
Steel and Composite Structures, Vol. 32, No. 3 (2019) 293-304 

DOI: https://doi.org/10.12989/scs.2019.32.3.293 

Copyright ©  2019 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=scs&subpage=6                                      ISSN: 1229-9367 (Print), 1598-6233 (Online) 

 
1. Introduction 

 

In recent decades the application of nanotechnology in 

many industrial applications in two ways including the use 

of nano-materials for reinforcement and nanostructures has 

been increased. Numerous works on reinforcing structures 

by nano-materials have been reported in literatures in the 

various fields such as dynamic analysis (Lei et al. 2015, 

Zhang and Selim 2017 and Zhang et al. 2017), geometri-

cally nonlinear analysis (Zhang and Liew 2015 and Zhang 

et al. 2016a), thermomechanical analysis (Zhang et al. 

2016b), buckling and stability analysis (Lei et al. 2014, 

Zhang et al. 2016c and Zhang 2017), postbuckling analysis 

(Zhang and Liew 2016 and Zhang et al. 2016d), composite 

plates (Zhang et al. 2015a and Zhang and Xiao 2017) and 

Piezoelectric (Zhang et al. 2016e). In these researches 

various numerical methods such as element free IMLS-Ritz 

method (Zhang et al. 2015b), local Petrov-Galerkin method 

(Zhu et al. 2014) and local Kriging meshless method 

(Zhang et al. 2014) have been used. The nanostructures 

because of their superior properties are implemented in 

high-tech devices. Experimental investigations on 

nanostructures show that the mechanical behavior of these 

structures can‟t be predicted by the ideal continuum theories 

due to neglecting the size effects (Ma and Clarke 1995, 
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Poole et al. 1996, Chong et al. 2001, Chen et al. 2003, 

Cadek et al. 2004). 

Several unconventional theories such as nonlocal couple 

stress (Mindlin 1964, Toupin 1964), modified couple stress 

(Yang et al. 2002, Akgöz and Civalek 2011), Eringen 

(1972a ,b) and strain gradient (Altan and Aifantis 1997, 

Aifantis 1999, Amanatidou and Aravas 2002, Lam et al. 

2003) theories have been proposed to describe the 

mechanical behaviour of structures at the nanoscales. A 

brief review on nonlocal elasticity theories and related 

variational principles is presented by Polizzotto (2001). 

There are a large number of papers in which the size 

effect are modelled using the nonlocal theories for various 

structures. For example, Darabi and Vosoughi (2016) 

presented an inverse hybrid numerical method for small 

scale parameter estimation of functionally graded 

nanobeams. Wang et al. (2017a) studied on small scale 

effect on both natural frequencies and vibration mode 

shapes of strain gradient nanobeams. They concluded that 

the natural frequency difference between that predicted by 

the strain gradient elastic beam and the classical beam rises 

with the increasing of the mode order and decreasing of the 

beam length. Bending and buckling of FG nanobeams with 

different higher order shear deformation theories is 

comprehensively studied by Rahmani et al. (2017). Wang et 

al. (2010) studied on the propagation characteristics of the 

longitudinal wave in nanoplates. They demonstrated that the 

longitudinal wave in nanoplates becomes dispersive and 

dispersion degree can be strengthened by increasing the 

scale coefficient. 

The transverse nonlinear steady-state vibrations of the 
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double layered nanoplate (DLNP) with 3:1 internal 

resonance between the first two modes were investigated by 

Wang et al. (2017b). In their study, the method of multiple 

scales is employed to obtain the analytical nonlinear 

frequency-response relations. Wave propagation in 

functionally graded graphene platelets (FGGPLs)-

reinforced nanocomposite thick hollow cylinder under 

shock loading is investigated by Hosseini and Zhang 

(2018b). Despotovic (2018) using Eringen‟s theory 

investigated the influence of body force and nonlocality on 

stability and free vibration of the nanoplates. 

The vibration of non-uniform nanoplates rested on 

elastic foundation is studied by Chakraverty and Behera 

(2015). Ghavanloo and Fazelzadeh (2016) presented an 

analytical method to evaluate Eringen‟s nonlocal parameter 

for single-walled carbon nanotubes. Some of the researchers 

have focused on size-dependent thermoelasticity of 

structures by combining the nonlocal and classical 

thermoelastic theories. Yu et al. (2016) investigated the 

effect of nonlocal parameter of elasticity and heat 

conduction on the critical load of nanobeams under non-

uniform temperature. They concluded that the critical load 

is decreased by elastic nonlocal parameter and further 

decreased when thermal effect is taken into account. The 

thermal vibration behavior of two dimensional functionally 

graded nanobeams is studied by Mirjavadi et al. (2017). 

