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1. Introduction 

 

Wave propagation includes any kind of ways in which 

waves travel. According to the direction of the waves, it can 

be divided into two groups, longitudinal and transverse 

waves. From another point of view, wave propagation is 

categorized in several different types such as ground waves, 

space waves, ionospheric waves. This topic can be studied 

under several different branches of science such as physics, 

material science, electrical and mechanical engineering. In 

mechanical engineering, as our field of interest, the wave 

propagation in different structures such as beams, plates and 

shells can be investigated. For studying waves in these 

types of structures, at least two kinds of wave dispersion are 

important. First, waves which are studied far from 

boundaries which are called bulk waves. In other words, we 

study them before they reach the boundaries and reflected. 

For the major applications of this type of modeling in the 

industry, one may mention the non-destructive test (NDT) 

which can be connected to bulk waves. The second type, 

known as guided waves, includes the interactions between 

waves and boundaries and it is more complicated to model 

them in comparison with the first type but it is obvious that 

this type is more similar to reality. 

The capability to build nano-materials and use of these 

materials in the engineering structures have been provided 

in the current century. Nanotechnology is used in a variety 

of engineering and medical branches such as solar cells, 

coating, reinforcements, cancer treatment, etc. (Flavel 

2018, Subramani et al. 2018, Leite et al. 2018, Verma et al. 
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2018, Baer et al. 2003, Deotare et al. 2009, Mehar and 

Panda 2019). Hence, many scholars have shown their 

interest in the research and development of this modern 

technology. A series of experimental tests have shown that 

classical theories are not able to predict the behavior of 

materials in nano-dimensions (Lin et al. 2013). Therefore, 

different methods such as non-classical theories, 

experimental tests and molecular dynamics (MD) 

simulation were presented to overcome this problem 

(Walton 1984, Hua et al. 2017, Li and Hu 2017, Shahsavari 

et al. 2018c, Mehralian et al. 2017, Arefi and Zenkour 

2018, Nazemnezhad and Kamali 2018, Farajpour et al. 

2018a, b, 2019, Nguyen et al. 2014, Bessaim et al. 2015, 

Kadari et al. 2018, Mehar et al. 2018, Apuzzo et al. 2018, 

Ghayesh and Farajpour 2018, Lu et al. 2017, Barretta and 

de Sciarra 2018, Xu et al. 2017, Lu et al. 2018, Faleh et al. 

2018, Li et al. 2018, Shahverdi and Barati 2017, Arash and 

Wang 2012). Among the aforementioned methods, non-

classical theories are more popular, because it reduces the 

complexity of other methods. The strain gradient theory, 

modified couple stress and strain theories, Eringen nonlocal 

model, as well as nonlocal strain gradient theory have been 

used extensively in recent years to study nanostructure 
systems (Gao et al. 2019, Barati 2017b, Kaghazian et al. 

2017, Karami et al. 2018c, Zenkour and Abouelregal 2014, 

Arefi 2018, Mokhtar et al. 2018, Mouffoki et al. 2017, 

Sahmani and Aghdam 2017a, b, Sahmani and Aghdam 

2018, Lim et al. 2015, Aifantis 2009, Askes and Aifantis 

2009, Heydari 2018, Ghayesh 2018, Rahmani et al. 2018, 

Ahouel et al. 2016, Karami et al. 2018e, Shahsavari et al. 

2018a, Karami et al. 2018b, i, 2019d, f, Karami and 

Janghorban 2019b, Karami and Karami 2019, Karami and 

Shahsavari 2019, She et al. 2019). 

Wave propagation of graphene sheets were studied by 

(Karami and Janghorban 2016) based on a refined plate 
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theory and strain gradient theory. Application of wave 

propagation in functionally graded nanoplates was 

presented by (Li et al. 2015) using nonlocal strain gradient 

theory. (Barati 2017a) investigated the wave characteristics 

of nanoporous beams using a general bi-Helmholtz nonlocal 

strain-gradient elasticity model under the thermal 

environment. The influences of porosities and thermal 

conditions on the wave dispersion of porous nanotubes were 

reported by (She et al. 2018) based upon nonlocal strain 

gradient theory. (Karami et al. 2018a) studied the guided 

wave propagation applications in a fully-clamped porous 

nameplates using Eringen nonlocal model for the first time. 

Furthermore, a large number of works have been reported 

on the dispersion of waves (Arefi and Zenkour 2017, 

Besseghier et al. 2011, Bisheh and Wu 2019, Ebrahimi et 

al. 2018, Gafour et al. 2013, Janghorban and Nami 2015, 

Zeighampour et al. 2018, Zhen and Zhou 2017, Karami et 

al. 2017, 2018f, h, 2019a, b, c, e, g, h, Karami and 

Janghorban, 2019a, Shahsavari et al. 2018b). As reviewed 

in above sentences, there is no study on the wave 

propagation analysis of nonlocal strain gradient beams 

made of triclinic material. 

