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1. Introduction 

 

The FGP cylindrical shells are used extensively in a 

wide range of engineering applications, including porous 

electrodes, heat exchangers, energy absorbing systems, 

electromagnetic shielding, construction materials and sound 

absorbers. 

Some studies are concentrated the various analyses of 

functionally graded (FG) and composite structures. The 

bending problem of a FG cantilever beam subjected to 

uniformly distributed load was investigated by Daouadji 

and Adim (2016b). Benferhat et al. (2016a) studied the free 

vibration analysis of FG plates resting on an elastic 

foundation using higher-order shear deformation theory. 

Adim et al. (2016e) investigated the static behavior and free 

vibration of laminated composite plates using a refined 

shear deformation theory. The bending analysis of an 

imperfect FG plates subjected to the hygro-thermo-

mechanical loading was reported by Daouadji et al. 

(2016a). Daouadji and Adim (2016a) addressed an 

analytical approach for buckling of the FG plates. Adim et 

al. (2016a) presented the buckling behavior of anti-

symmetric cross-ply laminated composite plates with 

different boundary conditions utilizing a refined higher 

order exponential shear deformation theory. Thermal 

buckling analysis of FG sandwich plates with clamped 

boundary conditions was investigated by Abdelhak et al. 

(2016). Adim and Daouadji (2016) studied the effects of 

thickness stretching in FG plates using a quasi-3D higher 

order shear deformation theory. Daouadji et al. (2016b) 
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addressed a novel higher order shear deformation theory 

based on the neutral surface concept of FG plate under 

transverse load. Adim et al. (2016b) presented the buckling 

and free vibration analysis of laminated composite plates 

using an efficient and simple higher order shear 

deformation theory. An efficient and simple higher order 

shear deformation theory for bending analysis of composite 

plates under various boundary conditions were investigated 

by Adim et al. (2016d). Adim et al. (2016c) reported the 

static, buckling, and free vibration of laminated composite 

plates using a refined shear deformation theory. 

Tesar (1985) analyzed the nonlinear resonance response 

(three dimensional analyses) for thin shells using the FETM 
method. Alijani et al. (2011), via the multiple scales 

method, investigated the resonant analysis of the shallow 

shells with FG material. The cylindrical shells vibrations 

with FG material under external and parametric excitations 

were analyzed by Sheng and Wang (2018b). Du and Li 

(2014) addressed the cylindrical shells resonance with FG 

material under thermal loading. Li et al. (2018) studied the 

parametric resonant analysis of the FG cylindrical shell 

under thermal loading. Sheng and Wang (2018a) addressed 

the primary resonant response and dynamic stability of 

stiffened cylindrical shells with FG material. The internal 

resonance of imperfect circular cylindrical shell under 

transversally excitation was studied by Rodrigues et al. 

(2017). Breslavsky and Amabili (2018) presented the 

multiple internal resonances subjected to the multi-

harmonic excitation. Rossikhin and Shitikova (2015) 

analyzed the nonlinear vibration of the cylindrical shell 

consist of fractionally damped with a three-to-one internal 

resonance. The resonant analysis of composite laminated 

circular cylindrical shell was studied by Zhang et al. (2018). 

In this work, the steady-state response was obtained by 

using the shooting method. Abe et al. (2007) analyzed the 

internal resonance response of clamped shallow shells. 
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Ahmadi and Foroutan (2019) investigated the primary 

resonant behavior of functionally graded cylindrical shells 

with spiral stiffeners by utilizing the multiple scales 

method. Also, Ahmadi (2018) studied the primary resonant 

behavior of imperfect FG cylindrical shells with spiral 

stiffeners rested on the nonlinear elastic foundation. 

Some studies are paid attention to various analyses of 

porous structures, the mechanical and thermal stability 

analysis was analyzed by Mojahedin et al. (2014) for a 

circular porous plate. The effect of porosity on the bending 

and free vibration response of FG plates resting on the 

elastic foundations was studied by Benferhat et al. (2016b). 

Also, Benferhat et al. (2016c) investigated the static 

analysis of the FG plate with porosities. Magnucki et al. 

