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1. Introduction 

 

The use of piezoelectric materials as sensors and 

actuators for controlling vibration and sound has increased 

significantly in recent years. Ceramics and polymers are 

two classes of piezoelectric materials that used to control 

vibrations. The most famous piezoelectric is PZT, which 

consists of lead, zirconium and titanium. By changing the 

proportion of zirconium to titanium, its properties can be 

optimized for various applications. PZT is widely used for 

wide frequency range and also includes ultrasonic 

applications. Vibration and dynamic response of shells have 

been studied by many researchers. 

Shu (1995) investigated the free vibrations of isotropic 

cone skins by using the general differential quadrature 

method (GDQM). He obtained the natural frequencies of 

the system with four different boundary conditions and 

compared the results with Irie et al. (1982). The influence 

of the angular velocity on natural frequency of rotating 

cylindrical shell is investigated by Hua and Lam (1998). 

Chen et al. (2004) examined the vibrations of a 

functionalized graded piezoelectric (FGP) orthotropic 

cylindrical. The effect of the fluid is considered as a 

relationship between fluid pressure and radial displacement. 

Finally, the influence of various parameters such as velocity 
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of sound in the fluid, as well as the ratio of thickness to the 

radius of the cylindrical on the natural frequency, have been 

investigated. Liew et al. (2004) examined the vibration 

control of functionally graded (FG) cylindrical shell by 

using sensor and actuator. They used the first-order shear 

deformation theory (FSDT) and finite element method 

(FEM) for deriving and solving governing equation of 

motion. Proportional derivative (PD) controller used for 

controlling the system and the performance of the control 

system has been evaluated in reducing the vibration 

amplitude. Patel et al. (2005) studied the vibrations of a FG 

cylindrical shell with elliptical cross-section. Also, the 

equilibrium equations using the FEM are solved and finally 

evaluated the natural frequencies and the mode shape of the 

vibrational systems. Tornabene (2009) studied the dynamic 

behavior of thick FG conical, cylindrical shells and annular 

plates. His results indicated the influence of the power-law 

exponent, of the power-law distribution on the mechanical 

behavior. Sheng and Wang (2009b) examined the nonlinear 

dynamic response of sandwich cylindrical shell subjected to 

lateral load by considering the FG core and piezoelectric 

layers. Their results showed the effect of lateral load on 

dynamic response of sandwich cylindrical shell. Active 

vibration control of sandwich cylindrical shell subjected to 

thermal and mechanical load is studied by Sheng and Wang 

(2009a). The Galerkin’s method for solving the governing 

equation of motion is used. The effect of piezoelectric 

material on dynamic response of system is investigated. 

Ghorbanpour Arani et al. (2011) presented dynamic 

stability of the double-walled carbon nanotube under axial 
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loading embedded in an elastic medium using the energy 

method. By using FSDT and generalized differential 

quadrature (GDQ) method, Tornabene et al. (2011) studied 

the dynamic behavior of FGMs and laminated doubly 

curved shells and panels. By drawing the 

Campbell diagram, Sun et al. (2012) analyzed the influence 

the geometric parameters and boundary conditions on free 

vibration of rotating cylindrical shell. Malekzadeh and 

Heydarpour (2012) analyzed the dynamic response of 

rotating FG cylindrical shell subjected to thermal load, and 

using FSDT and Hamilton’s principle, the governing 

equation of motion is obtained. Arefi and Rahimi (2012) 

analyzed the dynamic response of FG cylindrical shell by 

employing FSDT and Hamilton’s principles. The dynamic 

response of system by considering the various boundary 

conditions is investigated by them. Tornabene and Reddy 

(2013) applied generalized differential quadrature (GDQ) 

