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1. Introduction 
 

After the first considering sandwich constructions in 

research paper in 1944, these modern structures with high 

flexural stiffness to weight ratio have become a favorite 

structures among the researchers. Sandwiches include two 

faces to resist the in-plane and bending loads and a core to 

resist the transverse shear loads and maintain the faces 

distance (Vinson 2018). 

Due to interlayer jointing problems, failure, delamina-

tion and thermal stress concentration in high temperature 

environments, application of usual materials and ordinary 

composites is not proper. Japanese researchers proposed 

functionally graded materials to overcome these problems. 

FGMs are microscopic inhomogeneous materials which 

gradually graded from a metal surface to a ceramic one 

(Mahamood and Akinlabi 2017). Investigation on these 

materials have been increased by material researchers. Chen 

et al. (2017) by applying the FGM in the faces of the 

sandwich plates studied the vibration and buckling behavior 

in the thermal condition. A power law rule was considered 

to model the material properties. Benlahcen et al. (2018) by 

using FGM in the plates studied the buckling behavior of 

these structures in a simply supported condition. Khayat et 

al. (2018) investigated the free vibration of FG cylindrical 

shells. The material properties of FGM varied gradually in 

thickness direction in accordant to power law rule. 
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Bouderba (2018) studied the bending of FGM rectangular 

plates in thermal condition. Properties varied in thickness 

direction based on a power law rule. 

During the production process of FGMs, some micro 

voids appear which affect the material properties. 

Considering porosity in the modeling of these materials is a 

development in the researches. Atmane et al. (2015) 

investigated the free vibration of porous FG beams by 

considering porosity phases. Boutahar and Benamar (2016) 

investigated the vibration behavior of porous FG annular 

plates with elastic foundations. They modified the mixture 

rule by considering the porosity volume fraction in the 

FGM. Benferhat et al. (2016) studied the static behavior of 

porous FG plates. Since micro voids appear in FG material, 

they modified the power law rule by considering porosity. 

Akbas (2017) investigated the post-buckling behavior of 

porous FG beams. The power law rule was modified by 

considering different types of porosity. Wang and Zu (2017) 

surveyed the vibration of the porous FG rectangular plates 

in different thermal conditions. Defects in production 

process causes to consider two types of porosity 

distribution, namely, even and uneven. 

There are several approaches to investigate the 

mechanical behavior of sandwich structures such as finite 

element model, shear deformation theories, 3D elastic 

theory and energy methods (Reddy 2000). Barka et al. 

(2016) studied the post-buckling behavior of FG faces 

sandwich plates resting on elastic foundation by using a 

shear deformation theory. Shokravi (2017) by applying 

Reddy shear deformation theory studied the buckling of FG 

sandwich plates resting on elastic medium. Tahouneh 
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(2018) investigated the vibration behavior of sandwich 

sectorial plates by using a 3D elasticity theory. Reddy 

(2007) collected a summary of these methods. In these 

theories the height of the core is constant, but in fact the 

thickness of the sandwich plates is variable. So, the core 

layer should be considered as the flexible layer that 

compressed transversely. In the classical theories, the 

localized effects in the core can’t be calculated, so to 

consider these effects, Frostig et al. (1992) presented a high 

order theory. Liu et al. (2015) studied the free vibration of 

the FG sandwich plates by applying a high order theory. 

Fard (2015) by applying a high order sandwich panel theory 

studied the static behavior of conical composite sandwich 

panel. Frostig et al. (2018) surveyed the wrinkling of FG 

sandwich panels by using the extended high order theory. 

Salami and Dariushi (2018) by using a high order theory 

surveyed the low velocity impact response of composite 

sandwich beam. 

Considering the dependency of material properties to the 

temperature, and distribution of the temperature in the 

thickness direction of the structure are important to model 

the mechanical behavior of the sandwich panels. A review 

in literature shows there are limited researches that consider 

temperature dependent materials for both faces and core 

concurrently. Khalili and Mohammadi (2012) by applying a 

high order theory studied the free vibration of FG 

rectangular sandwich plates with temperature dependent 

materials. They assumed a uniform temperature distribution 

in the thickness direction. Dehkordi and Khalili (2015) 

studied the frequencies of SMA sandwich plates by 

applying a finite element model. They assumed temperature 

dependent material for the core. Arioui et al. (2018) studied 

the thermal buckling of temperature dependent FGM beams 

by using a beam theory. Kettaf et al. (2013) by using a shear 

deformation model studied the buckling of FG plates under 

uniform, linear and nonlinear temperature rises. Fazzolari 

(2015) investigated the free vibration and thermal stability 

of FG sandwich plates by using a Ritz method. He 

considered the uniform, linear and nonlinear temperature 

distribution in the thickness direction. Menasria et al. 

(2017) investigated the thermal stability of FG sandwich 

plates. They assumed thermal load as uniform, linear and 

nonlinear temperature distributions along the thickness. 

Talebitooti (2018) investigated the effects of thermal load 

on the vibration of a rotating FG conical shell. Temperature 

is distributed nonlinearly within the thickness direction. 

Conical sandwich shells are important kinds of 

structural components which have been applied in advanced 

industries such as aerospace, mechanical and nuclear 

engineering. By using FGMs which have high thermal 

strength within the conical shells, application of these 

structures significantly have been increased. Despite the 

importance of these modern structures, due to the complex 

set of partial differential equations, there are little literature 

about conical sandwich shells comparing with cylindrical 

shells and circular plates (Jin et al. 2015, Sofiyev 2016). 