(2006) presented the bending and buckling of a rectangular 

porous plate. Galeban et al. (2016) investigated the free 

vibration of thin beams with FG porous material. Chen et 

al. (2015) analyzed the elastic buckling and static bending 

of shear deformable FGP beam. Kitipornchai et al. (2017) 

presented the free vibration and elastic buckling of FGP 

beams reinforced by graphene platelets. Zhao et al. (2019a) 

presented the free vibration analyses of moderately thick 

FGP deep curved and straight beams. Deflection and 

vibration analysis of higher-order shear deformable 

compositionally graded porous plate using the finite 

element method addressed by Ebrahimi and Habibi (2016). 

Zhao et al. (2019d) analyzed the dynamics behavior of FGP 

circular, annular and sector plates with general elastic 

restraints. Mirjavadi et al. (2017) presented the thermo-

mechanical vibration analysis of two dimensional 

nanobeam with FG porous material. Yang et al. (2018) 

reported the buckling and free vibration analyses of 

functionally graded graphene reinforced porous 

nanocomposite plates based on Chebyshev-Ritz method. 

Zhao et al. (2019b) studied the free vibrations behavior of 

FGP rectangular plate with uniform elastic boundary 

conditions. The free harmonic wave propagation for 

composite cylindrical shell with porous materials was 

investigated by Daneshjou et al. (2011). Thermal buckling 

analysis of nanobeam with FG porous material was 

addressed by Karami et al. (2018). Belica et al. (2011) 

investigated the dynamic stability of a cylindrical shell with 

metal foam material under axial compression and external 

pressure. Also, Belica and Magnucki (2006) studied the 

stability of a porous cylindrical shell dynamic. 

In reported works mentioned above, the researchers 

have not addressed the resonant behavior of porous 

cylindrical shell with FG material. Some researches have 

been performed the resonant analysis of cylindrical shells 

with FG porous material. In this field, Wang and Wu (2017) 

studied the free vibration of FGP cylindrical shell by means 

of a sinusoidal shear deformation theory. Guan et al. (2019) 

investigated a general vibration analysis of FGP structure 

elements of revolution with general elastic restraints. The 

free vibration analysis of size-dependent FGP cylindrical 

microshells in thermal environment was investigated by 

Ghadiri and SafarPour (2017). Zare Jouneghani et al. 

(2017) presented the free vibration analysis of FGP doubly-

curved shells based on the first order shear deformation 

theory. Zhao et al. (2019e) analyzed the vibration behavior 

of the FGP doubly-curved panels and shells of revolution by 

using a semi-analytical method. The vibration behavior of 

the FG graphene reinforced porous nanocomposite 

cylindrical shell was addressed by Dong et al. (2018). Li et 

al. (2018) presented the free vibration analysis of FG 

porous cylindrical shell with arbitrary boundary restraints. 

Gao et al. (2018) analyzed the primary resonance of 

cylindrical shells with FG porous material. 

Review of the literature shows that there is no study on 

the combination resonances of FG porous cylindrical shells 

under two-term excitation. This subject is the main reason 

to motivate author for defining present study. Therefore, the 

novelties in this work are as: (1) combination resonances 

formulation are analytically derived via the method of 

multiple scales for FGP cylindrical shell, (2) the effect of 

four type of porosity distributions consist of uniform 

porosity, non-symmetric porosity soft, non-symmetric 

porosity stiff and symmetric porosity distribution are 

analyzed, (3) the effect of porosity coefficients of 

cylindrical shell and amplitude excitations on combination 

resonance of system is investigated, (4) the effect of various 

geometrical characteristics such as radios-to-thickness and 

length-to-radios ratios is studied. The organization of the 

present paper is as follows. Section 2 presents the basic 

formulation. In section 2.1, the schematic of FG porous 

cylindrical shell is shown and the properties of shell are 

expressed. In section 2.2, the theoretical formulation is 

derived, and in section 2.2.1, the governing equation is 

obtained based on theory of classical shell and von Kármán 

equation. In section 2.2.2, using the Galekin method, the 

motion equations are discretized, and in section 2.2.3, the 

combination resonances for two-term excitation via the 

multiple scales method is derived. Section 3 shows the 

numerical results, and in section 3.1, the validation of the 

present approach is illustrated. In section 3.2, the results of 

combination resonances are shown, and finally the 

conclusions of this study are expressed. 