Hosseini (2018) for the first time developed an analytical 

solution for the coupled thermoelasticity analysis of a 

micro/nano beam resonator under shock loading based on 

the Green-Naghdi theory. The GN-based coupled 

thermoelasticity analysis of FG multilayer graphene 

platelets-reinforced nanocomposite cylinders is carried out 

by Hosseini and Zhang (2018a). The thermoelastic damping 

of nonlocal Euler–Bernoulli beam is carried out by Yu et al. 

(2017). They obtained the inverse quality factor by using 

the complex-frequency approach. A brief review on studies 

about the application of modified continuum elasticity 

theory in modeling of nanotubes, nanobeams, and 

nanoplates can be founded in Wang et al. (2016) article. 

During the last decades several mesh-based methods 

have been presented for modelling small scale effect 

(Belytschko et al. 2009, Phadikar and Pradhan 2010, 

Taghizadeh et al. 2015, Nguyen et al. 2017, Nikkar et al. 

2017, Arefi 2018). Despite the success of these methods, 

since in nonlocal theory the stresses at a point is a function 

of the strains at its all neighbour points (Eltaher et al. 2016), 

the meshless methods has the competitive advantage for 

nonlocal problems. Because comparing to the mesh-based 

methods, the discretization of domain for meshless methods 

is carried out using a set of scattered points. Recently 

published works shows that the meshless methods have 

attracted much attention to solve nonlocal problems. Askes 

and Aifantis (2002) implemented the Element-Free Galerkin 

method on theory of gradient elasticity to model size 

effects. They analyzed two boundary value problems 

including clamped beam under bending loading and square 

plate with hole under axial tension to show the capability of 

the gradient elasticity theory in capturing the size effects. 

Schwartz et al. (2012) proposed a boundary element 

coupled with local radial point interpolation method for 

analysis of 3D nonlocal elastic problems. Kiani (2014) 

using a nonlocal meshless method studied on the flexural 

vibrations of double-walled carbon nanotubes subjected to 

an initially axial force and embedded in an elastic matrix. 

An element free buckling analysis graphene sheets 

embedded in an elastic medium incorporating the non-local 

elasticity theory has been presented by Zhang et al. (2016c). 

They investigated the influence of nonlocal parameters, 

aspect ratio, side length and elastic foundation on the 

critical buckling load. 

In some engineering problems, the nanostructures 

undergo large deformations so that the deformed shape of 

structure affects the results of problem. In such cases, the 

geometrically nonlinear analysis is unavoidable. Recently 

some studies have been conducted to analyse the large 

deformation of nanostructures using the nonlocal theory of 

elasticity. A nonlocal nonlinear finite element formulation 

of classical and shear deformation theories of beams and 

plates is presented by Reddy (2010). Malekzadeh and 

Shojaee (2013) studied on the surface and nonlocal effects 

on nonlinear free vibration of nano-beams. Wang et al. 

(2015a) by means of nonlocal theory and Von Kármán large 

deformation theory studied on homoclinic behaviors and 

chaotic motions of double layered viscoelastic nanoplates. 

In another work, they investigated the nonlinear flexural 

vibration properties of double layered viscoelastic 

nanoplates based on nonlocal continuum theory (Wang et 

al. 2015b). Gholami and Ansari (2016) based on Mindlin‟s 

plate theory and von Kármán geometric nonlinearity 

developed a nonclassical microplate method to investigate 

the size-dependent geometrically nonlinear free vibration of 

functionally graded microplates. Panyatong et al. (2018) 

developed a meshfree method for geometrically nonlinear 

analysis of the nanoplates. In their work, the effects of 

nonlocal parameter, von Kármán nonlinearity and aspect 

ratio on nonlinear bending are studied. Sladek et al. (2017) 

claimed to have given a formulation for large amplitude 

vibration of piezoelectroelastic nanoplates for the first time. 

They proposed a finite element formulation based on the 

Mindlin assumption and von Karman-type nonlinear field 

equations to analyse the piezoelectric nanoplate under a 

static and time-harmonic mechanical load and electric load. 