Recently, FG truncated conical shells have been applied in 

military aircraft propulsion system, missile bodies, pressure 

vessels, oil tanks, nuclear reactors, rockets, water ducts, 

pipelines and casing pipes, process equipment, fuselage 

structures in the region of the exhaust ducts/propeller plane 

and rotary dryers (Sofiyev 2015, Van Dung and Chan 2017, 

Sofiyev and Kuruoglu 2015, Sofiyev and Schnack 2012, 

Malekzadeh et al. 2012, Bardell et al. 1999, Talebitooti 

2018). 

So, it is important to investigate the vibration behavior 

of the conical sandwich shells with FG face sheets. Liu and 

Li (1995) used Galerkin method to solve the equations 

obtained by Hamilton’s principle for nonlinear free 

vibration of conical sandwich shells. Shu (1996) by using 

love theory and GDQ studied the vibration of isotropic 

conical shells. Tornabene et al. (2009) surveyed the 

dynamic behavior of FG conical shells and annular plates 

using the first-order shear deformation theory. The 

governing equations of motion are discretized by means of 

the generalized differential quadrature (GDQ) method. 

Sofiyev (2012) investigated the vibration behavior of FG 

conical shells by applying the large deformation theory and 

analyzed the frequency with the Superposition method, 

Galerkin method and Harmonic balance method. Najafov et 

al. (2014) investigated the vibration behavior of FG 

truncated conical shell based on von-Karman-Donnell type 

nonlinear kinematic. Heydarpour et al. (2014) employed 

FSDT and DQM to analyze the free vibration of rotated 

truncated conical shells which made of carbon nanotube 

reinforced composite. Sofiyev and Kuruoglu (2015) 

investigated the vibration of FG conical shell under mixed 

conditions by means of Airy stress function method. 

Sofiyev (2016) studied the parametric vibration of FG 

truncated conical shells subjected to the different pressure 

loadings based on FSDT. Sofiyev and Osmancelebioglu 

(2017) by applying FSDT studied the vibration of sandwich 

truncated conical shells with FG coatings. Mouli et al. 

(2018) by using ANSYS APDL prepared a finite element 

model to investigate the free vibration of FG conical shells 

in a fully clamped condition. Kiani et al. (2018) studied the 

free vibration of composite conical panels which reinforced 

with FG carbon nanotube by applying FSDT and Donnell’s 

theory. Sofiyev (2018) studied the vibration behavior of 

laminated conical shells by employing FSDT and Galerkin 

method. Shakouri (2019) investigated the vibration 

behavior of temperature dependent FG rotating conical 

shells by Donnell shell theory in thermal environments. 

Sofiyev (2019) in a review paper gathered some researches 

on vibration and buckling of FG shells. 

As a result of review in the accessible literatures, it’s 

found that there is no work on the vibration behavior of 

truncated conical sandwich shells with porous FG faces and 

homogeneous core with temperature dependent materials 

properties based on a modified high order sandwich shells 

theory in the uniform, linear and nonlinear temperature 

distributions. So, in this study, for the first time, by applying 

a high order theory which modified by considering the 

flexibility of the core in the thickness direction, vibration 

behavior of the truncated conical sandwich shells are 

investigated in the uniform, linear and nonlinear 

temperature distributions. Sandwiches consist of two FG 

faces which cover a homogeneous core. FGMs properties 

are temperature and location dependent which graded in 

according to power law rules that modified by considering 
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the volume fractions of two types of porosity. The 

homogeneous core is temperature dependent, too. Unlike 

the most papers, high order stresses and thermal stress 

resultants, in plane stresses and thermal stresses of the core 

and face sheets are considered at the same time. Nonlinear 

strains are used for both mechanical and thermal stresses to 

obtain the more accurate equations that causes the problem 

be more complicated. Boundary condition is simply 

supported and equations are derived based on the 

Hamilton’s energy principle. To obtain the frequencies, a 

Galerkin method is applied. In order to validate the present 

approach, the results of this analytical approach are 

compared with the numerical results which obtained by 

Abaqus software and for a special case are compared with 

some literatures. Finally, the effects of the temperature 

changing, volume fraction distribution of FG face sheets, 

porosity and some geometrical effects on the free vibration 

characteristics of defined sandwich shells are investigated. 
 

 

2. Theoretical formulation 
 

2.1 Material modelling 
 

This study investigates the vibration behavior of a 

truncated conical sandwich shell which functionally graded 

materials are applied in the face sheets. Usually FGMs are 

composed of metal and ceramic which in the manufacturing 

process some micro voids appear in these materials. The 

material properties of the porous FG face sheets, P(zj,T), 

vary gradually in the thickness direction. So, they can be 

modelled in accordant to the power-law rule modified with 

two kinds of porosity distributions between ceramic and 

metal. The first one is even that modifies the power law rule 

as follows (Boutahar and Benamar 2016) 
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where “ζ” is the porosity volume fraction; “N” is the 

constant power law index; and subscripts “o” and “i” refer 

to outer and inner faces, respectively. It is assumed that the 

porosities occurred at the middle area when the FGM 

structures have been produced based on the principle of 

multi-step sequential infiltration techniques. In this area, 

infiltration of the material is hard and imperfect but at the 

edges of the FG layer it has been performed easily that 

causes to less porosity. So, in the second approximation, it 

is considered that the porosities are distributed in the middle 

area of the FG layer and by approaching to the edges, they 

decrease and tend to the zero. Therefore, the equation of the 

material properties in the uneven case modified as follows 

(Boutahar and Benamar 2016) 
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As seen in Eqs. (1) and (4), the face sheets material 

properties vary by both location and temperature. To 

increase the accuracy of the model, the material properties 

of the homogenous core must be temperature dependent, 

too. These properties change by a nonlinear function of the 

temperature as follows (Shen 2009) 
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(5) 

 

where (𝑇 = 𝑇0 + ∆𝑇) and 𝑇0 = 300𝐾 . 𝑃0 , 𝑃−1 , 𝑃1 , 𝑃2 

and 𝑃3  are coefficients and unique for the constituent 

materials. 
 