method for static analysis of functionally graded material 

(FGM) and laminated doubly-curved shells and panels 

resting on nonlinear and linear elastic foundations. Cao et 

al. (2013) presented the active control vibration of 

sandwich cylindrical shell. The FSDT for modeling 

displacement field of system and also for control vibration 

by the PD controller is employed. Their results showed the 

effect of controlling power factor and piezoelectric material 

on dynamic response of system. Mohammadimehr and 

Rahmati (2013) studied small scale effect on electro-

thermo-mechanical vibration analysis of single-walled 

boron nitride nanorods under electric excitation based on 

nonlocal elasticity theory. Kumar et al. (2013) studied the 

vibrations of a sandwich shell based on zigzag theory. The 

finite element method (FEM) is used to solve the system 

equations. It can be seen that FEM based on the zigzag 

theory is more accurate than FEMs based on first order and 

higher order theory. Heydarpour et al. (2014) studied the 

free vibration of FG incomplete cone shell by employing 

the Hamilton’s principle and FSDT and DQM is used to 

solve the governing equation of motion. Their results 

showed the effect of angular velocity on natural frequency 

of system. By discarding Coriolis Effect and using 

Lagrange method, Dey et al. (2014) obtained the governing 

equation of FG cone cylindrical shell. Also, by drawing the 

shape mode of system, the influence of various parameters 

on dynamic response of system is studied. 

Mohammadimehr et al. (2014) presented the vibration and 

buckling analysis of FG piezoelectric of cylindrical shell. 

Their results showed the effect of various parameters such 

as elastic foundation coefficient, type of piezoelectric 

material on natural frequency and shape mode of system. 

Using Sanders shell theory, Assaee and Hasani (2015) 

presented the forced vibration analysis of composite thin-

walled cylindrical shell. For the calculation of natural 

frequencies, Fourier transform method has been used in 

their works. Also for validate, the results of this method are 

compared with the results of FEM. Mohammadimehr et al. 

(2015) considered surface stress effect on the nonlocal 

biaxial bending and buckling analysis of polymeric 

piezoelectric nanoplate reinforced by CNT using Eshelby-

Mori-Tanaka approach. Tornabene et al. (2015a) used the 

generalized zigzag displacement field and the carrera 

unified formulation (CUF) to study stress and strain 

recovery for FG free-form and doubly-curved sandwich 

shells. Active vibration control of cylindrical shell by 

considering the piezoelectric disk is studied by Loghmani et 

al. (2015) and used the Donnel-Mushtari shell theory and 

Rayleigh-Ritz method to model and solve the equation of 

system. Zhang et al. (2015) investigated the dynamics 

response of cylindrical shell subjected to thermal load. 

Tornabene et al. (2015b) investigated the effect of carbon 

nanotube (CNT) agglomeration on the free vibrations of 

laminated composite doubly-curved shells and panels 

reinforced by CNTs. Das and Karmakar (2016) examined 

the effect of rotation and pre-twist angle on free vibration 

characteristics of FG conical shells. Ghorbanpour Arani et 

al. (2016) illustrated surface stress and agglomeration 

effects on nonlocal biaxial buckling polymeric 

nanocomposite plate reinforced by CNT using various 

approaches. Using finite element method, Mohammadimehr 

and Alimirzaei (2016) presented nonlinear static and 

vibration analysis of Euler-Bernoulli composite beam 

model reinforced by FG-SWCNT with initial geometrical 

imperfection. Razavi et al. (2016) examined the free 

vibration of FG piezoelectric nano-cylindrical shell and 

derived the equilibrium equation of system by using couple 

stress theory and size-dependent piezoelectric theory. 

Influence of geometric and material parameters on natural 

frequency and dynamic response of system are studied. 

Tornabene et al. (2017) used the higher order shear 

deformation theory (HSDT) and differential quadrature 

method (DQM) to study the effect of the curvilinear fiber 

path on the modal response of foam core composite 

sandwich plates and shells. Mohammadimehr et al. 

(Mohammadimehr and Shahedi 2017, Mohammadimehr 

and Mehrabi 2017, Mohammadimehr et al. 2017) 

investigated buckling and vibration analysis of sandwich 

structures. Sheng and Wang (2017) presented the nonlinear 

vibration of rotating FG cylindrical shell and employed 

FSDT as well as large deformation terms (von Karman) of 

strain vector to derive the governing equation. Higher order 

shear deformation theory and Maxwell’s equation used to 

analyzing the free flexural vibration behavior of doubly 

curved complete and incomplete sandwich shells with 

functionally graded (FG) porous core, FG carbon nanotube 

reinforced composite (FG-CNTRC) face sheets and 

integrated piezoelectric layers by Setoodeh et al. (2018). 