Wang et al. (2019), established the double mode nonlinear 

dynamical equations of the double layered nano plates 

subjected to transverse harmonic excitation and static in-

plane compression by the nonlocal theory and von Kármán 

large deformation theory. From their formulation, it was 

rather novel that the rotary inertia could break the simplistic 

symmetry of the vibration system. 

Compared to numerous works on the analysis of 

nanostructures considering small scale effect, a few work 

has been done on large deformation analysis of 2D (plane 

strain) structures. In this paper for the first time, the EFG 

method is developed for geometrically nonlinear analysis of 

nanostructures based on the higher-order gradient elasticity 

nonlocal theory. It should be mentioned that the EFG 

method is one of the most popular meshless methods 

because of its similarities with FEM. This technique is 

based on global weak form of governing differential 

equation. Though there exist a background cell for 
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integration, there is no need to refine the integration cell 

when decreasing nodal distance for more accurate field 

approximation. Thus, the EFG method has high 

convergence rate and the computational time required for 

this method is less than other meshless methods. The 

gradient nonlocal elasticity theory is employed to model the 

size effect. In this method the stress of a node is a partial 

differential function of the strains at the all its neighbour 

points. In order to approximate this function, the radial 

basis function is used. It should be mentioned that, radial 

basis functions is suitable for estimating derivatives up to 

the second order. Geometrically nonlinear formulations are 

obtained with respect to the initial state of structure based 

on total lagrangian approach. The Newmark method is 

employed to discretize time domain and at each time step 

the iterative Newton-Raphson method is used to solve the 

nonlinear equations. Some numerical examples are analysed 

using proposed method and effect of nonlocal parameter on 

nonlinear dynamic behaviour of structure are studied in 

details. The results show that the EFG method is very 

effective method for large deformation analysis of 

nanostructures. 

 

 

2. Gradient nonlocal elasticity theory 
 

As previously mentioned, in gradient nonlocal elasticity 

theory proposed by Aifantis (1999) the stress field at a node 

in an elastic continuum is a function of strains at all its 

neighbor points which is expressed using the following 

partial differential equation. 

 

  klijklij lDS 221   (1) 

 

where, „Sij‟ is the second Piola–Kirchhoff stress tensor, „l = 

e0a‟ is the scale coefficient, „2 = ∂2 / ∂x2 + ∂2 / ∂y2‟ is the 

Laplacian operator, „Dijkl‟ is the constitutive tensor and „εkl‟ 

is the Cauchy strain tensor. 

 

 

3. Geometrically nonlinear analysis 
 

In geometrically nonlinear problems, the analysis is 

performed using an incremental-iterative procedure. At each 

incremental load step, the status of the body can be 

considered in two different state including initial and 

current configurations (see Fig. 1). The coordinates of a 

particle at the initial and current configurations are defined 

by „Xi‟ and „xi‟, respectively. These coordinates are 

connected by the following relation. 

 

iii uXx   (2) 

 

where „ui‟ is „i‟ directional displacement. In this paper, the 

geometrically nonlinear analysis is carried out using total 

Lagrangian approach where in the strains and stresses are 

measured with respect to the initial configuration. The 

deformation gradient tensor with respect to the initial 

configuration is given by 

 

Fig. 1 Initial and current configurations in large 

deformation problems 
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Thus, the increment of deformation gradient tensor can 

be defined as 
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The Cauchy strain tensor can be expressed in terms of 

deformation gradient tensor as follows. 

 

 ijIjIiij FF  
2

1
 (5) 

 

The derivative of the strain tensor (Eq. (5)), yields the 

following incremental equation. 

 

 IjIiIjIiij FFFF 
2

1
  (6) 

 

The expansion of Eq. (6) can be presented in the 

following matrix form.  ∆𝜀 =  𝐹  {∆𝐹} 
 

    FF  ˆ  (7) 
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and 
 

   yxxyyyxx FFFFF 
T

 (9) 

 

 

4. Discretizing the problem domain 
 
In the meshless method, the shape functions are used to 

estimate the displacement function „u‟ in terms of nodal 
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displacement „ui‟. 