2.2 Temperature distribution 
 

Three types of temperature variations, namely, uniform, 

linear and nonlinear are considered in this study. In order to 

model the linear distribution of temperature, the 

temperature distributions are assumed linearly through the 

thickness of each layer accordant to Eqs. (6)-(8). 
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where r1, r2, r3, r4, r5 and r6 are the unknown coefficients of 

the polynomials that obtained with six thermal boundary 

conditions in Eqs. (9) and (10). 
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where “k” is the thermal conductivity; “To” and “Ti” are the 

temperatures of outer and inner surfaces of the sandwiches; 

“Tio” and “Tii” are the temperatures of the top and bottom 

interfaces of the core with outer and inner face sheets. 

To model the nonlinear temperature distribution, the 

steady state, one dimensional heat conduction equations are 

considered for two face sheets and the core, separately. The 

nonlinear temperature rises equations of the face sheets and 

the core can be considered as 
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The boundary conditions are as follows 
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By using Eqs. (11)-(13) and boundary conditions in Eqs. 

(14)-(16), the nonlinear temperature distribution in the face 

sheets can be determined as Eq. (24) of reference 

(Talebitooti 2018) and the temperature rise in the core can 

be obtained by Eq. (17) as follows 
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3. Kinematic equations 
 

In Fig. 1, schematic of a truncated conical sandwich 

shell is depicted. The semi-vertex angle of the cone is 

depicted by “𝛽”. “ℎ𝑜”, “ℎ𝑖” and “ℎ𝑐” are the thicknesses 

of the layers. “𝑅1” and ”𝑅2” show the small and large 

ends radii of the cone, respectively. Radius variation of the 

truncated conical shell is as follows 
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The meridional, circumferential and normal directions 

of the sandwich shell are shown by s, θ and z, respectively. 

Based on the high order sandwich shell theory, separate 

displacement fields should be considered for each layer. So, 

the first order shear deformation theory (FSDT) is 

employed to model the displacement fields of the porous 

FG face-sheets 
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where subscript “0” denotes values with correspondence to 

the middle surface of the layers and “ϕ” is the rotation of 

 

Fig. 1 Schematic of truncated conical sandwich shell 
 

 

the normal to the middle surface. Cubic patterns are applied 

to model the kinematic relations of the core with twelve 

unknown coefficients for the in-plane and vertical 

displacement components as follows 
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This study assumed that the core is sticked to the faces 

completely. Therefore, the compatibility conditions can be 

written by the interface displacements between the face 

sheets and the core as follows 
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According to von Karman nonlinear relations, the strain 

components of the faces sheets are defined as follows 
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Similarly, the nonlinear kinematic relations of the core 

are determined as follows 
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4. Governing equations 
 
In order to study the vibration behavior of functionally 

graded conical sandwich shells and obtain the governing 

equations of motion, Hamilton’s energy principle is applied 

which consists of variation of the kinetic and strain energies 

as follows (Reddy 2003) 
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The variation of kinetic and strain energies are δK and 

δU, respectively. The variation of the kinetic energy is 

calculated as follows 
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where (  ) indicates the second derivative with respect to 

time. The core is indicated with the subscript “c”. “T” is the 

temperature variations. The density is “𝜌” which in the 

face sheets is a function of displacement and temperature 

and in the core is just a function of temperature. The 

variation of the total strain energy includes all mechanical 

and thermal stresses and linear and nonlinear strains of the 

layers of sandwich shell that make the mechanical and 

thermal energies. In addition, the compatibility conditions 

at the interfaces of the core and the face-sheets attended in 

the Hamilton’s principle as the constraints by use of six 

Lagrange multipliers. Finally, by considering the in-plane 

stresses of the core in this study, δU is as follows 
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(41) 

 

where 𝜍𝑠𝑠 , 𝜍𝜃𝜃  and 𝜏𝑠𝜃   display the in-plane normal and 

shear stresses; 𝜀𝑠𝑠 , 𝜀𝜃𝜃 and 𝛾𝑠𝜃  are the in plane normal 

and shear strains of the layers; 𝜍𝑠𝑠
𝑇 and 𝜍𝜃𝜃

𝑇  express the 

thermal stresses; 𝜍𝑧𝑧
𝑐  and 𝜀𝑧𝑧

𝑐   present the lateral normal 

stress and strain in the core; 𝜏𝑠𝑧
𝑐 , 𝜏𝜃𝑧

𝑐  , 𝛾𝑠𝑧
𝑐  and 𝛾𝜃𝑧

𝑐  declare 

shear stresses and shear strains in the core; and 𝜆𝑠, 𝜆𝜃  and 

𝜆𝑧  are the Lagrange multipliers at the face sheet-core 

interfaces. For expanding Eqs. (40)-(41), some basic 

relations and expresses must be introduced to determine the 

stress and moment resultants for the face sheets as 
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where the “N”s and “NT”s depict the in-plane stress 

resultants and thermal stress resultants, respectively; “Q”s 

declare the out of plane shear stress resultants; “M”s and 

“MT”s refer to the moment resultants and thermal moment 

resultants, respectively; and, the constant coefficients 𝐴𝑘𝑙
𝑗

, 

𝐵𝑘𝑙
𝑗

 and 𝐷𝑘𝑙
𝑗

 indicate the stretching, bending-stretching, 

and bending stiffnesses, respectively, which defined in 

reference (Reddy 2003). Also, the high order thermal stress 

resultants of the face sheets and the core that appear in the 

equations are defined as follows 
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Where E, ν and α are the Young’s modulus, the 