Zghal et al. (2018) analyzed the buckling of FG composite 

plates and curved panels reinforced by carbon nanotubes 

and employed the high order shear deformation theory to 

derive the governing equation of motion. Das and Karmakar 

(2018) investigated the influence rotation and pre-twist 

angle on free vibration characteristics of FG conical shells. 

Based on first-order shear deformation theory (FSDT), 

Mohammadimehr et al. (2018a) presented free vibration 

analysis of magneto-electro-elastic cylindrical composite 

panel reinforced by various distributions of CNTs with 

considering open and closed circuits boundary conditions. 

Frikha et al. (2018) investigated the dynamic behavior of 

functionally graded carbon nanotubes reinforced composite 

shell structures (FG-CNTRC). Their results showed the 

influence of volume fraction of carbon nanotube, various 
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boundary conditions and other geometrical parameters on 

dynamic behavior of FG-CNTRC shells. Trabelsi et al. 

(2019) used the modified first order shear deformation 

theory to analysis the thermal buckling behavior of FG 

plates and cylindrical shells. Some researchers worked 

about bending, vibration and active control of sandwich 

beam, plate and shell (Yazdani et al. 2019, Rajabi and 

Mohammadimehr 2019, Emdadi et al. 2019, Akhavan Alavi 

et al. 2019, Rostami et al. 2019). 

The nanotechnology and micro scale analysis for smart 

structures were reviewed in the introduction. According to 

reviewed literature, a combination of these topics for 

nonlinear vibration and dynamic stability of a rotating 

sandwich shell with considering FG core integrated with 

sensor and actuator is a lack of study. Thus, the dynamic 

stability and nonlinear vibration behavior of a smart rotating 

sandwich cylindrical shell will be analyzed with FGM core 

which is integrated by functionally graded piezoelectric 

material (FGPM) layers subjected to electric field as sensor 

and actuator based on first-order shear deformation theory 

(FSDT) is studied in the present research. The governing 

equations and the corresponding boundary conditions are 

established through the Hamilton’s principle. The Galerkin 

method is used to discriminate the motion equations and the 

equations are converted to the form of the ordinary 

differential equations in terms of time. The perturbation 

method is employed to find relation between nonlinear 

frequency and amplitude response. The effects of 

geometrical parameters, power law index of core, sensor 

and actuator layers, angular velocity and scale 

transformation parameter on nonlinear frequency-amplitude 

response diagram and dynamic stability of sandwich 

cylindrical shell are investigated. The main objective of this 

research is to determine the nonlinear frequencies and 

nonlinear vibration control by using sensor and actuator 

layers. 

 

 

2. Governing equations of motion 
 

The rotating sandwich cylindrical shell is considered, as 

shown in Fig. 1. L and R are length and radius of the shell, 

respectively. h is the thickness of FG core. ha and hs 

represent the thicknesses of actuator and sensor layers, 

respectively. F is lateral force and Ω denotes a constant 

 

 

rotating speed about the x-axis. The coordinate system (x, θ, 

z) is considered on the middle layer of the central layer. 
 

2.1 Displacement field of cylindrical shell 
 

Based on FSDT, the general displacement field of 

sandwich cylindrical shell is defined as Lam and Qian 

(2007) 
 

0( , , , ) ( , , ) ( , , )  xu x z t u x t z x t   
 (1) 

 

0( , , , ) ( , , ) ( , , ) v x z t v x t z x t   
 (2) 

 

0( , , , ) ( , , )w x z t w x t 
 

(3) 

 

(u, v, w) is the displacement of a point in direction of (x, 

θ, z) that including middle surface displacement (u0, v0, w0) 

and the image of the normal vector rotation on the middle 

surface around x, θ axes (φx, φθ). 

The strain vector is defined as Oh and Lee (2007) 
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(4) 

 

Based on FSDT and considering the nonlinear Von-

Karman terms, the components of strain vector are 

expressed as follows 
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Fig. 1 A schematic view of a sandwich cylindrical shell considering FG core and FGPM sensor and actuator layers 
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2.2 The definition of functionally graded material 
properties 

 

Variation properties in FG core and FGPM layers are 

considered as Mohammadimehr et al. (2016) 
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where indeces m and c are related to metal and ceramic 

materials of the functionally graded (FG) core, respectively. 