 

 

2. The basic formulation 
 

2.1 FG porous cylindrical shell 
 

A schematic view of a FG porous (FGP) cylindrical 

shell with its coordinate system (x, y, z) is shown in Fig. 1, 

where x, z and 𝑦 = 𝑅𝜃  are the axial, radial and 

circumferential direction, respectively. The point “O” in 

Fig. 1, shows the coordinate system origin. The cylindrical 

shell has thickness h, axial length L and radius R. 

In this paper, four FGP distributions types are 

considered which are illustrated in Fig. 2. The mass density 

and Young’s modulus of metal foam materials can be 

expressed in the following form (Belica and Magnucki 

2006, Belica et al. 2011, Mojahedin et al. 2014, Wang and 

Wu 2017, Gao et al. 2018, Zhao et al. 2019c) 
 

Type1: Uniform porosity distribution 
 

 

 

max 0 max

max maxm

E z E N E

z N



   

 

 
 

(1) 
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Fig. 1 Configuration of FGP cylindrical shell 

 

 

Type2: Non-symmetric porosity soft distribution 

 

 

 

max 0 max

max max

sin
2 4

sin
2 4

m

z
E z E N E

h

z
z N

h

 

 
  

 
   

 

 
   

   

(2) 

 

Type2: Non-symmetric porosity stiff distribution 

 

𝐸 𝑧 = 𝐸max − cos  
𝜋𝑧

2ℎ
+
𝜋

4
 𝑁0𝐸max  

𝜌 𝑧 = 𝜌max − cos  
𝜋𝑧

2ℎ
+
𝜋

4
 𝑁𝑚𝜌max  

(3) 

 

Type1: Symmetric porosity distribution 

 

 

 

max 0 max

max max

cos

cos m

z
E z E N E

h

z
z N

h




  

 
   

 

 
   

   

(4) 

 

where −ℎ/2 ≤ 𝑧 ≤ ℎ/2  and. 𝜌max  and 𝐸max  are the 

maximum of mass density and Young’s modulus, 

respectively. 𝑁0 and 𝑁𝑚  are the porosity coefficients of 

cylindrical shell and mass density which can be calculated 

as 

𝑁0 = 1 −
𝐸min

𝐸max
;     0 < 𝑁0 < 1 

𝑁𝑚 = 1 − 1 −𝑁0 

(5) 

 

Also, 𝜁 in Eq. (1) for type 1 is given by 

 
2

0 0

21 1
1 mN

N N




 
   

   

(6) 

 

2.2 The theoretical formulation 
 

2.2.1 Governing equations 
According to the strain-displacement (von Kármán) 

relations (Brush and Almroth 1975), the strain components 

on the middle surface of shells are given by (Djoudi and 

Bahai 2003) 

 

  

(a) Type1: Uniform porosity 

 

(b) Type2: Non-symmetric 

porosity soft 
 

  

(c) Type3: Non-symmetric 

porosity stiff 

(d) Type4: Symmetric porosity 

 

Fig. 2 Cross-section of FGP cylindrical shell for various 

porosity distributions 

 

 

𝜀𝑥
0 = 𝑢,𝑥 +

1

2
𝑤,𝑥

2

𝜀𝑦
0 = 𝑣,𝑦 −

𝑤

𝑅
+

1

2
𝑤,𝑦

2

𝛾𝑥𝑦
0 = 𝑢,𝑦 + 𝑣,𝑥 + 𝑤,𝑥𝑤,𝑦  

 

 𝜅𝑥 = 𝑤,𝑥𝑥 ,   𝜅𝑦 = 𝑤,𝑦𝑦 ,   𝜅𝑥𝑦 = 𝑤,𝑥𝑦  

(7) 

 

where 𝑤 = 𝑤 𝑥,𝑦 , 𝑢 = 𝑢 𝑥,𝑦  and 𝑣 = 𝑣 𝑥,𝑦  are the 

displacement components along  𝑧 , 𝑥  and 𝑦  axes, 

respectively. 𝛾𝑥𝑦
0  is shear strain, and 𝜀𝑦

0 , 𝜀𝑥
0  are normal 

strains. Also, the terms 𝜒𝑥 ,𝜒𝑦 ,𝜒𝑥𝑦  are the shell curvatures 

change and twist. 