Poisson’s ratio and the thermal expansion coefficient, 

respectively. By substituting the kinematic relations and 

compatibility conditions, and after some algebraic 

operations, the twenty eight equations of motion are 

obtained. These equations include twenty eight unknowns: 

ten displacement unknowns for face sheets, twelve 

displacement unknowns for the core, and six Lagrange 

multipliers as follows 

 

0 0 1 ,

, ,
β β 0

o o o o oT

o o s ss ss s ss

oT o oT o

ss s s so

I ru I r N sin rN N sin

rN N sin N sin N r
   

  



     

    
 

(45) 

 

0 0 1 , ,

, 0

2

0

o o o oT o

o o s

o o

s s o

I r I r N N N sin

rN Q cos r

     

  

  

 

     

  
 

(46) 

 

0 0 0, , 0, 0,

0, , 0, 0,

1 1 1

, 0, 0, , 0,

1

0, , 0, 0, ,
2

β

β

o o o o o o o

o ss s ss s s ss ss

oT o oT o oT o o

ss s ss s s ss ss

o o o o oT o

oT o o o o o

s s s s s

oT

I rw N sin w N rw N rw

N sin w N rw N rw N cos

r N w r N w N cos r N w

r N w N w N w N



        

       





  



    

   

  

  
0,

0 0, 0,
0

o o

s

o o o

s s s zo

w

Q sin rQ Q r
 

 



   
 

(47) 

 

1 0 2 ,

, , 0
β β

0
2

o o o o oT

o o s ss ss s ss

oT o oT o o

ss s s s

o

so

I ru I r M sin rM M sin

rM M sin M sin M rQ

h
r

   

  



    

     


 

(48) 

 

1 0 2 , ,

, 1 0

2

0
2

o o o oT o

o o s

o o o o
s s o

I r I r M M M sin

h
rM Q cos rQ r

     

   

  

 

     

   
 

(49) 

 

0 0 1 ,

, ,
β β 0

i i i i iT

i i s ss ss s ss

iT i iT i

ss s s si

I ru I r N sin rN N sin

rN N sin N sin N r
   

  



    

     
 

(50) 

 

0 0 1 , ,

, 0

2

0

i i i iT i

i i s

i i

s s i

I r I r N N N sin

rN Q cos r

     

  

  

 

     

  
 

(51) 

 

0 0 0, , 0, 0,

0, , 0, 0,

1 1

, 0, 0,

1 1

, 0, 0, , 0, 0,

,

2

β

β

i i i i i i

i i i i

i

i ss s ss s s ss ss

iT iT iT

ss s ss s s ss ss

iT

iT o

s s s s

i i i i

iT i i i i i

s

I rw N sin w N rw N rw

N sin w N rw N rw N cos

r N w r N w N cos

r N w r N w N w N w

N



     

        

 





 

 

    

   

  





 

0, 0 0, 0,
0

s s s

i i i

s i

i

z

i
w Q sin rQ Q r

 
     

 

(52) 

 

,

,

1 0 2 ,

0
ββ 0

2

i i

ss ss s

iT i

s

i i iT iT

i i s ss ss s

i i i

s si

M sin rM

M sin M

I ru I r M sin rM

h
M sin rQ r

  

 







    

    
 

(53) 

 

1 0 2 , ,

, 1 0

2

0
2

i i i iT i

i i s

i i i i

s s i

I r I r M M M sin

h
rM Q cos rQ r

     

   

  

 

     

   
 

(54) 

 

0 0 1 1 2 2 3 3

, ,

,

β+ β

0

c c c c c

c c c c s

c cT cT c cT

s s s s s

c

s so si

I ru I ru I ru I ru R sin

rR R sin rR R sin R sin

Q r r

 

 





 

     

   

  
 

(55) 

 

244



 

Vibration analysis of sandwich truncated conical shells with porous FG face sheets in various thermal surroundings 

1 0 2 1 3 2 4 3 1

1, 1 1, 1

1 1 ,

β

β 0
2 2

c c c c c

c c c c s

c cT cT c

s s s s s

cT c c c c

sz Q s so si

I ru I ru I ru I ru M sin

rM M sin rM M sin

h h
M sin rQ M r r



  





 

     

   

    
 

(56) 

 

2 0 3 1 4 2 5 3 2

2, 2 2, 2 2

2 2

1 2 ,

β β

2 0
4 4

c c c c c

c c c c s

c cT cT c cT

s s s s s

c c c c

Q sz Q s so si

I ru I ru I ru I ru M sin

rM M sin rM M sin M sin

h h
rM M r r

 

 





 

     

   

    
 

(57) 

 