Also, Eq. (13) shows the variation of Young’s modulus and 

density in thickness direction of FG core. Eq. (14) 

illustrates the change of Young’s modulus, density, and also 

the matrix of stiffness of the FGPM layers. gf, ga and gs are 

the power law indeces of core, actuator and sensor layers, 

respectively. 

 

2.3 Stress-strain relations 
 

Due to the change in properties along the thickness of 

the FG layer and also considering the effect of electric field 

and electrical displacement in piezoelectric layers, the 

stress-strain relation of sandwich cylindrical shell is 

expressed as Dehghan et al. (2016) 
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σ, ε, C, E, D, e and ζ are stress, strain, stiffness matrix, 

electric field, electric displacement, piezoelectric effective 

matrix and dielectric matrix, respectively. 
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(20) 

 

By substituting the components of strain vector and 

stiffness matrix into stress-strain relation the stress and 

electric displacement of piezoelectric layer obtained. 

 

2.4 Stress-strain relations 
 

The vector of electric field is defined as Lia and Pan 

(2015) 
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(21) 

 

The created electrical potential by the elastic 

deformation in the sensor layer is stated as Rouzegar and 

Abad (2015) 
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(22) 

 

ψs is the component of the electric field in the sensor 

layer. 

In the actuator layer, there is also an external potential 

that considering for calculation the electric potential of 

actuator layer 
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(23) 

 

ψa is the component of the electric field in the actuator 
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layer. U is the external potential applied to actuator layer. 

By substituting the Eqs. (22) and (23) into Eq. (21) the 

electric field of sensor and actuator layer obtained. 
 

2.5 Hamilton’s principle 
 

The governing equation of system is derived by 

employing Hamilton’s principle, in the first step, the kinetic 

energy is obtained. The velocity vector of cylindrical shell 

will be obtained from the sum of the relative velocities and 

the angular velocity of shell. 
 

 relV V r
 

(24) 

 

𝑉  𝑟𝑒𝑙 , Ω    and 𝑟  are relative velocity, angular velocity 

and location vector, respectively. The location vector of 

system based on the FSDT is presented as follows 
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(25) 
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(26) 

 

 i  (27) 
 

By substituting Eqs. (25)-(27) into Eq. (24), the vector 

velocity of sandwich cylindrical shell is obtained as follows 
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3   V w v zv   (31) 

 

Kinetic energy of sandwich cylindrical shell could be 

derived as Li et al. (2008) 
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(32) 

 

Next step is calculation strain energy of sandwich 

cylindrical shell 
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The external force for the rotating sandwich shell is 

defined as follows 

0 0 0cos( ) ( ) ( )  F F t x x    
 

(37) 

 

The work of the external force is the product of the 

multiplication of force in the displacement 
 

NV F w
 (38) 

 

Final step for deriving equilibrium equation of sandwich 

cylindrical shell, Hamilton’s principle is applied as Jafari et 

al. (2014) and Mohammadimehr et al. (2018b) 
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By substituting Eqs. (32), (33) and (38) into Eq. (39), 

the governing equations of rotating sandwich shell under 

lateral loading are presented in the form of a non-

homogeneous nonlinear partial differential equation as 

follows 
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(40) 
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 1 2 3 4 5 6 7
       

T
H H H H H H H H

 

 30 0 0 0 0 0 
T

G G
 

 1 2 3 4 5 6 0      
T

D D D D D D D
 

 30 0 0 0 0 0 
T

N N
 

 0 0 1 0 0 0 0 
T

B
 

(40) 

 

M′ and C′ are inertia and gyroscope matrices, 

respectively. Matrix datasets of K′ and D′ are linear 

operators that contain different location derivatives.  H′ and 

G′ contains nonlinear second and third order semantics of 

vector components of system variables {X}. 
 