The strain components are obtained across the shell 

thickness at the middle surface as follows (Zhang et al. 

2017, Pradhan et al. 2000) 

 
0 0 0 κ ,      ,    2x x x y y y xy xy xyz z z            

 
(8) 

 

The compatibility equation according to Eq. (2) can be 

written as follows 

 

 
2

0 0 0

, , , , , , ,

1
x yy y xx xy xy xx xy xx yyw w w w

R
       

 
(9) 

The stress-strain relations based on the Hooke low for 

FGP cylindrical shell are defined as (Loy et al. 1999) 
 

 
 

   

 

 

2
, , ,

1

2 1

x y x y y x

xy xy

E z

E z

      


 


  
 




 

(10) 
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where 𝜈 is the Poisson's ratio. 𝜍𝑦 ,𝜍𝑥  are the normal stress 

and 𝜏𝑥𝑦  is the shear stress of cylindrical shell. 

To derive the resultant moments (𝑀𝑥 ,𝑀𝑦 ,𝑀𝑥𝑦 ) and 

forces (𝑁𝑥 ,𝑁𝑦 ,𝑁𝑥𝑦 ) for FGP cylindrical shell, the stress-

strain equations (Eq. (10)) are integrated through the 

thickness as 

Resultant force 
 

0 0

11 12 14 15

0 0

21 22 24 25

0

33 362

x x y x y

y x y x y

xy xy xy

N J J J J

N J J J J

N J J

   

   

 

   

   

 
 

(11) 

 

Resultant moment 
 

0 0

14 15 41 42

0 0

24 25 51 52

0

36 632

x x y x y

y x y x y

xy xy xy

M J J J J

M J J J J

M J J

   

   

 

   

   

 
 

(12) 

 

where 𝐽𝑖𝑗  are the coupling, bending and extensional 

stiffness components of FGP system that are presented in 

Appendix. With regard to Eq. (11), the strain components 

can be rewritten as 
 

0 * * ** **

22 12 11 12

0 * * ** **

11 21 21 22

0 * **

33 362

x x y x y

y y x x y

xy xy xy

J N J N J J

J N J N J J

J N J

  

  

 

   

   

 
 

(13) 

 

Then, Eq. (13) is substituted into Eq. (12) in the 

following form 
 

* * ** **

11 21 11 12

* * ** **

12 22 21 22

* **

36 362

x x y x y

y x y x y

xy xy xy

M A N A N A A

M A N A N A A

M A N A

 

 



   

   

 
 

(14) 

 

The equilibrium equations of cylindrical shells with 

regard to theory of classical shell are as (Volmir 1972, Bich 

et al. 2013, Ghiasian et al. 2013) 
 

 

, ,

, ,

, , , , ,

, 1 , 1 ,

0

0

2 2

1
ˆ2

x x xy y

xy x y y

x xx xy xy y yy x xx xy xy

y yy tt t

N N

N N

M M M N w N w

N w q t w cw
R

 

 

 

   

 
     

   

(15) 

 

where 𝑞 𝑡 = 𝑄1 𝑐𝑜𝑠 𝛺1𝑡 + 𝜃1 + 𝑄2 𝑐𝑜𝑠 𝛺2𝑡 + 𝜃2  is 

the harmonic excitation, 𝑐  is coefficient of damping and 

mass density 𝜌1 are 
 

 
/2

1

/2

h

h

z dz 


 
 

(16) 

 

With regard to the first two Eq. (15), stress function (𝜑) 

is defined as 

𝑁𝑥 = 𝜑𝑦𝑦 ,  𝑁𝑦 = 𝜑𝑥𝑥 ,  𝑁𝑥𝑦 = −𝜑𝑥𝑦  (17) 

 

By substituting Eq. (13) in Eq. (9) and Eq. (14) in third 

part of Eq. (15) and then by utilizing Eq. (7) and (17), the 

following equations of system can be derived as 

 

 

 

* * * * * **

11 , 33 12 21 , 22 , 21 ,

** ** ** **

11 22 36 , 12 , ,

2

, , , , , ,

1
2

2 0

xxxx xxyy yyyy xxxx

xxyy yyyy xx

xy xx yy xy xx yy

J J J J J J w

J J J w J w w
R

w w w w w w

      