 

   Uuu
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

 (10) 

 

where, „n‟ is the number of nodes in the support domain and 

„φi‟ is the shape function. The radial point interpolation 

method (RPIM) is one of the most widely used method for 

construction the shape functions. In this method the shape 

function is defined as (Liu and Gu 2005) 
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In the last equation „Ri‟ represents the radial basis 

function. In this paper, the multi-quadric (MQ) radial basis 

function with the following formulation is used to discretize 

the problem domain. This function has the Kronecker delta 

function property, and thus the application of essential 

boundary conditions is carried out in a simple way. 

Furthermore, the MQ function accurately estimates 

dependent variable up to the second order derivatives. 

 

 qii crR 22   (13) 

 

in which „ri‟ denotes the distance between the point of 

interest and the nodes located in its support domain. 

 

     2/122
iii yyxxr   (14) 

 

Substituting Eq. (10) into Eq. (4), the linear strain 

matrix „[Bl]‟ (which gives the deformation gradient 

increment in terms of the nodal displacements increment) 

will be obtained. 
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Replacing Eq. (15) into Eq. (7), yields the nonlinear 

strain matrix „[Bnl]‟ (which gives the Cauchy strains in erms 

of nodal displacements increment). 

    UBnl   (17) 
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and 
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Finally, the gradient of the nonlinear strain matrix, 

which is used in nonlocal formulation, can be derived as the 

following equation. 
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(20) 

 

 

5. Element free Galerkin method 
 

In this section, the governing equation for the nonlocal 

geometrically nonlinear dynamic analysis is derived using 

the principle of the minimization of total potential energy. 

The statement of total potential energy function „Π‟ at the 

initial configuration is given by 
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where „{𝑡 }‟ is the traction vector, „ρ‟ is the mass density and 

„{S0}‟ is the initial second Piola–Kirchhoff stress vector. 

Substituting „{ΔS}‟ from Eq. (1) into the last equation gives 
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where „[D]‟ is the constitutive matrix. The total potential 

energy function with lower order of derivatives can be 

obtained by applying divergence theorem to the recent 

equation. 
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Assuming that the derivatives of strains vanish on the 

boundary (Askes and Aifantis 2002), the discretized form of 

Eq. (23) can be obtained using strain-displacement relation 

(Eq. (17)). 
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where „{ΔU}‟ is the nodal displacement vector. The 

derivative of the total potential energy function with respect 

to the nodal displacement vector should be set to zero to 

minimize the potential energy function. 
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Application of Eq. (25) to Eq. (24) yields to the mass 

matrix, tangent stiffness matrix and equivalent nodal load 

vector as follows. 
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Thus, the nonlinear equation of motion which should be 

solved at the each time step is 

 

          PUKUCUM  T
  (29) 

 

where „[C]‟ is the damping matrix which is constructed 

using Rayleigh method with respect to the mass and 

stiffness matrices (Rad et al. 2015). The Eq. (29) is 

nonlinear because the both side of this equation are function 

of nodal displacement. In the left side, the matrix [KT] is a 

function of nonlinear strain [Bnl] matrix. According to the 

Eq. (18) the nonlinear strain matrix is defined with respect 

to deformation tensor which is a function of displacement. 

The right side of this equation is also a function of the 

initial second Piola–Kirchhoff stresses which is a function 

of nodal displacement. Thus, the nodal displacements must 

be computed using an incremental-iterative method. The 

solution procedure of Eq. (29) is presented in the next 

section. 

 

 

6. Nonlinear Newmark-beta method 
 

In the present paper, the combination of Newmark and 

Newton-Raphson methods is used for solving the time 

dependent nonlinear equations. The Newmark method 

involves solving the differential equations by a numerical 

time-stepping method. At each time step „Δt‟, the following 

equations is used to approximate the acceleration and 

velocity vectors with respect to their values at the previous 

time step. 
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 (30) 

 

          11 1   iiii UtUtUU    (31) 

 

where the parameters „β‟ and „γ‟ define the variation of 

acceleration over a time interval which are selected as „β = 

0.25‟ and „γ = 0.5‟ corresponding to average acceleration at 

each time step. Substituting Eqs. (30) and (31) into equation 

of motion (Eq. (29)) one can obtains 

 

    ii PUK ˆˆ
T   (32) 

 

where 
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and 
 

   
 

 
 

   

      1

12

1
2

1
2

1

1ˆ


























































i

iii

UCM

UC
t

M
t

PP
















 (34) 

 

In the solution of nonlinear quasi-static equation of 

motion at each time step (Eq. (32)), the well-known 

iterative Newton-Raphson technique is used. The 

Newmark/Newton-Raphson method can be implemented as 

a sequence of Fig. 2. This method is introduced in details in 

our previous published research (Rad et al. 2015). 