 

3. Discretization of the governing equations 
 

The simply supported boundary conditions are assumed 

in the two ends of the cylindrical shell. Using Galerkin’s 

method, the spatial and temporal terms of the system 

variables should be separated so that variables vector of the 

system according to the relationship as follows 
 

0 0

( )cos( )cos( )
 


H I

mn m

m n

u u t x n 
 

(41) 

 

0 0

( )sin( )sin( )
 


H I

mn m

m n

v v t x n 
 

(42) 

 

0 0

( )sin( )cos( )
 


H I

mn m

m n

w w t x n 
 

(43) 

 

0 0

( )cos( )cos( )
 


H I

x x mn m

m n

t x n   
 

(44) 

 

0 0

( )sin( )sin( )
 


H I

mn m

m n

t x n    
 

(45) 

 

0 0

( )sin( )cos( )
 


H I

a a mn m

m n

t x n   
 

(46) 

 

0 0

( )sin( )cos( )
 


H I

S s mn m

m n

t x n   
 

(47) 

 

By substituting Eqs. (41)-(47) into Eq. (40), the spatial 

and temporal terms of the system variables are separated 

from each other, and for removing the spatial terms used 

Galerkin’s method as follows 
 
7

1 1 1

1

( )cos( )cos( ) 0


   j j j j j j m

jx

I Z c Z K Z x n dxd


  

 
(48) 

 
7

2 2 2

1

( )sin( )sin( ) 0
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   j j j j j j m
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I Z c Z K Z x n dxd

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(49) 
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I Z c Z K Z x n dxd
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(50) 

 

7

4 4 4

1
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I Z c Z K Z x n dxd
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7

5 5 5
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7

6 6 6
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I Z c Z K Z x n dxd
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(53) 

 
7

7 7 7

1

( )sin( )cos( ) 0


   j j j j j j m

jx

I Z c Z K Z x n dxd


  

 
(54) 

 

By using the above method, the governing equations of 

the system are converted into ordinary differential 

equations. 

 
2( ) cos( )cos( )     MZ K J Z G DU B t n t
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(55) 

 

The last two equations of the Eq. (55) are algebraic 

equations, which uses these equations to obtain the electric 
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field generated in the piezoelectric actuator and sensor as 

follows 

 

61 62 63 64 65 6

66

1
( )


     a mn mn mn mn x mn mn mnT u T v T w T T D U

T
  

 
(56) 

 

71 72 73 74 75

77

1
( )


    s mn mn mn mn x mn mnT u T v T w T T

T
  

 
(57) 

 

By substituting Eqs. (56) and (57) into Eq. (55), the 

final equations of rotating sandwich cylindrical shell under 

lateral loading are obtained as five non-linear ordinary 

differential equation in terms of time derivatives. 

The most important vector component of the system 

variables is w, which founds the third row of the governing 

equations of the system. For this reason, in order to study 

the dynamic stability, the governing equations of the system 

become an equation in the lateral direction (w). For this 

reason, inertial terms are neglected in other equations, 

which lead to algebraic equations. By solving algebraic 

equation the variable vector of system consist of umn, vmn,  

φx mn and φθ mn is obtained as follow 

 

( ) ( ( )) ( ( )) mn uw mn uU mnu t f w t f U t
 

(58) 

 

( ) ( ( )) ( ( )) mn uw mn vU mnv t f w t f U t
 

(59) 

 

( ) ( ( )) ( ( )) 
x xx mn w mn U mnt f w t f U t 

 
(60) 

 

( ) ( ( )) ( ( )) mn w mn U mnt f w t f U t
   

 
(61) 

 

By substituting Eqs. (58)-(61) into third row of Eq. (55), 

new form of equilibrium equation of rotating sandwich 

cylindrical shell under lateral forced is obtained as follows 

 
3

1 2 3 4 5 0 cos( )cos( ) 0     bw b w b w b U b F t n t
 (62) 

 

By employing perturbation method and adding the scale 

transformation parameter ς, the new deferential equation by 

considering linear damping forces obtained as follows 

 

2 33 54
0 0

1 1 1

cos( )cos( ) 0     
b bb

w w w U F t n t
b b b

    

 
(63) 

 

where 
 

0    
 (64) 

 

η is detuning parameter. 