3 0 4 1 5 2 6 3 3

3, 3 3, 3 3

3 3

2 3 ,

β β

3 0
8 8

c c c c c

c c c c s

c cT cT c cT

s s s s s

c c c c

Q sz Q s so si

I ru I ru I ru I ru M sin

rM M sin rM M sin M sin

h h
rM M r r

 

 





 

     

   

    
 

(58) 

 

0 0 1 1 2 2 3 3 , ,

,2 β 0

c c c c c cT

c c c c

c c c

z s s s o i

I r I r I r I r R R

Q cos Q sin rQ r r

   

    

   

  

     

     
 

(59) 

 

1 0 2 1 3 2 4 3 1, 1,

1 1 1 ,
2 β

0
2 2

c c c c c cT

c c c c

c c c c

Q z z Q s Q s s

c c

o i

I r I r I r I r M M

M cos rQ M sin rM

h h
r r

   

   

 

   



 

     

    

 
 

(60) 

 

2 0 3 1 4 2 5 3 2, 2,

2 1 2 2 ,

2 2

2 2 β

0
4 4

c c c c c cT

c c c c

c c c c

Q z Q z Q s Q s s

c c

o i

I r I r I r I r M M

M cos rM M sin rM

h h
r r

   

   

 

   



 

     

    

 
 

(61) 

 

3 0 4 1 5 2 6 3 3, 3,

3 2 3 3 ,

3 3

3 2 β

0
8 8

c c c c c cT

c c c c

c c c c

Q z Q z Q s Q s s

c c

o i

I r I r I r I r M M

M cos rM M sin rM

h h
r r

   

   

 

   



 

     

   

  
 

(62) 

 

0 0 1 1 2 2 3 3 0,

, 0, 0, 0, , 0,

1 1

0, , 0, 0,

1 1

, 0, 0,

c c c c c c

c c c c s s

c c c c cT c cT c

s s s s ss s s s s s

cT c c c c c c

s ss

cT cT c cT c c

sz

I rw I rw I rw I rw R sin w

R rw R rw R sin w R rw

R rw R cos r R w r R w

R cos r R w r R w Q sin

rQ

     

     







 

 

 

    

   

    

   

, , , 0, 0, , 0,

0

2
c c c c c c c c

sz s z s s s s s s

zo zi

Q w w w

r r

Q Q Q
       

 





 









 

(63) 

 

1 0 2 1 3 2 4 3 1

1 1 1 ,

1 ,
0

2 2

c c c c c

c c c c

cT c cT c c

z z Q sz Q sz s

c c c

Q z zo zi

I rw I rw I rw I rw M cos

M cos rR rR M sin rM

h h
M r r





 



 

 

     

    

  
 

(64) 

 

2 0 3 1 4 2 5 3 2

2 1 1 2

2 2

2 , 2 ,

2 2

0
4 4

c c c c c

c c c c

cT c cT c

z z Q sz

c c c c

Q sz s Q z zo zi

I rw I rw I rw I rw M cos

M cos rM rM M sin

h h
rM M r r





 



 

 

    

    

   
 

(65) 

 

3 0 4 1 5 2 6 3 3

3 2 2 3

3 3

3 , 3 ,

3 3

0
8 8

c c c c c

c c c c

cT c cT c

z z Q sz

c c c c

Q sz s Q z zo zi

I rw I rw I rw I rw M cos

M cos rM rM M sin

h h
rM M r r





 



 

 

    

    

   
 

(66) 

 
2 3

0 0 1 2 3
0

2 2 4 8

oo c c c

o s c c c c

h h h h
u u u u u     

 

(67) 

 
2 3

0 0 1 2 3
0

2 2 4 8

oo c c c

o c c c c

h h h h


          

 

(68) 

 
2 3

0 0 1 2 3
0

2 4 8

c c c

o c c c c

h h h
w w w w w    

 

(69) 

 
2 3

0 1 2 3 0
0

2 4 8 2

ic c c i

c c c c i s

h h h h
u u u u u      

 

(70) 

 
2 3

0 1 2 3 0
0

2 4 8 2

ic c c o

c c c c i

h h h h


          

 

(71) 

 
2 3

0 1 2 3 0
0

2 4 8

c c c

c c c c i

h h h
w w w w w    

 

(72) 

 

where, the inertia terms of the FG face sheets and the core 

are calculated as follows 
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Also, the out-of-plane and in plane stresses of the core 

leads to the high order resultants which are calculated as 
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Finally, by substituting the high order stress resultants in 

equations of motion in terms of the displacement 

components, the governing equations are derived in terms 

of the twenty eight unknowns. In the following, vibration 

problem of truncated conical sandwich shells with a simply 

support boundary conditions are solved by a Galerkin 

method in this study. 
 

 

5. Simply supported truncated conical sandwich 
shell 
 

In order to solve the governing equations of the free 

vibration of simply supported truncated conical sandwich 

shell, a Galerkin method with twenty eight trigonometric 

shape functions, which satisfy the boundary conditions is 

determined. The shape functions can be expressed as 
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where 𝑎𝑚 = 𝑚𝜋/𝐿; m and n are the wave numbers and 

𝐶𝑢𝑘 , 𝐶𝜈𝑘 , 𝐶𝑤𝑘 , 𝐶𝜙𝑠𝑗 , 𝐶𝜙𝜃𝑗 𝐶𝜆𝑠𝑗 , 𝐶𝜆𝜃𝑗  and 𝐶𝜆𝑧𝑗  are the twenty 

eight unknown constants of the shape functions. These 

twenty eight equations are not independent and the number 

of them can be reduced by a reduction approach. Lagrange 

constants can be isolated as the expression of the face 

sheets. It’s seen that based on the compatibility conditions, 

the unknown constants of the faces are dependent to the 

core constants. At last by some operations, the number of 

the equations are reduced to sixteen in terms of the core 

unknown constants. These sixteen equations can be written 

in a 16×16 matrix which include the mass, M, and stiffness, 

K, matrices as follows 
 

2( ) 0mn mn mn mnk M C 
 

(89) 

 

In Eq. (89), 𝜔𝑚𝑛  is the natural frequency; and Cmn is 

the Eigen vector which contains sixteen unknown constants 

of the core. 
 