    

         

(18) 

 

 

 

   

** ** ** **

1 , 1 , 11 , 12 21 36 ,

** * * * *

22 , 21 , 11 22 36 ,

,*

12 , , , , , , ,

1 1 1 2 2 2

2 4

2

2

cos Ω cos 0

ˆ

Ω

tt t xxxx xxyy

yyyy xxxx xxyy

xx

yyyy yy xx xy xy xx yy

w cw A w A A A w

A w A A A A

A w w w
R

Q t Q t

 

 


   

 

    

    

    

    
 

(19) 

 

2.2.2 Discretization of the equation of motion 
The FGP cylindrical shell is supposed to be the simply 

supported. According to boundary condition, the deflection 

of shells is considered in the following form for single 

mode (Volmir 1972, Bich et al. 2012, Shen and Xiang 2012, 

Ahmadi and Foroutan 2019) 

 

𝑤 𝑥,𝑦, 𝑡 = 𝑊𝑚𝑛  𝑡 sin
𝑚π𝑥

𝐿
sin

𝑛𝑦

𝑅
 (20) 

 

where 𝑛 and 𝑚 are the number of full and half wave in 

the circumferential and axial directions, respectively. Also, 

𝑊𝑚𝑛  𝑡  represent the deflection amplitude. 

To obtain the stress function 𝜑 , the Eq. (20) is 

substituted into Eq. (18) and then resultant equation is 

solved. In the following, the obtained stress function 𝜑 

and w (from Eq. (20)) are substituted in Eq. (19), then, the 

Galerkin method is applied and the discretized equation of 

motion is obtained as 
 

𝑊 𝑚𝑛 + 2𝑐 𝑊 𝑚𝑛 + 𝜔𝑚𝑛
2 𝑊𝑚𝑛 + 𝑎 2𝑊𝑚𝑛

3  

= 𝑘1 cos Ω1𝑡 + 𝜃1 + 𝑘2 cos Ω2𝑡 + 𝜃2  
(21) 

 

where 𝑎 2 is the constant coefficient that this parameter is 

defined in the next sub-section and  𝜔𝑚𝑛  is the natural 

frequency of cylindrical shell as follows 
 

𝜔𝑚𝑛 =  
1

𝐿4𝜌1
 𝐷 +

𝐵𝐵∗

𝐴
 ,   𝑘1 =

𝑄1

𝐿4𝜌1
,   𝑘2 =

𝑄2

𝐿4𝜌1
 (22) 

 

where  𝐵,𝐴,𝐷 and 𝐵∗ are presented in Appendix. 

 
2.2.3 Combination resonances for two-term 

excitation 
For analyzing the combination resonances, the multiple 

scales method is used. Therefore, by considering Eq. (21), 

the parameters 𝑐  and 𝑎 2 are presented as 

 

𝑐 = 𝜖𝑐;   𝑎 2 = 𝜖𝑎2 (23) 
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where 𝜖 ≪ 1 is the perturbation parameter and 𝑎2 is as 

follows 
4

2 1/a G L 
 (24) 

 

where 𝐺 is defined in Appendix. 

Substituting the Eq. (23) into (21), the equation of 

motion can be written as 

 

𝑊 𝑚𝑛 + 2𝜖𝑐𝑊 𝑚𝑛 + 𝜔𝑚𝑛
2 𝑊𝑚𝑛 + 𝜖𝑎2𝑊𝑚𝑛

3 = 

𝑘1 cos Ω1𝑡 + 𝜃1 + 𝑘2 cos Ω2𝑡 + 𝜃2  
(25) 

 

With regard to the multiple scales method, the solution 

for Eq. (25) is considered as 

 

W 𝑡, 𝜖 = 𝑊0 𝑇0,𝑇1 + 𝜖𝑊1 𝑇0,𝑇1 + ⋯ (26) 

 

where the new time independent variable 𝑇0 and 𝑇1 are 

defined as 

𝑇𝑛 = 𝜖𝑛𝑡;          𝑛 = 0,1 (27) 

 