By substituting the uniform solution of Eq. (63) and 

separating different order of ς as Liu and Chu (2012), we 

have 
 

0 0 1 1 0 1( , ) ( , ) ( , ) ...  w t w T T w T T 
 

(65) 

 

order ς0 
 

2 2

0 0 0 0 0 D w w
 

(66) 

order ς1 
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b b b

 

 

(67) 

 

The solution of the Eq. (66) is expressed as follows 

 
0 0 0 0

0 1 1 1 1( ) ( )
i T i T

w A T e A T e
 

 
 

(68) 

 

Substituting (68) into (67) yields the following equation 

 
0 012 2 23 5 0
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2
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      
i Ti Tb b F

D w w i D A A A e e CC NST
b b
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(69) 

 

where NST represents all non-secular terms, the symbol CC 

represents the complex conjugate terms. The secular terms 

should be zero 
 

123 5 0
0 1 1 1 1

1 1

2 3 0
2

  i Tb b F
i D A A A e

b b



 

(70) 

 

By considering A1 as Eq. (69) and substituting into Eq. 

(70) and then separating the real and imaginary parts from 

the resulting equations. 
 

5
1

1 0

sin
2

 
b F

D a
b


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(71) 

 
3

3 5
1

1 0 1 0

3 cos
8 2

  
b a b F

aD a
b b

  
 

 

(72) 

 

where φ = ηT1 ‒ β. 

For finding steady solution of system, it should become 

D1a = 0, D1ϕ = 0. By employing these equations, the 

algebraic equations of amplitude-frequency could be written 

as follows 
 

2
2 23 5

0

1 0 1 0

( 3 ) ( )
8 2

  
b b Fa

b b


 

 
 

(73) 

 

The used method is one of the best and most widely 

used methods to find the relationship between nonlinear 

frequency and displacement of system. 

 

 

4. Discretization of the governing equations 
 
In this section, the influence of various parameters on 

nonlinear vibration and dynamic response of sandwich 

cylindrical shell is investigated. Both piezoelectric layers 

(sensor and actuator) are considered to be PZT-4. Geometric 

parameters, mechanical properties of FG core and 

mechanical properties and electrical coefficients of 

piezoelectric layers are presented in Tables 1, 2 and 3. 
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Table 1 The geometrical parameters of sandwich cylindrical 

shell 

hs (m) ha (m) h (m) L (m) R (m) 

0.001 0.001 0.01 2 1 
 

 

 

 

 

4.1 Validation of results 
 

In order to ensure the accuracy of the obtained results in 

this study, we first compared the results with past research. 

For cylindrical shell with simply supported boundary 

conditions, a comparison between the results of this study 

and the obtained results presented by Liu and Chu (2012) 

for various ω and C. There is a good agreement between the 

results of this research and the results of Liu and Chu 

(2012). 
 

4.2 Nonlinear vibration of sandwich cylindrical shell 
 

In this article, the nonlinear vibration and dynamic 

stability analysis of a smart rotating sandwich cylindrical 

shell with considering a functionally graded (FG) core 

integrated by piezoelectric layers subjected to electric field 

is investigated. The piezoelectric layers at the inner and 

outer surfaces used as actuator and sensor, respectively. By 

applying the energy method and Hamilton’s principle, the 

governing equations of sandwich cylindrical shell are 

derived based on first-order shear deformation theory 

(FSDT). The Galerkin’s method is used to discriminate the 

motion equations and then these equations are converted to 

the form of the ordinary differential equations in terms of 

time. The perturbation method is employed to find relation 

between nonlinear frequency and the amplitude of vibraion. 

The used perturbation method in this article is one of the 

best and most widely methods to find the relationship 

between nonlinear frequency and displacement of system. 

The most important advantage of this method is a very short 

time for solving the equation. 

Heterogeneous coefficient (power law index) of FGM 

layer (gf), heterogeneous coefficient of sensor layer (gs) and 

heterogeneous coefficient of sensor layer (ga) are studied as 

the first parameter on nonlinear frequency of sandwich 

cylindrical shell. Fig. 2 shows by increasing the shell 

heterogeneity coefficient (power law index) of FGM layer, 

in constant amplitude, the nonlinear frequency of system 

reduces. It is due to decreasing the stiffness of sandwich 

cylindrical shell. On the other hands, by increasing the 

power law index, the sandwich structure becomes softer. 