 

6. Verification and numerical results 
 

In order to validate the approach of this study, present 

results are compared with FEM results of Abaqus software 

and in a special case are compared with results of literature 

(Li et al. 2009). Consider an isotropic conical shell which 

made of aluminum with structural parameters such as h = 

0.004 m, h/R2 = 0.01, (𝐿)𝑠𝑖𝑛(𝛽)/𝑅2 = 0.25. These 

comparisons are shown in Table 1 for three values of β. 

Because, theory and solution method of the present 

analysis are different with reference (Li et al. 2009), a 

discrepancy is found in the results. 

Furthermore, in order to more investigation of the 

present approach, other numerical problems have been 

studied. Consider a simply supported FG truncated 

sandwich shell which interior surface of the faces as well as 

the core layer are made of the zirconium dioxide and the 

outer surface of the faces are made of silicon nitride. The 

properties of these materials are available in reference 

(Reddy 1998). Variation of the material properties in each 

face sheet is correspond to the modified power-law 

function. Numerical examples are simulated by Abaqus 

software for validation of the present approach as shown in 

Fig. 2. 

In this study, results are shown by a non-dimensional 

parameter named fundamental frequency parameter which 

is defined as follows 
 

0

0

h
E




 

(90) 

 

where 𝜔  is the non-dimensional fundamental frequency 

parameter, h is the total thickness of sandwich shell which 

consists two FG faces as well as core; 𝜌0 is density and 

equal to 1kg/m3; and 𝐸0 is the young module equal to 1 

GPa. 
 

 

Table 1 Fundamental frequency parameters of present 

(Li et al. 2009) and Abaqus results 

 
FEM result (Li et al. 2009) Present 

method 
Abaqus 

Lam and Li Feng-Ming Li 

𝛽 = 30 0.8420 0.8431 0.886163 0.8579 

𝛽 = 45 0.7655 0.7642 0.760881 0.7648 

𝛽 = 60 0.6348 0.6342 0.615840 0.6295 
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Fig. 2 FE model simulated by ABAQUS 

 

 

Table 2 Fundamental frequency parameters of present and 

Abaqus results for 2-1-2 and 1-8-1 sandwiches 

 N 
The fundamental frequency parameter 

Present method Abaqus Discrepancy (%) 

2-1-2 

0 3.2247 3.0265 6.54 

0.2 3.0573 2.8165 8.54 

1 2.7268 2.5702 6.09 

2 2.5618 2.3813 7.58 

∞ 1.9232 2.1234 9.42 

1-8-1 

0 2.4318 2.3042 5.53 

0.2 2.3900 2.2236 7.48 

1 2.3060 2.1482 7.34 

2 2.2636 2.0871 8.45 

∞ 1.8923 1.8634 8.10 
 

 

 

In Table 2 fundamental frequency parameters of this 

approach are compared with the FEM results by Abaqus 

software in the temperature of the room and for different 

power law indices in the case of 2-1-2 and 1-8-1 

sandwiches. In general, ho-hc-hi sandwich shell is a structure 

with the indices of outer face sheet thickness, core thickness 

and inner face sheet thickness equal to ho, hc and hi, 

respectively. Therefore, in 2-1-2 sandwich, every face sheet 

 

 

thicknesses is two times of the core thickness and the 

structure is symmetric and in 1-8-1 sandwich, the core 

thickness is eight times of the every face sheet thickness. 

In Table 2 the discrepancies between the present results 

and FEM results are due to simulation method of FG face-

sheets in Abaqus software. In order to simulate the FG face-

sheets in Abaqus, every face-sheets are divided to 20 layers 

that each layer has different properties according to power 

law function. There is a good agreement between the 

present study results and the FEM results obtained by 

Abaqus. 

The fundamental frequency parameter varies with 

temperature changing in Fig. 3. Fig. 3 is plotted in a 

uniform temperature distribution for 2-1-2 and 1-8-1 simply 

supported truncated conical FG sandwich shells in different 

power law indices. As shown in Fig. 3, while the 

temperature is increased, the fundamental frequency 

parameter decreases. According to Eq. (5), temperature 

rising reduces the strength of the material. To clarify this 

phenomena, in Table 3 the effect of temperature on the 

Young’s modulus of ceramic and metal is indicated. With 

increasing the temperature, modulus of metal and ceramic 

are decreased, but due to the microstructural reasons, 

decreasing the module of metal is more. So, increasing the 

temperature reduces the mechanical properties that is one of 

the most important reason in decreasing the frequency in 

high temperature. Also, Fig. 3 depicts that in a constant 

temperature, the fundamental frequency decreases by 

increasing the gradient index. Because, with increasing the 

power-law index the properties of the face-sheets are 

tending to metal and the total strength of the structure is 

decreased. As shown in Fig. 3, the values of the 

fundamental frequencies in 2-1-2 are more than 1-8-1 for all 

power law indices, because the ceramic quantity of the FG 

 