In the current work, a new size-dependent shear 

deformation theory is utilized to investigate the wave 

phenomena in triclinic nanobeam for the first time. The 

small-scale effects are captured using nonlocal strain 

gradient theory. The equations of wave motion are obtained 

using Hamilton’s principle where an analytic technique 

based on harmonic series is utilized to find the wave 

frequency and phase velocity as a function of wave number. 

Furthermore, the influences of small-scale parameters, 

elastic substrate, initial stress and wave number on the wave 

characteristics of such nanostructures are presented. 
 

 

2. Formulation of the problem 
 

Consider a beam with length a, width b and thickness h. 

The beam is under the initial stress and resting on a two-

parameters elastic foundation (see in Fig. 1). 
 

2.1 Kinematics 
 

Based on a hybrid-type higher-order shear defamation 

theory proposed by Zaoui et al. (2017), the following 

displacement field is expressed 
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Fig. 1 Geometry of triclinic nanobeam under initial stress 

in which u and w are the mid-plane displacements, θ is the 

rotation of normal to the mid-plane of the beam and φz 

consider the stretching effect. In the current work, the shape 

function f(z) is chosen as (Zaoui et al. 2019) 
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According to the above displacement field (Eqs. (1)-

(2)), the non-zero strains are obtained as follow 
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in which 
 

dx A
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(6) 

 

herein coefficient A′ (defined according to the type of 

solutions used) and k (constant depend on the geometry) are 

given below 
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2.2 Triclinic material 
 

“The matrix of elastic constants of a triclinic material 

can be obtained from that of a transversely isotropic 

material by appropriate rotations about the x- and the 

rotated y-axis (Batra et al. 2004)”. The stress–strain 

relationship for the triclinic beam is as follows (Batra et al. 

2004) 
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(8) 

 

in which Q11 = 98.84 Gpa, Q33 = 87.23 Gpa, Q55 = 21.10 

Gpa, Q13 = Q31 = 50.78 Gpa, Q15 = Q51 = 1.05 Gpa, and Q35 

= Q53 = 1.03 Gpa and ρ = 7750 kg/m3. In the current 

investigation, we tried to investigate the possibility and 

accuracy of replacing present anisotropic model with an 

isotropic one. Hence, the elastic constants Qij using the 

isotropic approach are defined as 

214



 

A new size-dependent shear deformation theory for wave propagation analysis of triclinic nanobeams 

11 33

12 13

15 35 51 53

(1 )

(1 2 )(1 )

(1 2 )(1 )

0

E
Q = Q

E
Q Q

Q Q Q Q



 



 




 

 
 

   
 

(9) 

 

where the Young’s modulus and Poisson’s ratio are 

approximated for the triclinic material as E = 59.63 GPa, 

and ν = 0.35, respectively. 
 

2.3 Equations of motion 
 

Hamilton’s principle is employed to determine the 

equations of motion 
 

0
( ) 0

t

U V K dt     
(10) 

 

where δU is the variation of strain energy; δV is the 

variation of potential energy of applied forces and δK is the 

variation of kinetic energy. The variation of strain energy is 
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where the stress resultants N, M, and Q are defined by 
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The variation of potential energy by the in-plane loads 

and elastic foundation are given by 
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where KW and KP are, respectively, the Winkler and the 

shear stiffness coefficients of the elastic foundation; N0 = 

hζ0 is the initial load in which ζ0 denotes the initial stress. 

Noted that, the positive and negative initial stresses 

represent, respectively, the tension and compressive loads. 

The variation of kinetic energy of the beam can be written 

as 
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herein an over dot designates the differentiation with 

respect to the time variable t; and Ii, Ji, Ki are mass inertias 

expressed by 
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By substituting Eqs. (11) and (13)-(14) into Eq. (10), the 

following equation of motion can be obtained 
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By inserting Eq. (4) into Eq. (8) and the subsequent 

results into Eq. (11), the stress resultants are given as 
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where Aij, Bij…are the beam stiffness defined by 
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2.4 Nonlocal strain gradient theory 
 

(Askes and Aifantis 2009) presented a model 

incorporating two different approaches of size-dependency 

to investigate the nanostructure systems. This model 

includes two small scale parameters as 

 
2 2

, ,( )ij ij mm ijkl kl kl mmQ l      
 

(22) 

 

where ζij and εij are, respectively, stress and strain 

tensors; Qijkl are elastic constants; µ and l indicate internal 

length scales to be determined by experiment or 

microscopic models such as MD simulations. Pioneer 

studies have shown that above constitutive relations can 

predict the size-dependent phenomena of nano-scale 

structures well with the results by the MD simulation 

(Askes and Aifantis 2009) although the exact values of 

length scale parameters for different cases are still 

unknown. The equivalent form of Eq. (22) can be rewritten 

as follows 

 

ij ijkl l klC L L
 

(23) 

 

in which the linear operators are defined as 

 
2 2 2 2(1 ), (1 )l l      L L

 (24) 

 

where ∇2= 𝜕
𝜕𝑥2 . 

