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1. Introduction 

 

Due to the need of an improved and more efficient 

structure for use in industrials likewise aerospace, nuclear, 

automobile and civil, the trend of using laminated 

composite structures significantly grown during the last few 

years because of their superior properties such like 

flexibility in design, low cost, high corrosion resistance, 

high fatigue life, tailor-made properties, bend extensional 

and high strength to weight proportion (Gibson 2016). 

However, in comparison to isotropic material structures, 

laminated composite ones by combining together two (or 

more) constituents which it leads to enhancement in number 

of involved variables and the intrinsic anisotropy behavior 

of the individual layers usually are more complex structures 

(Reddy 2004). Hence, optimal design of these structures 

needs an efficient mathematical model in practice. 

As far as the structural mechanics is concerned, 

laminated composites are broadly used as main constituents 

of beams shells and plates because of their fantastic 

properties like bend extensional and high strength to weight 

proportion. In recent years, extensive studies relevant to 

performance of laminated composite structures have been 

conducted using the classical continuum theories (Sayyad 

and Ghugal 2015). Among these theories, classical plate 

theory (CPT) despite possessing the simple constitutive 

equations and providing the accurate solution in most cases, 

cannot consider the possible influence of rotary inertia and 

transverse shear deformations included in the thick plates. 
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Moreover, laminated composites due to their low transverse 

shear modulus are having inadequate strength in shear, 

which it should be reckon. To overcome these limitations, 

the first-order-shear-deformation theory (FSDT) was 

introduced for both thin and thick plates; however, its 

accuracy depends strongly on the shear correction factor. 

Furthermore, the stress variation in the laminated composite 

plate based on the FSDT was not acceptable (Rank et al. 

1998). Thus, various higher-order-shear-deformation 

theories (HSDTs) have been suggested which include 

different shape functions along with a variable number of 

unknown equations. These theories were successfully 

applied to investigate more accurately the response of 

different advanced composite plates such as laminated-

sandwich-functionally graded plates. However, these 

theories are associated with many more equilibrium 

equations, increasing substantially the complexity of the 

problem analysis. Accordingly, simple theories including 

fewer unknowns are much appealing. In order to minimize 

the total number of variables used in the equilibrium 

equations, (Shimpi 2002) proposed a refined model with 

only two variables for the study of isotropic plates (or 

refined-plate theory (RPT)). Afterward this model has been 

developed for orthotropic (Shimpi and Patel 2006), FGM 

(Mechab et al. 2010, Zidi et al. 2014), and laminated 

composite plates (Thai and Kim 2012). Next, various 

models of RPT with different shape functions through 

dividing the transverse displacement into bending and shear 

parts were suggested for mechanical response (i.e., static, 

dynamic and stability) of micro/nano-plate-like structures 

(Houari et al. 2016, Sadoun et al. 2018, Boukhari et al. 

2016, Fourn et al. 2018, Beldjelili et al. 2016, Hirwani et al. 

2018, Hachemi et al. 2017, Katariya and Panda 2016, 

Shahsavari and Janghorban 2017). 
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Buckling phenomena are both necessary and destructive. 

This phenomenon is a mechanical characteristic which may 

occur when the structure is subjected to loads in its plane. 

Although uniaxial or biaxial compressive loads are most 

frequently considered, buckling sometimes occurs with 

biaxial loads in which a compressive load is defined in one 

direction and tensile load in the other one, or subjected to 

shearing loads or a combination of these forms of loading. 

On the other hand, buckling or stability of engineering 

structures like beam/plate/shells may occur in a different 

forms including global or local deflections, while it might 

lead to the collapse of the structures. Consequently, 

predicting the measure of buckling failure is an essential 

task in design of structural components. Having said that, 

the pioneered studies were mainly focused on uniaxial and 

biaxial buckling; however, a great deal of attention has been 

devoted to study shear buckling, thermal buckling and post-

buckling examination of these structures in terms of both 

linear and non- linear (Bousahla et al. 2016, Kolahdouzan 

et al. 2018, Mehar et al. 2019, Kar et al. 2016, 2017, Kar 

and Panda 2017, Panda and Singh 2013b, Katariya et al. 

2017, 2018, Panda and Singh 2013a, Kar and Panda 2016, 

Karami and Karami 2019, Karami and Shahsavari 2019, 

Shahsavari et al. 2018a, Karami et al. 2018d). But 

surprisingly, there is a limitation on size-dependent 

buckling analysis of laminated composite structures 

including elastic foundation. 

Application of beams/plates rests on elastic foundation 

has been found in micro-electromechanical systems 

(MEMS) (Maluf and Williams 2004). Up to now, various 

hypotheses of elastic foundation models for expressing the 

interaction amongst foundation and plate have been 

introduced. The popular elastic foundation models includes 

Winkler elastic foundation (Winkler 1867) with only one 

coefficient substrate reaction (spring layer) and Pasternak 

model (Pasternak 1954) containing two-parameter substrate 

(spring and shear layers). Hence, a wide range of studies 

regrading micro/nanostructures due to distributed reaction 

between both above-elastic foundation models and the 

lower surface of soft plates with various distributions of 

material properties has been conducted (Shahsavari et al. 

2018d, Asemi and Shariyat 2016). 

Although the classical continuum theories have used for 

modeling the mechanical behavior of different structures 

such as beams, plates and shells with macroscale (Pacoste 

and Eriksson 1997, Babuška and Li 1992), many other 

problems in small scales cannot be suitably solved by the 

classical approach (Stamoulis and Giannakopoulos 2012). 

