hashin’s 11638.41 C 2 Matrix cracking 

Puck’s 4775.28 A 2 Matrix crushing mode C 

Serviceability 3883.55 B … … 

SYCP Maximum stress 10972.42 A 1 Matrix cracking 

 

Maximum strain 10836.57 A 1 Matrix cracking 

Hoffman’s 10781.41 A 1 Matrix cracking 

Tsai-Hill 10890.70 A 1 Matrix cracking 

Tsai-Wu 10812.05 A 1 Matrix cracking 

Hashin’s 10839.63 A 1 Matrix cracking 

Puck’s 3485.19 A 1 Matrix crushing mode C 

Serviceability 3656.79 B … … 

ASAP Maximum stress 10755.87 A 1 Matrix cracking 

 

Maximum strain 9463.74 A 1 Matrix cracking 

Hoffman’s 10692.54 A 1 Matrix cracking 

Tsai-Hill 11251.28 A 1 Matrix cracking 

Tsai-Wu 10315.63 A 1 Matrix cracking 

Hashin’s 10726.25 A 1 Matrix cracking 

Puck’s 10721.14 A 1 Matrix cracking mode A 

Serviceability 20007.15 B … … 

SYAP Maximum stress 14263.53 A 1 Matrix cracking 

 

Maximum strain 13082.74 A 1 Matrix cracking 

Hoffman’s 14184.88 A 1 Matrix cracking 

Tsai-Hill 14626.15 A 1 Matrix cracking 

Tsai-Wu 13875.38 A 1 Matrix cracking 

Hashin’s 14203.27 A 1 Matrix cracking 

Puck’s 14192.03 A 1 Matrix cracking mode A 

Serviceability 19281.92 B … … 
 

* a/b = 1; a/h = 100; c/a = 0.2 

Table 6 Nondimensionalized nonlinear collapse failure loads 𝐹𝐿     for SCSC 

Laminations Failure criteria 𝐹𝐿     
Failure 

zone 

Failed 

ply 

Failure mode / 

failure tendency 

ASCP Maximum stress 11030.64 A 1 Matrix shear failure 

 

Maximum strain 11030.64 A 1 Matrix shear failure 

Hoffman’s 10140.96 A 1 Matrix shear failure 

Tsai-Hill 10928.50 A 1 Matrix shear failure 

Tsai-Wu 10131.77 A 1 Matrix shear failure 

Hashin’s 10897.85 A 1 Matrix cracking 

Puck’s 10667.01 A 1 Matrix cracking mode A 

Serviceability 2594.48 B … … 
 

* a/b = 1; a/h = 100; c/a = 0.2 
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4. Results and discussions 
 
The results of the numerical experiments are discussed 

in this section considering the benchmark problems and the 

additional examples taken up by the authors. 

 

4.1 Benchmark problems 
 

The close agreement of present and published 

nondimensionalized deflection results shown in Fig. 3 

indicates the correct incorporation of the geometrically 

nonlinear strain terms in bending formulation of the present 

finite element code. The first ply failure load values 

obtained from different failure criteria of a composite plate 

are compared with those obtained from the present 

formulation in Table 1 and this comparison proves the 

accuracy of the first ply failure formulation through finite 

element. In these two benchmark problems the authors 

convert the skewed hypar shell geometry to a plate 

configuration by assigning a very high value of radius of 

cross curvature (Rxy = 1030). The nondimensionalized 

fundamental frequencies of twisted plates which are 

structurally similar to skewed hypar shell geometries are 

furnished in Table 2 and the present results show extremely 

 

 

good agreement with the published ones. This establishes 

the fact that the skewed hypar shell geometry is properly 

modelled in the present finite element code. The authors use 

a simple lumped mass matrix scheme along with the 

undamaged stiffness matrix to solve the frequency values. 

 

4.2 Behaviour of cross and angle ply hypar shells 
of different boundary conditions from collapse 
criteria 

 

The minimum value of the failure load obtained from 

different failure criteria (Eqs. (23) to (29)) is considered as 

the acceptable failure load on which the engineering factor 

of safety should be imposed to get the working load values. 