 

Table 3 Effect of temperature variation on the Young 

modulus in metal and ceramics 

T Silicon nitride Zirconium dioxide 

300 K 322.27 (GPa) 168.06 (GPa) 

1500 K 252.14 (Gpa) 105.68 (GPa) 

Change 21.76% 37.11% 
 

 

 

  

(a) 2-1-2 conical sandwich shells (b) 1-8-1 conical sandwich shells 

Fig. 3 Fundamental frequency versus temperature in various power law indices 
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faces in 2-1-2 is more than 1-8-1. In higher temperature 

1-8-1 sandwich is too weaker than 2-1-2 one, and the 

fundamental frequency in 1-8-1 is tending to zero. 

Now, it’s time to discuss about some geometrical effects 

on the fundamental frequency of truncated conical 

sandwich shells. Fig. 4 shows the effect of length to 

thickness ratio on the fundamental frequency parameter for 

2-1-2 and 1-8-1 truncated conical FG sandwich shells. This 

figure implies that when ratios are increased in a constant 

N, the fundamental frequency parameter decreases. Based 

on the Fig. 4, in the values less than 250, the slope of the 

fundamental frequency variation in 2-1-2 is more than 1-8-

1. But, in larger ratios, this slope is almost equal. With 

increasing of this ratio, the stability of the structure is 

reduced and it is important to consider that long length is 

not proper for the truncated conical sandwich shells. 

Variation of the semi vertex angle is one of the most 

important geometrical effects in the cone. 

In Fig. 5, the effect of the semi vertex angle on 

fundamental frequency parameter for 2-1-2 and 1-8-1 

conical FG sandwich shells is investigated. This figure 

implies that with increasing the angle in a constant power 

law index, the fundamental frequency parameter decreases. 

In smaller angles, the fundamental frequency parameters of 

2-1-2 sandwich are more than 1-8-1 one, but in larger 

angles, and especially in larger power law indices, there are 

little discrepancies between two types of sandwiches. As 
 

 

 

 

shown in Fig. 5, the results of 1-8-1 sandwich for different 

power law indices are close to each other, that shows the 

effects of the material properties variation of faces in 1-8-1 

sandwich are less than 2-1-2 one. 

Table 4 shows the effect of radius to thickness ratio on 

fundamental frequency parameter for 2-1-2 and 1-8-1 FG 

conical sandwich shells. The results imply that with 

increasing the radius to thickness ratio, the fundamental 

frequency parameters decrease. As depicted in Table 4, for 

smaller ratios with lower power law indices, the funda- 
 

 
Table 4 Variation of the fundamental frequency with radius 

to thickness ratio for 2-1-2 and 1-8-1 sandwiches 

 R1/h 
The fundamental frequency parameter 

100 200 300 400 500 

2-1-2 

N = 0 1.6123 0.8062 0.5375 0.4031 0.3225 

N = 0.2 1.5286 0.7643 0.5036 0.3911 0.3003 

N = 1 1.3633 0.6817 0.4545 0.3409 0.2727 

N = 2 1.2809 0.6405 0.4270 0.3203 0.2562 

1-8-1 

N = 0 1.2159 0.6080 0.4053 0.3040 0.2432 

N = 0.2 1.1950 0.5976 0.3984 0.2988 0.2390 

N = 1 1.1530 0.5766 0.3844 0.2883 0.2306 

N = 2 1.1318 0.5660 0.3773 0.2830 0.2264 
 

 

 

 

  

(a) 2-1-2 conical sandwich shells (b) 1-8-1 conical sandwich shells 

Fig. 4 Variation of the fundamental frequency with length to thickness ratio 

  

(a) 2-1-2 conical sandwich shells (b) 1-8-1 conical sandwich shells 

Fig. 5 Variation of the fundamental frequency with semi vertex angle 
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Fig. 6 Variation of the fundamental frequency with core to 

face sheet thickness ratio for different power law 

indices 

 

 

 

Fig. 7 Variation of the fundamental frequency with core to 

face sheet thickness ratio for different temperature 

(N = 1) 

 

 

mental frequency parameter of 2-1-2 sandwich is more than 

1-8-1, but for high power law indices with higher ratios, the 

values of two types of sandwiches are close to each other. 

Fig. 6 depicts variation of the core to face sheet 

thickness ratio, hc/ho, on the fundamental frequency 

parameter in various power law indices and constant total 

thickness. When hc/ho = 0.5, it means faces thickness are 

two times of the core thickness, so it shows the results of 

the 2-1-2 sandwich. And, when hc/ho = 8, it shows results of 

the 1-8-1 sandwich. For all indices, by increasing the ratio 

 

 

in a constant total thickness, the amount of metal 

increases and the structure will be softer, so the 

fundamental frequency parameters decrease. When the 

power law index is increased in a constant thickness, 

ceramic quantity will decrease and for all values of hc/ho, by 

increasing the ratio, the fundamental frequency parameters 

decrease. Also, Fig. 7 shows the changing of core to face 

sheet thickness ratio versus fundamental frequency 

parameter in different temperatures. It can be observed that 

increasing the ratio for all temperatures and increasing the 

temperature in a constant ratio causes to decreasing the 

fundamental frequency parameters. 