 

2.5 Equations of motion in terms of displacements 
 

According to the nonlocal strain gradient stress-strain 

relation (Eq. (22)), the size-dependent equations of wave 

motion of the present anisotropic model can be expressed in 

terms of displacements by substituting Eq. (20) in Eqs. 

(16)-(19) as follows 
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Remark 1: Up to now, the presented displacement field 

as well as shape function have not been considered to 

model the anisotropic materials, therefore the use of the 

employed model for triclinic beams can be a novel work in 

the open literature. Furthermore, the presented theory has 

only four-unknown variables for determining fourfold 

coupled (axial-shear-bending-stretching) wave propagation 

response of triclinic beams. 
 

 

3. Solution procedure 
 

A harmonic solution procedure is employed herein to 

define the analytical solutions of the partial differential 

equations (Eqs. (25)-(28)) using following series 
 

 
 

  

(a) (b) 

Fig. 2 Comparison of the longitudinal wave propagation for nanobeam 

(E = 70 GPa, ρ = 2707 kg/m3, ν = 0.3, h = 20 nm, l = 0.2 nm, µ = 1 nm) 
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where A1-A4 are the coefficients of wave amplitude which 

must be determined; β is the wave number along x- 

direction, 𝑖 =  −1; and ω is eigenfrequency. 

Substituting Eq. (29) into Eqs. (25)-(28) gives 

 

     2 0K M    (30) 

 

in which [K] and [M] are the stiffness matrix and the mass 

matrix, respectively, and the eigenvector can be given Δ = 

{A1, A2, A3, A4}
T. 

The dispersion relations of wave phenomena in triclinic 

nano-size beams can be developed by setting the following 

determinant to zero 
 

   2 0K M   (31) 

 

The phase velocity can be defined as 
 

C



  (32) 

 

 

Furthermore, the group velocity is defined by 
 

d
G

d




  (33) 

 

herein the group velocity dω/dβ is approximated with 

Δω/Δβ considering small Δβ. 

 

 

4. Numerical results 
 
First of all, the accuracy of the present size-dependent 

anisotropic model is studied. As mentioned previously, 

there is no study on the wave propagation of triclinic 

nanobeam. Hence, Fig. 2 shows a comparison between the 

present methodology and (Li et al. 2015) in which a closed-

form solution was reported for both longitudinal and 

transverse wave propagation of isotropic nanobeams. As 

can be seen, the results are in a good agreement, especially 

for the longitudinal branch of wave dispersion. In the 

continuation of the present investigation, the effects of the 

nonlocal and strain gradient parameters, initial stress, and 

the elastic substrate are reported as follows. 

Size-dependent longitudinal wave characteristics of 

triclinic nanobeam is analyzed and the numerical results are 

figured in Fig. 3. It is demonstrated that the phase velocity 

of the nanobeam is decreased with increasing the nonlocal 

  

(a) µ = 0.5 nm (b) µ = 1 nm 
 

  

(c) µ = 1.5 nm (d) µ = 2 nm 

Fig. 3 Variation of phase velocity of triclinic nanobeam for different small scale parameters (h=2 nm) 
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parameter, however, rising the strain gradient parameter 

leads to an increment in the results of phase velocity. It 

worth mentioning that all response of wave phenomena is 

almost identical when the wave number is smaller than β < 

0.1 1/nm. It means that the wave characteristics are not 

sensitive to small scale parameters when β < 0.1 1/nm. 

Moreover, it is interesting to note that when β > 0.1 1/nm, 

longitudinal wave relations are sensitive to small-scale 

parameters. This phenomenon was reported for different 

complex structures like shell, plate and also tube and beam 

in nano-dimension (see in Ref. (Li et al. 2015, Barati 

2017a, Karami et al. 2018d, She et al. 2018)). 

The impact of initial stress on the wave propgation of 

triclinic nanobeam under the tension loads is illustrated in 

Fig. 4 for transverse branch of wave dispersion. It can be 

seen that both wave frequencies and phase velocities are 

increased with increment in tension loads. It is important to 

note that the impact of the elastic substrate is omitted here. 

Some vital works have focused on the mechanics of 

nanostructures under the compressive loads (Androulidakis 

et al. 2014, Xiang and Shen 2016, Karami et al. 2018g). 