 

 

7. Numerical results and discussions 
 

In this section, the geometrically nonlinear analysis of a 

cantilever deep beam is carried out by proposed method. 

The schematic of the problem is shown in Fig. 3. 

The initial Lame constants of the material are 

considered as „μ0 = 0.5×104 Pa‟ and „λ0 = 3.3×103 Pa‟ and 

the mass density is „ρ = 2.2 gr/cm3‟. 

 

7.1 Static analysis 
 

To verify the accuracy of proposed model, the pre-

mentioned beam is analyzed at a large scale („L = 10 m‟ and 

„H = 2 m‟) without considering small scale effect (l = 0). 

The beam is considered under uniform distributed 

incremental shear stress at the free end. The applied stress 

tension at the nth loading step is defined as (Gu et al. 2007). 

 

 
 

 

Fig. 2 Flow chart for large deformation analysis of nanostructures using EFG method 
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Fig. 3 The geometry and boundary conditions of the 

cantilever beam 

 

 











2m

N
)( nnTy   (35) 

 

where „β‟ is the load scale factor which is considered to be 

„β = 10‟ and loading is applied in eight steps. The vertical 

displacement of point „A‟ at the all load steps are listed in 

Table 1, for various nodal distributions. The results obtained 

using finite element method by Gu et al. (2007) are also 

reported in this table. It is observed that the results of 

presented EFG method with „16×8‟ nodal distribution are in 

good agreement with those obtained using finite element 

method with the very fine mesh (738 nodes). 

 

 

 

 

 

Fig. 4 Midline vertical displacement at the end of load steps 
 

 

In Table 1, the percentage difference of the EFG method 

with the FEM is obtained from the following equation. 
 

100(%)dif 



FEM

EFGFEM

v

vv
 (36) 

 

In the next example, the dimensions of the beam are 

considered as „L = 40 nm‟ and „H = 8 nm‟ to investigate the 

small scale effect. The load is increased by 10 load steps. 

The midline vertical displacement of the cantilever beam 

for various values of the nonlocal parameter at the end load 

 

 

 

 

 

Table 1 Vertical displacement of point „A‟ without nonlocality effect obtained from EFG with various nodal 

distribution comparing with the FEM (Gu et al. 2007) 

Load step (n) 1 2 3 4 5 6 7 8 

FEM (Gu et al. 2007) ‒vA (m) 0.816 1.617 2.376 3.078 3.714 4.283 4.768 5.235 

Present (8×4) 
‒vA (m) 0.816 1.617 2.376 3.078 3.714 4.283 4.768 5.235 

‒vA (m) 0.707 1.416 2.106 2.760 3.368 3.929 4.435 4.901 

Present (12×4) 
dif (%) 13.36 12.43 11.36 10.33 9.32 8.27 6.98 6.38 

‒vA (m) 0.747 1.494 2.219 2.903 3.539 4.119 4.641 5.122 

Present (12×6) 
dif (%) 8.46 7.61 6.61 5.69 4.71 3.83 2.66 2.16 

‒vA (m) 0.742 1.484 2.204 2.885 3.516 4.094 4.614 5.088 

Present (16×6) 
dif (%) 9.07 8.23 7.24 6.27 5.33 4.41 3.23 2.81 

‒vA (m) 0.799 1.596 2.366 3.089 3.756 4.359 4.907 5.393 

Present (16×8) 
dif (%) 2.08 1.30 0.42 0.36 1.13 1.77 2.92 3.02 

‒vA (m) 0.776 1.552 2.302 3.008 3.660 4.252 4.790 5.271 
 

Table 2 The effect of nonlocal parameter on maximum vertical displacement at the all load steps 