These collapse failure loads are shown in italics in the 

corresponding Tables 4 to 7. 

The nondimensionalized nonlinear first ply failure load 

values are reported for two regular boundary conditions 

(SSSS and CCCC) in Tables 4 and 5 respectively. For both 

these two boundary conditions, anti-symmetric laminates 

perform better than symmetric ones in terms of first ply 

failure loads for cross ply shells but among the angle ply 

shells the reverse trend is observed. Again, on comparing 

cross and angle ply laminates mutually it is found that the 

Table 6 Continued 

Laminations Failure criteria 𝐹𝐿     
Failure 

zone 

Failed 

ply 

Failure mode / 

failure tendency 

SYCP Maximum stress 10127.68 A 1 Matrix cracking 

 

Maximum strain 10197.14 A 1 Matrix cracking 

Hoffman’s 8131.77 A 1 Matrix shear failure 

Tsai-Hill 8813.07 A 1 Matrix shear failure 

Tsai-Wu 8171.60 A 1 Matrix shear failure 

Hashin’s 8729.31 A 1 Matrix cracking 

Puck’s 8524.00 A 1 Matrix cracking mode A 

Serviceability 2497.45 B … … 

ASAP Maximum stress 10398.36 A 1 Matrix cracking 

 

Maximum strain 8805.92 A 1 Matrix cracking 

Hoffman’s 10293.16 A 1 Matrix cracking 

Tsai-Hill 11069.46 A 1 Matrix cracking 

Tsai-Wu 9808.99 A 1 Matrix cracking 

Hashin’s 10382.02 A 1 Matrix cracking 

Puck’s 10377.94 A 1 Matrix cracking mode A 

Serviceability 13488.25 A … … 

SYAP Maximum stress 14042.90 A 1 Matrix cracking 

 

Maximum strain 11676.20 A 1 Matrix cracking 

Hoffman’s 13900.92 A 1 Matrix cracking 

Tsai-Hill 14909.09 A 1 Matrix cracking 

Tsai-Wu 13230.85 A 1 Matrix cracking 

Hashin’s 14010.21 A 1 Matrix cracking 

Puck’s 14005.11 A 1 Matrix cracking mode A 

Serviceability 14834.52 B … … 
 

* a/b = 1; a/h = 100; c/a = 0.2 
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failure load values of SYAP laminates are 1.3 and 2.7 times 

of the failure load values of ASCP laminates for SSSS and 

CCCC boundary conditions respectively. Thus, SYAP 

laminate i.e., 450/-450/450 turns out to be the best shell 

option among all the shell combinations considered here for 

SSSS and CCCC. 

The close look at the results furnished in Tables 6 and 7 

for two irregular boundary conditions (SCSC and CSSC) 

reflect that, like regular boundary conditions, the first ply 

failure load values of symmetric angle ply laminates are 

higher than those of anti-symmetric angle ply laminates. 

For the cases of cross ply shells, anti-symmetric laminates 

are good compared to the symmetric ones. The load bearing 

capacities of SYAP shells are approximately 1.15 and 2.98 

 

 

times of that of ASCP shells respectively. So it can safely be 

concluded that among all the cases considered here, the 

SYAP shells (450/-450/450) are the best choices to the 

practicing design engineers. 

For all the angle ply shells, the maximum strain criterion 

gives the minimum collapse failure load values for all four 

different boundary conditions taken up here. The Puck’s 

criterion is the governing criteria for cross ply shells for 

CSSC and CCCC boundary conditions respectively. For 

SSSS and SCSC cross ply shells the Hoffman’s failure 

criterion governs the failure loads in all of the cases except 

one. In this exceptional case (SCSC/ASCP) also, though the 

Tsai-Wu criterion yields the minimum failure load but such 

value is very close to that obtained through Hoffman’s 

Table 7 Nondimensionalized nonlinear collapse failure loads 𝐹𝐿     for CSSC 

Laminations Failure criteria 𝐹𝐿     
Failure 

zone 

Failed 

ply 

Failure mode / 

failure tendency 

ASCP Maximum stress 10520.94 B 2 Matrix shear failure 

 