Also Figs. 3 and 4 show the influence of heterogeneous 

coefficient of sensor and actuator layers on nonlinear 

frequency of sandwich cylindrical shell. It can be seen from 

Fig. 5 that by increasing the angular velocity of sandwich 

Table 2 The mechanical properties of FG core 

 

v ρm (Kg/m3) ρc (Kg/m3) Em (GPa) Ec (GPa) 

0.33 2700 3800 70 380 
 

 

 

 

Table 4 Amplitude–frequency response of rotating thin 

circular cylindrical shell for various ω and C 

Method ω 
C 

0.01 0.05 0.1 

Liu and Chu 

(2012) 

0.8 0.55 0.25 0.22 

1 1.1 0.9 0.8 

1.2 0.52 0.2 0.18 

Present study 

0.8 0.58 0.22 0.24 

1 1.15 0.93 0.86 

1.2 0.55 0.19 0.2 
 

 

 

 

Fig. 2 The effect of heterogeneity coefficient (power law 

index(gf))) of FGM layer on amplitude–frequency 

response (L/R = 5, R/h/20, h/ha = 25, ha/hs = 1, ga = 0, 

gs = 0, Ω = 1000 rad/s, ω0 = 1, ς = ‒0.5) 

 
 

cylindrical shell, in constant amplitude the nonlinear 

vibration of system decreases. Figs. 6 and 7 indicate the 

effect of geometric parameter such as thickness to radius 

ratio (h/R) and aspect ratio (L/R) on nonlinear vibration of 

smart sandwich cylindrical shell. Fig. 6 shows by increasing 

the h/R the nonlinear frequency of system increases because 

of the stiffness of structures increases. The stability zone of 

the system is also predictable from this shape. The existence 

of three different displacements at a nonlinear frequency 

indicates that the system was unstable. In Fig. 7, we can see 

Table 3 The mechanical properties and electrical coefficients of piezoelectric layers 

e31 (C/m2) e32 (C/m2) e24 (C/m2) e15 (C/m2) ζ11 (10-11 F/m) ζ22 (10-11 F/m) ζ33 (10-11 F/m) 

-5.2 -5.2 12.7 12.7 650 650 560 

Q11 (1010N/m2) Q12 (1010N/m2) Q22 (1010N/m2) Q44 (1010N/m2) Q55 (1010N/m2) Q66 (1010N/m2) ρ (Kg/m3) 

13.9 7.8 13.9 2.56 2.56 3.05 7500 
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Fig. 3 The effect of heterogeneity coefficient of sensor 

layer on amplitude–frequency response 

(L/R = 5, R/h/20, h/ha = 25, ha/hs = 1, gf = 1, ga = 0, 

Ω = 1000 rad/s, ω0 = 1, ς = ‒0.5) 

Fig. 4 The effect of heterogeneity coefficient of actuator 

layer on amplitude–frequency response 

(L/R = 5, R/h/20, h/ha = 25, ha/hs = 1, gf = 1, gs = 0, 

Ω = 1000 rad/s, ω0 = 1, ς = ‒0.5) 

  

Fig. 5 The effect of angular velocity on amplitude–

frequency response (L/R = 5, R/h/20, h/ha = 25, 

ha/hs = 1, ga = 0, gs = 0, ω0 = 1, ς = ‒0.5) 

 

Fig. 6 The effect of thickness to radius ratio (h/R) on 

amplitude–frequency response 

(L/R = 5, h/ha = 25, ha/hs = 1, ga = 0, gs = 0, Ω = 

1000 rad/s, ω0 = 1, ς = ‒0.5) 

  

Fig. 7 The effect of length to radius ratio (L/R) on amplitude–

frequency response (R/h/20, h/ha = 25, ha/hs = 1, ga = 0, 

gs = 0, Ω = 1000 rad/s, ω0 = 1, ς = ‒0.5) 

Fig. 8 Dynamic response of sandwich cylindrical shell 

(V = 0, Kv = 1000, L/R = 5, R/h/20, h/ha = 25, 

ha/hs = 1, ga = 0, gs = 0, Ω = 1000 rad/s) 
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the effects of L/R on stability region of smart sandwich 

cylindrical shell. With increasing of the L/R, the stability 

region of system decreases. 