Load step (n) 1 2 3 4 5 6 7 8 

l = 0.0 ‒vA (m) 3.194 6.384 9.465 12.358 15.014 17.414 19.554 21.445 

l = 0.5 (nm) 
‒vA (m) 3.030 6.059 8.997 11.770 14.336 16.671 18.772 20.645 

‒vA (m) 5.13 5.09 4.94 4.76 4.52 4.27 4.00 3.73 

l = 1.0 (nm) 
dif (%) 2.659 5.323 7.927 10.419 12.761 14.932 16.922 18.733 

‒vA (m) 16.75 16.62 16.25 15.69 15.01 14.25 13.46 12.64 

l = 1.5 (nm) 
dif (%) 2.238 4.482 6.694 8.840 10.893 12.835 14.654 16.345 

‒vA (m) 29.93 29.79 29.28 28.47 27.45 26.29 25.06 23.78 

l = 2.0 (nm) 
dif (%) 1.855 3.717 5.563 7.373 9.129 10.818 12.430 13.959 

‒vA (m) 41.92 41.78 41.23 40.34 39.20 37.88 36.43 34.91 
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Fig. 5 Effect of nonlocal parameter on maximum vertical 

displacement 
 

 

 

Fig. 6 Effect of aspect ratio on small scale effect 
 

 

step is compared with the local ones in Fig. 4. According to 

this figure, it can be seen that for this problem the 

displacement decreases with increase nonlocal parameter. 

The variation of the maximum displacement of the beam 

with respect to the nonlocal parameter for all load steps is 

shown in Table 2. 

Based on this table, it can be concluded that at the 

higher load steps the effect of nonlocality is decreased. For 

 

 

example, by increasing the nonlocal parameter from „l = 0‟ 

to „l = 2 nm‟, the maximum displacement approximately 

decreases by 42% and 32% at the first and end load steps, 

respectively. 

In Fig. 5, the maximum vertical displacement of the 

beam is plotted as a function of the nonlocal parameter at 

the first load step. It should be mentioned that the nonlocal 

parameters is defined as „l = e0a‟ where „e0‟ is a constant 

which varies accordance with each material and the 

parameter „a‟ is the internal characteristic length (e.g., the 

length of C-C bounds) obtained by experience or matching 

dispersion curves of plane waves with those of atomic 

lattice dynamics (Arash and Ansari 2010). It is obvious that 

the local elasticity is retrieved when the nonlocal parameter 

becomes zero. According to Fig. 4, it can be observed that 

by increasing the nonlocal parameter, the maximum vertical 

displacement is decreased. In other words, the nonlocal 

parameter directly effects on stiffness of nanostructures 

(See Eq. (27)). The maximum rate of decrease in vertical 

displacement with increase the nonlocal parameter 

(maximum slope of the diagram) is related to „l = 1.2 nm‟. 

 

 

 

Fig. 7 Load versus vertical deflection of point „A‟ for 

various nonlocal parameters 
 

 

  

(a) 1st mode (b) 2nd mode 
 

  

(c) 3rd mode (d) 4th mode 

Fig. 8 Effect of nonlocal parameter on natural frequencies 
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The same results are achieved at the other load steps. 

In Fig. 6, the diagram of percentage reduction of 

maximum vertical displacement due to nonlocality versus 

the nonlocal parameter is presented. It is assumed that the 

length of the cylinder is constant „L = 40 nm‟ and this 

diagram is plotted for various length to height „L/H‟ ratios. 

As can be seen in this figure, by increasing the value of 

„L/H‟, the small scale effect is increased. 

The vertical displacement of point „A‟ versus the load 

steps for various nonlocal parameter is shown in Fig. 7. 

According to this figure, it is clear that the beam has been 

entered the geometry‟s nonlinear region. 

 

7.2 Dynamic analysis 
 

In what follows, the introduced beam in previous 

subsection, is analyzed under impact loading. The effects of 

structural parameters such as nonlocal parameter and aspect 

ratio on dynamic behavior of the beam are studied. The 

beam is subjected to the following ramp stress at the free 

end. 














st

stt
tTy 6

66

102>0

102102
)(  (37) 

 

The effect of nonlocal parameter on natural frequencies 

of the beam at the initial state for various length to height 

ratios are shown in Fig. 8. In this figure dimensionless 

natural frequencies are defined as 

 

ii L 




















0

 (38) 

 

According to Fig. 8, it can be seen that for all vibration 

modes and aspect ratios, the natural frequencies are 

increased by increasing in nonlocal parameter. The values 

of dimensionless natural frequencies for various length to 

height ratios and nonlocal parameters are listed in Table 3. 