Maximum strain 10520.94 B 2 Matrix shear failure 

Hoffman’s 8364.66 A 1 Matrix shear failure 

Tsai-Hill 10477.02 B 2 Matrix shear failure 

Tsai-Wu 9004.08 A 1 Matrix shear failure 

Hashin’s 10329.93 B 1 Matrix crushing 

Puck’s 3677.22 A 2 Matrix crushing mode C 

Serviceability 3313.58 B … … 

SYCP Maximum stress 9850.87 A 1 Matrix cracking 

 

Maximum strain 9871.30 A 1 Matrix cracking 

Hoffman’s 8566.90 A 1 Matrix cracking 

Tsai-Hill 9073.54 A 1 Matrix cracking 

Tsai-Wu 8611.85 A 1 Matrix cracking 

Hashin’s 8991.83 A 1 Matrix cracking 

Puck’s 3094.99 A 2 Matrix crushing mode C 

Serviceability 3074.56 B … … 

ASAP Maximum stress 10355.46 A 1 Matrix cracking 

 

Maximum strain 7564.86 A 1 Matrix cracking 

Hoffman’s 9745.66 A 1 Matrix cracking 

Tsai-Hill 11432.07 A 1 Matrix cracking 

Tsai-Wu 8938.71 A 1 Matrix cracking 

Hashin’s 10354.44 A 1 Matrix cracking 

Puck’s 10354.44 A 1 Matrix cracking mode A 

Serviceability 12265.58 C … … 

SYAP Maximum stress 13252.30 A 1 Matrix cracking 

 

Maximum strain 10970.38 A 1 Matrix cracking 

Hoffman’s 13078.65 A 1 Matrix cracking 

Tsai-Hill 13833.50 A 1 Matrix cracking 

Tsai-Wu 12371.81 A 1 Matrix cracking 

Hashin’s 13216.55 A 1 Matrix cracking 

Puck’s 13209.40 A 1 Matrix cracking mode A 

Serviceability 16442.29 B … … 
 

* a/b = 1; a/h = 100; c/a = 0.2 
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criterion. Interestingly, for SSSS and SCSC cross ply shells 

the failure loads obtained through Puck’s criterion are not 

by far out (within 6%) when compared to the Hoffman’s 

failure load. Thus it would not be incorrect from 

engineering standpoint to state that Puck’s criterion may 

only be used to evaluate first ply failure loads of cross ply 

shells for all the four boundary conditions taken up here. 

It is observed from the results furnished in Tables 4 to 7 

that the differences between the first ply failure load values 

obtaining from different failure criteria are large. This 

phenomenological wide variation is due to the difference in 

the basic formulation of these criteria. Hence it is difficult 

to find any physical reasons for this. These similar type of 

observations were also noticed in the research works of 

some earlier researchers like Soni (1983) and Reddy and 

Reddy (1992). 

 

4.3 Behaviour of shells with different boundary 
conditions from serviceability standpoint 

 

Besides the collapse criteria, the present authors 

consider the failure load from serviceability point of view 

with the permissible deflection of the skewed hypar shell 

taken as shorter span/250. The results reported in Tables 4 

to 7 establish the fact that the first ply failure loads from 

serviceability point of view are highest when all the edges 

are clamped (CCCC) and lowest for SCSC shells except for 

anti-symmetric angle ply shell. For this exceptional case, 

SSSS edge condition gives the minimum failure load from 

serviceability criterion. 

It is also interesting to note that for most of the cross ply 

laminates, the first ply failure loads obtained through 

collapse criteria yield higher values compared to those 

obtained from serviceability consideration and for all angle 

ply laminates, the failure load values obtained from 

serviceability consideration yield higher values compared to 

those obtained from collapse criteria. Hence, the cross ply 

laminates behave like ductile materials and there is an 

apprehension of brittle failure for angle ply class of shells. 