In continue, Eq. (26) is substituted in Eq. (25) and then, 

the coefficients of 𝜖0 and 𝜖 are set to zero as follows 

 

   2 2

0 0 0 1 1 1 2 2 2ω cos Ω cos ΩmnD W W k t k t     
 

(28) 

 
2 2 3

0 1 1 0 1 0 0 0 2 0ω 2 2mnD W W D DW cD W aW    
 

(29) 

 

where 

 

𝐷𝑛 =
𝜕

𝜕𝑇𝑛
;          𝑛 = 0,1 (30) 

 

The solution of Eq. (28) is obtained as 

 

  0 1 0 2 0ω Ω Ω

0 1 1 2  Λ Λ . .mni T i T i T
W A T e e e c c   

 
(31) 

 

In Eq. (31), c. c. is abbreviation for complex conjugate 

and 

   

1 2θ θ

1 2

1 22 2 2 2

1 2
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2 ω Ω 2 ω Ω

i i

mn mn

k e k e
 

 
 

(32) 

 

Then, Eq. (31) is substituted in Eq. (29) as follows 
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Eq. (33) shows the several resonant combinations that 

some of them are monofrequency and others are 

multifrequency characteristic of excitations, respectively. 

These combinations are in the following form 

subharmonic resonance: 

 

1
ω Ω

3
mn k

 
(34) 

 

superharmonic resonance: 

 

ω 3Ωmn k
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combination resonance: 
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where 𝑘, 𝑙 = 1, 2.  It should be noted that for a 

multifrequency excitation, several resonant conditions may 

be occurred simultaneously; i.e., both superharmonic and 

combination resonances or both subharmonic and 

superharmonic resonances, etc can occur simultaneously. 

For a two-term excitation, maximum two resonances can be 

occurred simultaneously. If excitation frequencies are 

depicted by 𝛺1  and 𝛺2  where 𝛺2 > 𝛺1 , the possible 

secondary resonances can be occurred in the following form 
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Investigation of these resonances shows that more than 

one of them occurs simultaneously if 
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(38) 

 

Here, the case 𝜔𝑚𝑛 ≈ 𝛺2 + 2𝛺1 is selected. In order to 

frequency analysis, a detuning parameter 𝜍 is introduced 

that this parameter expresses the nearness 𝛺2 + 2𝛺1  to 

𝜔𝑚𝑛 . Therefore, the excitation frequency can be written as 
 

ω𝑚𝑛 = Ω2 + 2Ω1 − 𝜖𝜍 (39) 
 

Eq. (39) is substituted in Eq. (33), and then secular 

terms must be zero as follows 
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To solve the Eq. (40), 𝐴 is considered in polar form as 
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2
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(41) 

 

where 𝛽 and 𝑎 are real. 

Eq. (41) is substituted in Eq. (40), and then real part and 

imaginary part are separated as 
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(44) 

 

When 𝑎′  and 𝛾 ′  are equal to zero, the steady-state 

motion occurs. In this situation, from Eqs. (42) and (43), 

singular points are obtained. In continue, frequency-

response relation is calculated by summing the squares of 

resultant equations in steady state situation as 
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3. Numerical results 

 

3.1 Validation of the present approach 
 

In this sub-section, first, the presented work is compared 

with the other related works. Then, the numerical method is 

utilized to compare with the presented analytical method. 

These validation procedures are addressed as follows. 

Table 1 Comparison of the natural frequencies of simply 

supported (𝐿 = 0.2 m, 𝑅 = 0.1 m, ℎ = 0.247 ×  
10−3 m,𝑚 = 1,   𝜈 = 0.31,   𝐸 = 7.12 
× 1010 N m2 , 𝜌 = 2796 kg m3 ) 

m n Present 
Qin et al. (2017) Pellicano (2007) 

 Errors (%)  Errors (%) 

1 7 486.0 484.6 0.2 484.6 0.2 

1 8 490.3 489.6 0.1 489.6 0.1 

1 9 545.8 546.2 0.07 546.2 0.07 

1 6 555.8 553.3 0.4 553.3 0.4 

1 10 634.8 636.8 0.3 636.8 0.3 

1 5 728.5 722.1 0.8 722.1 0.8 

1 11 746.6 750.7 0.5 750.7 0.5 

1 12 875.5 882.2 0.7 882.2 0.7 

2 10 962.3 968.1 0.5 968.1 0.5 

2 11 976.6 983.4 0.6 983.4 0.6 
 

 