 

 

Table 3 Dimensionless natural frequencies for different 

values of aspect ratio and nonlocal parameter 

Nonlocal 

parameter (nm) 
l = 0.0 l = 0.5 l = 1.0 l = 1.5 l = 2.0 

L/H = 3 

ϖ1 0.4989 0.5035 0.5161 0.5346 0.5572 

ϖ2 2.2983 2.3218 2.3813 2.4578 2.4901 

ϖ3 2.4889 2.4899 2.4928 2.5013 2.5668 

ϖ4 5.0608 5.1237 5.2785 5.4822 5.7107 

L/H = 4 

ϖ1 0.3863 0.3924 0.4091 0.4332 0.4619 

ϖ2 1.9704 2.0031 2.0855 2.1958 2.3174 

ϖ3 2.4880 2.489 2.4914 2.4956 2.5029 

ϖ4 4.5362 4.6201 4.8203 5.0753 5.3509 

L/H = 5 

ϖ1 0.3141 0.3217 0.3420 0.3712 0.4052 

ϖ2 1.7025 1.7445 1.8496 1.9888 2.1409 

ϖ3 2.4875 2.4885 2.4909 2.4946 2.5002 

ϖ4 4.0689 4.1754 4.4238 4.7325 5.0556 
 

 

 

Fig. 9 Vertical displacement time history of point „A‟ for 

various nonlocal parameter 
 

 

In Fig. 9, the time histories of point „A‟ for various 

nonlocal parameter are plotted. According to this figure, it 

can be seen that as the nonlocal parameter increases the 

maximum vertical displacement and the period of vibration 

is decreased. 

Figs. 10 and 11 represent the effect of damping ratio on 

time history of point „A‟ for „l = 0‟ and „l = 2 nm‟, 

respectively. By comparing these figures one can conclude 

that considering small scale effect yields to increasing the 

rate of vibration decays due to damping. In addition, 

according to Figs. 10 and 11 it is obvious that the damping 

ratio has no significant effect on period of vibration in free 

vibration section. 

In the next example, the beam is subjected to the 

following sinusoidal loading. 
 

)(sin)( 0 t
T

FtTy


  (39) 

 

 

 

Fig. 10 Vertical displacement time history of point „A‟ for 

„l = 0‟ and various damping ratio 
 

 

 

Fig. 11 Vertical displacement time history of point „A‟ for 

„l = 2 m‟ and various damping ratio 
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Fig. 12 Vertical displacement time history of point „A‟ 

under sinusoidal loading 

 

 

where „F0 = 2 N/m2‟ and „T = 1.9e ‒ 7s‟. Fig. 12 shows the 

time histories of point „A‟ for „ l = 2 nm‟ and various 

damping ratios. As can be observed in this figure, since the 

forcing frequency is near the natural frequency of the beam, 

the amplitude of vibration becomes higher and higher with 

each vibration (resonance). However, damping reduces the 

effect of resonance by decreasing the increment of vibration 

amplitude. In addition according to this figure, it can be 

concluded that in forced vibration, the damping ratio 

slightly affect the vibration frequency. 

 

 

8. Conclusions 
 

This paper has presented a geometrically nonlinear 

dynamic analysis of the neo-Hookean micro/nano deep 

beams using the EFG method. The gradient nonlocal 

continuum theory is used to derive the nonlocal differential 

equations. The nonlinear dynamic equation of motion is 

obtained by minimization of total potential energy at the 

initial configuration (total Lagrangian approach). To 

develop the discretized system of equations, the EFG 

method is employed. The multi-quadric radial basis 

function is used for construction the shape functions. The 

governing equations is solved by incremental- iterative 

Newmark-Newton method with the small load steps. 

Several numerical simulations are performed and the 

important results are outlined as follows. 
 

 The geometrically nonlinear results of EFG method 

with „16×8‟ nodal distribution are in good agreement 

with those obtained using finite element method with 

the very fine mesh. 

 Increasing the length to height ratio causes to 

increase the small scale effect. 

 The natural frequencies of the cantilever beam are 

increased by increasing in nonlocal parameter at the 

all vibration modes. 

 The deflections of the cantilever deep beam and the 

period of vibration decreases with increase the 

nonlocal parameter. In the other words, the stiffness 

of the cantilever beam is increased due to the small 

scale effects. 

 The vibration decays due to damping effect is 

increased by increasing the nonlocal parameter. 

 When the forcing frequency is near the natural 

frequency of the beam, the amplitude of vibration 

become higher and higher with each vibration 

(resonance). The resonance effect is decreased by 

increasing the damping ratio. 

 In forced vibration problems, the damping ratio 

slightly affects the frequency of vibration. 
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