This is very helpful information to the practicing designers 

designing civil engineering composite shell roofs in 

earthquake prone zones. 

 

4.4 Effect of boundary condition on first ply failure 
loads obtained from collapse criteria 

 

The results furnished in Tables 4 to 7 show that the 

SCSC boundary condition gives the highest magnitude of 

first ply failure collapse load values and CSSC condition 

gives the lowest values of first ply failure loads for all cross 

ply shells. The CCCC and SSSS boundary conditions give 

the maximum and minimum first ply failure loads from 

collapse consideration for all angle ply shells respectively. 

The failures of the angle ply shells are through the matrix 

cracking mode because for all angle ply laminates, the 

fibers run along diagonal directions and the matrix is 

reinforced enough by the fibers to prevent its failure 

through matrix shear failure mode or matrix crushing mode 

C in contrast to failure of cross ply laminates. It is 

interestingly noticed for cross ply shells, that the failure 

load values decrease noticeably for two adjacent edges 

 

Fig. 5 Failure zones of a hypar shell in plan 

 

 

clamped (CSSC) and for all four edges clamped (CCCC) 

shells when compared with those values obtained for SSSS 

and SCSC shells. This behaviour may be explained as given 

below. A skewed hypar shell has an anticlastic geometry 

with a sagging curvature along one of its diagonals and a 

hogging curvature along the other diagonal. By virtue of the 

geometry of the skewed hypar shell the forces and moments 

are transformed through its diagonal directions and when 

two adjacent edges are clamped as in CSSC and CCCC 

cases, the loads tend to get transferred in the diagonal 

directions. But due to insufficient fibers in matrix along this 

load transfer path, the matrix is weak and the cross ply 

laminates fail through matrix crushing mode C at a 

comparatively lower failure load. On the other hand, two 

adjacent edges are not clamped in SCSC and SSSS shells 

and the influence of edge conditions on failure loads and 

failure modes which are discussed above are not applicable. 

The behaviour reported above establishes a close 

interaction between boundary conditions and laminations 

which decides finally the failure load value that a particular 

shell combination can withstand. In fact the isotropic shells 

behave in a completely different way and highest failure 

load is achieved when all the four edges are clamped. 

 

4.5 Failure zones of hypar shells and guidelines for 
non-destructive test monitoring 

 

The authors classify the hypar shell geometry into four 

different zones in plan. These zones are classified as Zones 

A, B, C and D and shown in Fig. 5. The location of the first 

ply failure point is extremely important to be known to a 

practicing engineer because any instrumentation needed for 

hidden flaw detection should start from that point. Zone A is 

the most vulnerable zone of all the cross and angle ply 

shells considered here as failure initiates from this zone as 

evident from the results shown in Tables 4 to 7. This 

indicates that any instrumentation for non-destructive health 

assessment may be restricted within this peripheral zone 

only. 

Apart from preventing a material failure the maximum 

value of deflection should be limited to an upper value of 
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shorter span / 250 to meet the serviceability requirements. 

Tables 4 to 7 indicate the zones which are prone to undergo 

maximum deflection for different boundary conditions and 

laminations. Periodic monitoring of deflections of these 

zones is also important if a shell has any chance of getting 

overloaded. 

 

4.6 Suggesting partial factor of safety values on 
first ply failure loads 

 

The design codes outline methods of evaluating working 

load values which can be safely put on a structural surface 

satisfying parallely the conditions of collapse and 

serviceability. In the present study the load corresponding to 

a maximum deflection of shorter span / 250 is taken as the 

working load. Naturally, when the first ply failure load 

values are greater than the working loads, factor of safety 

values may be suggested as ratios of the first ply failure 

loads to the working loads. These values are furnished in 

Table 8 rounded up to the nearest quarter of an integer. In 

some cases, for angle ply shells, the maximum deflection 

 

 

Table 8 Proposed partial factors of safety for load 

Lamination 
Boundary conditions 

SSSS SCSC CSSC CCCC 

ASCP 
Proposed partial factors of safety 

3 4 1.25 1.25 

SYCP 2.75 3.5 1.25 1 

ASAP 1 1 1 1 

SYAP 1 1 1 1 
 

 

 

limit is reached after initiation of material failure. In these 

cases the first ply failure loads itself may be taken as the 

working loads and hence the corresponding factor of safety 

is suggested to be unity. 
 