 

Table 2 Comparison of the non-dimensional natural 

frequencies of simply supported FGP cylindrical 

shell (𝑚 = 1) 

n N0 Present 
Wang and Wu (2017) 

 Errors (%) 

Symmetric porosity distribution 

1 0.4 1.1935 1.1893 0.3 

2 0.4 1.1906 1.1862 0.3 

3 0.4 1.1867 1.1818 0.4 

1 0.8 1.1693 1.1633 0.5 

2 0.8 1.1681 1.1617 0.5 

3 0.8 1.1668 1.1599 0.6 

Non-symmetric porosity distribution 

1 0.4 1.1637 1.1598 0.3 

2 0.4 1.1600 1.1559 0.3 

3 0.4 1.1546 1.1501 0.4 

1 0.8 1.0548 1.0507 0.4 

2 0.8 1.0505 1.0463 0.4 

3 0.8 1.0440 1.0396 0.4 
 

 

 

(I) Validation based on the comparison with the other 

works: Table 1 compares the natural frequencies for 

cylindrical shells that are obtained in this study with similar 

results which investigated by Qin et al. (2017) and 

Pellicano (2007). Also, Table 2 compares the natural 

frequencies for FGP cylindrical shells that are obtained in 

this study with similar results which investigated by Wang 

and Wu (2017). It is observed that these are a good 

agreement for the results of present study. 

Fig. 3 shows the cylindrical shell natural frequencies 

that obtained in this study, to compare with the 

experimentally results reported in Sewall and Naumann 

(1968). Also, this comparison confirms a good agreement of 

the results obtained in this paper. 
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(II) Validation based on the comparison with the 

numerical method: the numerical method is utilized to 

compare with analytical method in order to combination 

resonance analysis of type 4 (Symmetric porosity 

distribution) for FGP cylindrical shell. In numerical 

validation, Eq. (21) is solved by means of the Runge-Kutta 

algorithm (fourth-order). In this method, for various 

 

 

 

Fig. 3 Comparison of the natural frequencies of 

cylindrical shell (𝑚 = 1) 

 

 

excitations, the maximum amplitude is extracted from the 

responses (I. C.: 𝑊 0 = 0 and 𝑊  0 = 0). The curves 

 

 

 

Fig. 4 Analytical and numerical frequency-response 

curve for type 1 of FGP cylindrical shell 
 

 
 

  

(a) Type1: Uniform porosity distribution (b) Type2: Non-symmetric porosity soft distribution 
 

  

(c) Type3: Non-symmetric porosity stiff distribution (d) Type4: Symmetric porosity distribution 

Fig. 5 Frequency-response curves of FGP cylindrical shells (𝑁0 = 0.4) 
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Table 3 The material and geometrical parameters of shell 

Material 

parameters 
Value 

Geometrical 

characteristics 
Value 

𝐸max  200 GPa ℎ 0.25 m 

𝜌max  7850 kg m3  𝑅 25 m 

ν 0.3 𝐿 250 m 
 

 

 

of numerical and analytical frequency-response are 

illustrated in Fig. 4. It can be seen, analytical results are 

almost similar to the numerical ones. Therefore, this result 

shows that the numerical simulation verify the analytical 

method in this paper. 

 

3.2 Combination resonances (𝜔𝑚𝑛 ≈ 𝛺2 + 2𝛺1) 
 

Here, combination resonance responses of FGP 

cylindrical shell are presented. In this work, 𝑚 = 1 and 

the Poisson’s ratio is considered costatnt. The rest of 

geometrical characteristics and material parameters of shell 

are presented in Table 3. 

 

 

The effect of isotropic and various porosity distributions 

for shell on the response of amplitude-frequency for 

combination resonances of system are illustrated in Fig. 5. 

With regard to these figures, the hardening nonlinearity 

behavior of FGP cylindrical shell is more than isotropic 

cylindrical shell except for type1 (uniform porosity 

distribution). 