In order to clearly understand the porosity influence, 

Figs. 8 and 9 show the even and uneven porosity 

distributions influence on the frequency variation with (L/h 

= 100, R1/L = 2, β = π/6) for the 2-1-2 and 1-8-1 sandwich 

shells, respectively. As depicted in Figs. 8(a) and 9(a), it is 

found that in the case of 2-1-2, both porosity distributions 

are dependent of power law indices. By increasing the 

porosity volume fraction, the fundamental frequency 

parameter first increases at lower gradient indices, but from 

a certain value of the power law index, increasing porosity 

volume leads to decreasing the fundamental frequency 

parameter. These increasing and decreasing are stronger in 

the case of even porosity distribution. In even distributions, 

porosities occur all over the cross-section of FG layer, 

while, in uneven distribution, porosities are available at 

middle zone of cross section. But in 1-8-1 sandwich, with 

increasing the porosity volume fraction, the fundamental 

frequency parameters always decrease but this effect is very 

low. 

 

 

Table 5 The fundamental frequency parameters in non-

uniform temperature distributions for 2-1-2 and 

1-8-1 sandwiches 

 To (k) 
The Fundamental frequency 

300 500 700 900 

2-1-2 
Linear 3.224691 3.171938 3.12206 3.06727 

Non-linear 3.224691 3.189249 3.151791 3.107986 

1-8-1 
Linear 2.431751 2.263226 2.032871 1.459472 

Non-linear 2.431751 2.312537 2.175682 1.566189 
 

 

 

  

(a) 2-1-2 conical sandwich shells (b) 1-8-1 conical sandwich shells 

Fig. 8 Variation of the fundamental frequency with even porosity distribution for different power law indices 
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As mentioned in section 2.2 and section 2.3, three types of 

temperature distributions have been considered in this 

paper. The uniform temperature variations have been shown 

in Fig. 3. In Table 5, the fundamental frequency parameters 

in the linear and nonlinear temperature distributions are 

depicted for a 2-1-2 and 1-8-1 FG truncated sandwich 

shells. The temperature of inner surface of sandwiches, Ti, 

is constant and equal to 300 (k) and the outer surface of 

sandwiches, To, is variable. Temperature between these two 

surfaces changes linearly based on Eqs. (6)-(8) and 

nonlinearly based on Eqs. (11)-(13). 

 

 

7. Conclusions 
 

In this study for two kinds of conical sandwich shells, 2-

1-2 and 1-8-1, according to a high order sandwich shell 

theory, the displacement fields of the face-sheets were 

considered based on the first order shear deformation theory 

and the core displacement fields were considered as the 

cubic distributions for vertical and horizontal deflections. 

High order stress and thermal stress resultants, in plane and 

thermal stresses were considered in the core to improve the 

high order theory. Nonlinear strains were used for both 

mechanical and thermal stresses to obtain the more accurate 

equations that causes the problem be more complicated. 

Also, the material properties of the face-sheets and the 

core were considered temperature-dependent. A power law 

distribution with different porosity distributions was used to 

model the temperature dependent material properties of the 

FG face sheets. Uniform, linear and nonlinear temperature 

distributions were considered to model the effect of the 

temperature changing in the sandwich shell. The equations 

of motion were obtained by Hamilton’s principal and solved 

by using Galerkin method. Also, an approach was used to 

reduce the equations of motion from 28 to 16 equations. In 

order to survey the capabilities of this model for free 

vibration analysis of simply supported truncated conical 

sandwich shells with porous FG face sheets, the results 

were verified by FEM results and in a special case by 

literature results. Based on the results, there was a good 

agreement between them and the following conclusion can 

be drawn: 

 

 

 Increasing the temperature reduces the mechanical 

properties. So, with increasing the temperature in a 

constant power law index, the fundamental 

frequency parameter decreases and 1-8-1 sandwich 

is too weaker than 2-1-2 one in higher temperature 

environments. 

 While power law index is increased, the amount of 

ceramic reduces, so the fundamental frequency 

parameter decreases. 

 In a constant power law index and a constant 

temperature for both sandwiches, the fundamental 

frequency parameter decreases when length to 

thickness ratio is increased. 

 With increasing the semi vertex angle, the 

fundamental frequency parameter decreases. 

 In a constant power law index, the fundamental 

frequency parameter decreases when radius to 

thickness ratio is increased. 

 In a constant total thickness, with increasing the core 

to face-sheet thickness ratio in different temperatures 

and different power law indices, the fundamental 

frequency parameters decrease. For example, in the 

value of hc/ho = 0.5, 2-1-2 type, FG faces sandwiches 

due to the more quantity of ceramic have stiffer 

structure than the value of hc/ho = 8, 1-8-1 type, so 

the fundamental frequency parameter in 2-1-2 type is 

higher. 

 In 2-1-2 sandwich, in the lower power law indices, 

with increasing the porosity volume fraction, the 

fundamental frequency parameter increases, but with 

increasing the power law index, this becomes vice 

versa and the fundamental frequency parameter 

decreases. These increasing and decreasing are more 

in the case of even porosity distribution. But in 1-8-1 

sandwich, with increasing the porosity volume 

fraction, the fundamental frequency parameters 

always decrease. 

 Frequencies in the case of non-linear distribution of 

temperature are bigger than the linear one. 

 

 

 

 

  

(a) 2-1-2 conical sandwich shells (b) 1-8-1 conical sandwich shells 

Fig. 9 Variation of the fundamental frequency with uneven porosity distribution for different power law indices 
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