Hence, considering a Winkler substrate modulus (kW = 

1.13*1018 N/m3), the transverse branch of wave propagation 

in triclinic nanobeam for compression loads is studied and 

 

 

 

 

the results are figured in Fig. 5. It is observable that the 

wave dispersion curve of the nanobeam reduces with an 

increase in the compression loads. This phenomenon is 

reversed for the tension loads while it was proved for single 

layer graphene sheets in Ref. (Karami et al. 2018g). 

Particularly, it can be seen that the initial stress causes a key 

role in wave characteristics of nanostructures. This is for the 

sake of the compression load decreases the stiffness, 

however, the tension load provides a stiffness-hardening 

effect. 

The effects of Winkler and Pasternak coefficients on the 

phase velocity of triclinic nanobeam for the proposed theory 

are demonstrated in Fig. 6. It should be noted that the phase 

velocity increased when the electric substrate coefficients 

growth. Moreover, the Pasternak coefficient has more effect 

on the results of the nanobeam in comparison with the 

Winkler one. 

Fig. 7 plots to show the longitudinal and transverse 

wave frequencies as a function of scale factor c = l/µ. The 

most notable feature is that the value of wave frequency 

strongly depends on the small-scale parameters. Further, it 

can be observed that the size-dependent effect is a stiffness-

softening effect when the nonlocality value is bigger than 

the strain gradient size-dependency while it is a stiffness 

  

(a) (b) 

Fig. 4 Wave characteristics of triclinic nanobeam under initial tension loads (h = 2 nm, l = 0.2, µ = 1) 

  

(a) (b) 

Fig. 5 Wave characteristics of triclinic nanobeam under initial compression loads (h = 2 nm, l = 0.2, µ = 1) 

218



 

A new size-dependent shear deformation theory for wave propagation analysis of triclinic nanobeams 

 

Fig. 6 Phase velocity variation of triclinic nanobeam 

for different Winkler-Pasternak coefficients 

(h = 2 nm, l = 0.2, µ = 1) 
 

 

hardening effect when the relations among mentioned 

approaches are opposite (l > µ). The size-dependent effect 

will not be observed when l = μ. Similar phenomena have 

been reported for some investigations on the dynamics of 
nanostructures (Li et al. 2015, Karami et al. 2018g, She et 

 

 

 

 

al. 2018). In addition, it is noted that some authors (Arash 

and Wang 2012) present statement that for short 

nanobeams, there is no need to consider small-scale 

parameters and classical theories are sufficient. It is 

suggested to other researchers to investigate whether it is 

essential to capture size-effects for short nano-beams/tubes 

or not. 

The possibility of replacing present anisotropic model 

by an isotropic one is studied and the results are plotted in 

Fig. 8. As can be observed in the present conditions of 

investigation, there is no prominent differences between the 

two models. 
 

Remark 2: in the current conditions, the elastic 

components of the triclinic matrix in comparison with 

isotropic one do not affect significantly the final trend of 

results. Thus, it is suggested to use the most simplified 

equations of wave motion, when the main focus of the 

analysis is just related to the size-dependent wave behavior 

of the nano-size triclinic system. So, the equations could 

disregard any kind of complex equations. 
 

Furthermore, to show the better accuracy of the present 

suggestion, the group velocities of studied triclinic nano- 
 

 

 

 

 

  

(a) (b) 

Fig. 7 Variation of wave frequency as a function of scale factor c = l/µ (h = 2 nm) 

  

(a) (b) 

Fig. 8 Phase velocity of triclinic nanobeam with respect to two different types of stiffness matrix components 

(h = 2 nm, l = 0.2, µ = 1) 
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beam and isotropic one is extended and the results are 

plotted in Fig. 9. 
 

 

5. Conclusions 
 

In the current work, wave propagation characteristic of a 

triclinic nanobeam is analyzed using a size-dependent shear 

deformation theory including stretching effect. The 

equations of wave motion are obtained for the anisotropic 

materials based on a virtual work of the Hamiltonian 

principle. Then, these equations are solved for wave 

frequencies and phase velocities employing harmonic 

series. Finally, through some parametric study, the effects of 

different parameters such as nonlocal parameter, strain 

gradient parameter, tension and compression loads, and 

wave number on wave propagation behavior of triclinic 

nanobeam are studied. It is found that increasing the 

compression load causes a decrement in the wave 

dispersion while increasing the tension loads leads an 

increment in the results of wave phenomena. It means that 

the wave propagation can be tuned by choosing the 

appropriate values of the compression or tension loads. 

Furthermore, the phase velocities decreased with growing in 

nonlocality. In addition, the strain gradient parameter 

introduces a stiffness-hardening effect on the nanobeam and 

increases the phase velocities. Moreover, the phase velocity 

grows by increasing the elastic substrate coefficients. It is 

also found that the effect of the Pasternak substrate 

coefficient on the flexural dispersion curve is more 

significant than that Winkler substrate coefficient. 
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