Fig. 6 shows the influence of porosity coefficients of 

cylindrical shell on the frequency-response for combination 

resonances of FGP system. According to this figure, 

increasing the porosity coefficients of cylindrical shell leads 

to increasing nonlinearity behavior. 

The influence of the excitation amplitudes Γ1 and Γ2 

on the frequency-response for combination resonances of 

FGP cylindrical shell is illustrated in Figs. 7 and 8, 

respectively. As shown in Fig. 7, as a result of increasing 

Γ1, the curve of frequency-response is scaled up. Whereas 

Fig. 8 shows that by increasing Γ2 , the jumping 

phenomenon is transferred to higher values of 𝜍. 

Fig. 9 shows the effect of radius-to-thickness ratio on 

the frequency-response for combination resonances of FGP 

system. Considering this figure, by increasing the radius-to- 

 

 

  

(a) Type1: Uniform porosity distribution (b) Type2: Non-symmetric porosity soft distribution 
 

  

(c) Type3: Non-symmetric porosity stiff distribution (d) Type4: Symmetric porosity distribution 

Fig. 6 Frequency-response curves of FGP cylindrical shells 
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thickness ratio, the nonlinearity behavior decreases. 

The effect of length-to-radius ratio on the frequency-

response for combination resonances of FGP system 

is  𝑅 =13, maximum softening nonlinearity is occurred. 

Also, it can be seen that for 𝐿/𝑅 > 13 or 𝐿/𝑅 < 13, the 

hardening nonlinearity is increased. Considering these 

results, for various length-to-radius ratios, the geometrical 

characteristics also change. Therefore, the natural frequency 

changes for each length-to-radius ratios. Also, the variation 

of the length-to-radius ratios causes to change in the 

illustrated in Fig. 10. As shown in this figure, when 

𝐿/nonlinearity behavior. So the total behavior of the system 

is a function of these two changes. For instance, in the 

constant length by increasing the length-to-radius ratios, the 

nonlinearity decreases until the critical value (𝐿/𝑅 = 13) 

and the natural frequency increases, therefore, the 

hardening behavior decreases, but after this critical value, 

the nonlinearity doesn’t change, while the natural frequency  

still increases, thus this situation causes to decrease the 

hardening behavior. 

 

 

 

 

Fig. 7 Effect of excitation amplitude (Γ1) on the frequency-

response of FGP cylindrical shells (𝑁0 = 0.4) 

 

 

 

Fig. 8 Effect of excitation amplitude (Γ2) on the frequency-

response of FGP cylindrical shells (𝑁0 = 0.4) 

4. Conclusions 
 

An analytical approach was presented to analyze the 

combination resonances of the FGP cylindrical shells under 

harmonic excitation. With regard to classical plate theory of 

shells, von Kármán equation and Hook law, the problem 

formulation was obtained. According to the Galerkin 

method, the discretized motion equation is obtained. For 

obtaining the response of system for combination 

resonance, the multiple scales method was used. The effects 

of various porosity distributions, porosity coefficients of 

cylindrical shell and amplitude excitations were investigated. 

The principal conclusions can be summarized as follows: 

 

 The hardening nonlinearity behavior of FGP 

cylindrical shell is more than isotropic cylindrical 

shell except for type1 (uniform porosity 

distribution). 

 Increasing the porosity coefficients of cylindrical 

shell leads to increasing nonlinearity behavior. 

 

 

 

Fig. 9 Effect of radius-to-thickness (𝑅/ℎ) on the 

frequency-response of FGP cylindrical shells 

(𝑁0 = 0.4) 

 

 

 

Fig. 10 Effect of length-to-radius (𝐿/𝑅) on the frequency-

response of FGP cylindrical shells (𝑁0 = 0.4) 
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 Increasing of amplitude excitation Γ1  leads to 

scaling up the curve of frequency-response. 

 By increasing amplitude excitation Γ2, the jumping 

phenomenon is transferred to higher values of 𝜍. 

 By increasing the radius-to-thickness ratio, the 

nonlinearity behavior decreases. 

 When 𝐿/𝑅 =13, maximum softening nonlinearity is 

occurred. 

 For 𝐿/𝑅 > 13  or 𝐿/𝑅 < 13,  the hardening 

nonlinearity is increased. 
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