4.7 Relative performances of different shell options 
and selection guidelines 

 

For a given quantity of material consumption an 

engineer has different options to choose combining angle 

and cross ply laminates of anti-symmetric and symmetric 

stacking orders. Thus one should seek an optimal selection 

keeping in mind the practical requirements. An engineer 

may restrained the edges differently to simulate a simply 

supported or a clamped boundary condition. When the 

performances of different shell options are carefully 

observed it is found that though specific trends are there 

from some angle but the exceptions cannot be ignored fully. 

This is why in Table 9 ranks are assigned to the different 

shell options from collapse and serviceability performance 

points of view. To get an overall picture combining the two 

performance criteria the summation of ranks are also 

furnished. 

The relative superior performance of angle ply laminates 

compared to cross ply ones is well-established through the 

present study. Out of the sixteen shell combinations taken 

up here only angle ply shells come within the first eight in 

terms of deflection but when the shells are ranked in terms 

of material failure two of the cross ply combinations 

(SCSC/ASCP and SCSC/SYCP) figure within the first eight 

ranks. When the sum of the ranks are considered it is found 

that the angle ply combinations are by and large much 

better than the cross ply ones except the fact that the 

SCSC/ASCP shell is better than the SSSS/ASAP shell. This 

 

Table 9 Ranks of shell combinations from different performance criteria 

Shell 

options 

Rank in terms of Sum 

of 

ranks 

Shell 

options 

Rank in terms of Sum 

of 

ranks 
Collapse load from 

failure criteria 

Load corresponding 

to serviceability failure 

Collapse load from 

failure criteria 

Load corresponding 

to serviceability failure 

SSSS/ASCP 10 13 23 

B
o
u
n
d
ar

y
 c

o
n
d
it

io
n

 

CCCC 35 22 57 
SSSS/SYCP 11 14 25 

SSSS/ASAP 12 8 20 
CSSC 42 33 75 

SSSS/SYAP 5 4 9 

SCSC/ASCP 4 15 19 
SCSC 21 42 63 

SCSC/SYCP 8 16 24 

SCSC/ASAP 7 6 13 
SSSS 38 39 77 

SCSC/SYAP 2 5 7 

CSSC/ASCP 14 11 25 

L
am

in
at

io
n
 

AP 45 36 81 
CSSC/SYCP 16 12 28 

CSSC/ASAP 9 7 16 
CP 91 100 191 

CSSC/SYAP 3 3 6 

CCCC/ASCP 13 9 22 
SY 61 66 127 

CCCC/SYCP 15 10 25 

CCCC/ASAP 6 1 7 
AS 75 70 145 

CCCC/SYAP 1 2 3 
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indicates that, with suitable adjustment of boundary 

conditions and lamina stacking order a cross ply shell may 

also show a good performance. 

When overall performances of the different boundary 

conditions are only focussed on, the CCCC edge condition 

proves to be the best. Interestingly, so far tendency of 

material failure is concerned the above boundary condition 

is not the best option, SCSC shells perform even better. 

When angle and cross ply laminates are compared the 

former shows overall better performances and also in 

individual material failure and serviceability criteria. 

Similarly symmetric laminates are convincingly better in 

performance when compared with the anti-symmetric ones. 
 

 

5. Conclusions 
 

The following conclusions are drawn from the present 

study. 
 

 The finite element formulation, which is used for the 

present study, accurately models the geometrically 

nonlinear first ply failure behavior of laminated 

composite hypar shell roofs as the results of the 

benchmark problems show extremely good 

agreement with the published ones. 