Piezoelectric layers have been used to control and 

stabilize the system. As soon as the sandwich cylinder is 

deformed, the sensor layer sends a pulse to the designed 

controller. Then controller applies the required voltage to 

the actuator according to the amount of deformation. Fig. 8 

illustrates the uncontrolled dynamic response of system. 

The displacement of the midpoint of the sandwich shell is a 

harmonic response with constant amplitude. As shown in 

Fig. 9, after controlling force, the system response is 

controlled and after a short time, the system vibrations 

disappear. Therefore, by comparing the controlled response 

and the uncontrolled response of the system, it can be 

concluded that the control system is completely successful 

in eliminating the system vibrations and, after deployment, 

the system returns to equilibrium. Fig. 10 shows the effect 

of the voltage coefficient on the system’s sustainability 

time. As it’s obvious, increasing the voltage factor reduces 

the time it takes to stabilize the smart sandwich cylindrical 

shell. 
 

 

5. Conclusions 
 

In this paper, the dynamic stability and nonlinear 

vibration behaviors of a smart rotating sandwich cylindrical 

shell are studied. The first-order shear deformation theory 

(FSDT) is used to model the sandwich cylindrical shell. The 

core of the structure is a functionally graded material 

(FGM) which is integrated by functionally graded 

piezoelectric material (FGPM) layers subjected to electric 

field. The piezoelectric layers at the inner and outer surfaces 

used as actuator and sensor, respectively. The Galerkin’s 

method is used to discriminate the motion equations and the 

equations are converted to the form of the ordinary 

differential equations in terms of time. The perturbation 

method is employed to find relation between nonlinear 

frequency and the amplitude of vibration. The used 

 

 

perturbation method in this article is one of the best and 

most widely methods to find the relationship between 

nonlinear frequency and displacement of system. The most 

important advantage of this method is a very short time for 

solving the equation. The main objective of this research is 

to determine the nonlinear frequencies and nonlinear 

vibration control by using sensor and actuator layers. 

 In this study, we try to analysis the influence the 

heterogeneity coefficient (power law index) of FG, sensor 

and actuator layers, angular velocity, thickness to radius 

ratio, length to radius ratio, and control voltage on 

frequency responses of steady solution and amplitude-

nonlinear frequency diagrams. 

The results show that: 
 

 By increasing the heterogeneity coefficient (power 

law index) of FGM layer, in constant amplitude, the 

nonlinear frequency of system reduces because the 

stiffness of system decreases. On the other hands, the 

sandwich structure becomes softer. 

 Increasing the angular velocity could be reduce the 

stiffness and, consequently, reduce the nonlinear 

frequency of the system. 

 The bifurcation is clearly seen with several solutions 

for the system vibration amplitude at a given 

nonlinear frequency. 

 Increasing the angular velocity will increase the 

stability region of the system. 

 According to the results obtained, it can be seen that 

reducing the ratio of h/R and L/R will increase the 

stability region of the system. 

 The best way to reduce time control of system is 

using a controller with higher voltage factor. 
 

Thus it is suggested that for reducing the nonlinear 

vibration, the softer material properties, higher angular 

velocity are used. Also, controlling dynamic response of 

system could be done successfully by applying external 

voltage. Designing the controller and changing its 

parameters will help to stabilize the system and achieve the 

  

Fig. 9 Dynamic response of sandwich cylindrical shell 

(V = 24v, Kv = 1000, L/R = 5, R/h/20, h/ha = 25, 

ha/hs = 1, ga = 0, gs = 0, Ω = 1000 rad/s) 

 

Fig. 10 The effect of voltage factor on dynamic 

response of sandwich cylindrical shell 

(V = 24v, L/R = 5, R/h = 20, h/ha = 25, ha/hs = 1, 

ga = 0, gs = 0, Ω = 1000 rad/s) 
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desired stable time in different system conditions. The 

results of this research can be used to design and vibration 

control of rotating systems in various industries such as 

aircraft, biomechanics and automobile manufacturing. 
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