 The failure load values of the composite hypar shells 

for different edge conditions are presented 

systematically which are expected to serve as 

valuable design aids to practicing engineers. 

 Generally the angle ply laminates perform better 

than the cross ply ones in terms of their first ply 

failure load values. The SYAP shell (450/-450/450) is 

the best options among all the boundary conditions 

taken up here. 

 Comparing the failure loads obtained from collapse 

and serviceability criteria, it may be concluded that 

the cross ply laminates behave like ductile materials 

but the angle ply shells show tendencies of brittle 

failure. 

 The present study establishes a close interaction 

between boundary condition and stacking sequence 

to determine the value of the first ply failure load. 

 The probable failure zones for the different shell 

combinations which are indicated in this paper will 

be useful for engineers engaged in nondestructive 

health monitoring of these structural units. 

 The practicing engineer may readily refer to the 

factor of safety values indicated in this paper to 

assess the safe values of the loads which the shell 

units can withstand. 

 The different shell combinations are assigned ranks 

against their relative performances both in terms of 

failure loads and deflections. These ranks are 

expected to form a useful basis for selection of a 

particular shell combination in place of another. 
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List of notations 
 

a, b Length and width of hypar shell in plan 

c Rise of hypar shell 

Rxy Radii of cross curvature of the hypar shell 

h Shell thickness 

X, Y, Z Global coordinate axes 

1, 2, 3 Local coordinate axes 

Nx, Ny In-plane normal force resultants 

Nxy In-plane shear force resultant 

Mx, My Moment resultants 

Mxy Torsional moment resultant 

Qx, Qy Transverse shear resultants 

np Number of ply 

kx, ky, kxy Curvatures of the shell due to loading 

xy ,xz, yz In-plane and transverse shear strains, respectively 

x, y In-plane strains along x and y axes of the shell 

{εl}, {εnl} 

 

Linear and nonlinear part of strain vectors, 

respectively 

[B], [B’] 

 

Linear and nonlinear strain displacement 

matrix, respectively 

[𝐵 ] Strain displacement matrix 

zk, zk-1 

 

Top and bottom distance of the kth ply 

from mid-plane of a laminate 

σ1, σ2 

 

Normal stresses acting along 1 and 2 axes of a 

lamina, respectively 

τ12 Shear stress acting on 1-2 surface of a lamina 

ε1, ε2 

 

In-plane strains along 1 and 2 axes of a lamina, 

respectively 

γ12 

 

In-plane shear strain acting on 1-2 surface of 

a lamina 

E11, E22, E33 

 

Modulus of elasticity along the directions 

1, 2 and 3 

G12, G13, G23 

Shear modulus of a lamina in 1-2, 1-3, and 2-3 

planes corresponding to the local axes of that 

lamina, respectively 

ij Poisson’s ratio 

𝜎1𝑇
𝑢 ,   𝜎2𝑇

𝑢  
Ultimate normal tensile stresses along 

1 and 2 direction, respectively 

 

 

 

 

𝜎1𝐶
𝑢 ,   𝜎2𝐶

𝑢  
Ultimate normal compressive stresses along 

1 and 2 direction, respectively 

𝜀1𝑇
𝑢 ,   𝜀2𝑇

𝑢  
Ultimate normal tensile strains along 

1 and 2 direction, respectively 

𝜀1𝐶
𝑢 ,   𝜀2𝐶

𝑢  
Ultimate normal compressive strains along 

1 and 2 direction, respectively 

τ12, τ13, τ23 

Ultimate shear stress values in 1-2, 1-3, and 

2-3 planes corresponding to the local axes of 

that lamina, respectively 

γ12, γ13, γ23 

Ultimate shear strain values in 1-2, 1-3, 

and 2-3 planes corresponding to the local axes 

of that lamina, respectively 

FL Uniformly distributed first ply failure load values 

𝐹𝐿     
Nondimensionalized uniformly distributed 

first ply failure load values = (FL/E22)(a/h)4 
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