This is because, in the classical continuum theories, the 

length-scale parameters (known as size effects) are missing, 

which demonstrate the microstructure and atomic structure 

of the body (Askes and Aifantis 2011). To include these 

length-scale parameters, several continuum theories, known 

as generalized continuum theories or size-dependent 

continuum theories were developed, which contain different 

numbers of length-scale parameters. One of the oldest 

theories with several length-scale parameters was derived 
by (Cosserat 1909). Following their work, different types of 

theories were proposed. Some of these theories considered 

the size effects such as nonlocal and strain gradient theories, 

and modified couple stress and strain theories. Recently 

developed theories seem to be more suitable for engineering 

applications because of their simplicity compared to the old 

ones. Hence, there are many works which have been carried 

out on these models (Farajpour et al. 2018, 2019, Farokhi 

and Ghayesh 2018a, b, 2015a, b, 2016, Ghayesh 2018, She 

et al. 2019, Karami et al. 2019f, Shahsavari et al. 2018b, c, 

Karami et al. 2018b, c, 2019a, b, c, d, e, Karami and 

Janghorban 2019, Ghayesh et al. 2016, 2017a, b, 2018, 

Gholipour et al. 2015, She et al. 2018). One of these 

theories with only one length-scale parameter is the 

nonlocal elasticity theory (NET) (Eringen and Edelen 1972) 

which has been adopted by several researchers for studying 

various structures such as single-walled and double-walled 

nanotubes (Zhang et al. 2005) nanoshells (Ghavanloo and 

Fazelzadeh 2013, Arefi 2018), nanobeams (Aydogdu 2009, 

Lim 2010), and nanoplates (Pradhan and Phadikar 2009, 

Mehar et al. 2018, Karami et al. 2018a). More recently, 

(Shahsavari et al. 2017) examined the free and forced 

vibration response of nanoplates rested on visco-elastic 

foundation under moving load on the basis of NET using 

state-space method. Furthermore, An analytical solution 

was developed by (Raghu et al. 2016) for laminated 

composite plates using a third-order shear deformation 

theory on the basis of nonlocal elasticity theory which 

considers both the nonlocal and surface stress effects, with 

applications to vibration and bending analyses. 

In this article, we consider cross-ply, angle-ply, and 

symmetric and antisymmetric laminated composite plates 

embedded within elastic Pasternak foundation. The 

presented research will be focused on the size-dependent 

critical uniaxial/biaxial buckling under the influence of in-

plane magnetic field. The axial, bending and shear effects 

are taken into account using a novel refined plate theory in 

conjunction with the ENDM, which will be clearly 

addressed. The equations of motion are derived in Section 3 

based on Hamilton’s principle. In Section 4, analytical 

solutions are presented for both cross-ply and angle-ply 

laminated composite plates. In Section 5, a comprehensive 

parametric study will be carried out to demonstrate the 

impact of laminated plate geometry (length, width, and 

thickness), foundation parameters (spring and shear layer), 

size-dependence effect (nonlocal parameter), external loads 

(in-plane magnetic field), lay-up numbers (number of 

constitutive layers), fiber orientations (angles in constitutive 

layers), lay-up sequences of layers (symmetric and 

antisymmetric arrangements) and boundary condition (SS-1 

and SS-2), on the buckling response. Finally, crucial 

conclusions are listed in Section 6. The novelties of this 

article may be summarized as follows: 

 

(1) Size-dependent uniaxial and biaxial response of 

laminated composite plates are investigated for the 

first time. 

(2) Up to now, the role of in-plane magnetic field has 

not been studied for any mechanical response of 

laminated composite structures. 

(3) Coupling effects between bending and shear 

deformation are included for the modeling of 

nanostructure systems based on a novel refined- 
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hyperbolic-shear-deformable plate theory. 

(4) The size-dependent buckling analysis of cross-ply and 

angle-ply laminated composite plates are examined to 

show the impact of various lay-up numbers (number of 

constitutive layers), lay-up sequences of layers 

(symmetric and antisymmetric arrangements), fiber 

orientations (angles in constitutive layers), as well as 

boundary conditions. 

(5) Even though the presented solution is based on Navier 

solution method, it completely supports the results of 

pioneer studies based on numerical methods (Finite 

Element Method FEM and Differential Quadrature 

Method DQM) and analytical methods. 

 

 

2. Preliminary concepts and definitions 
 

2.1 Problem definition 
 

Stability of advanced structures under an external field 

is of vital importance in designing these structures where 

their buckling should be suitably controlled. Hence, we 

consider a multilayered composite plate resting on a 

Pasternak foundation displayed in Fig. 1 where the 

laminated composite plate is referred to a (x, y, z) set of 

coordinates with z-axis along the thickness direction. 

To consider the magnetic force, an in-plane magnetic 

field induced by the Lorentz force is applied in x-direction, 

along with the in-plane mechanical forces as shown in Fig. 

2. 

 

 

Fig. 2 A rectangular plate subjected to in-plane loads 

 

 

2.2 Nonlocal elasticity theory 
 

The nonlocal elasticity theory (Eringen and Edelen 

1972), unlike the local theory, assumes that the stress at a 

point depends not only on the strain there but also on strains 

at all other points of the body. Therefore, nonlocal stress 

tensor is defined by 

 

 , ) ( ) ( )ij ij
V

x d V       x x
 

(1) 

 

where ζij(x), εkl(x) are the local stress and strain tensors, 

α(|x′ ‒ x|) denotes the kernel function that is normalized 

over the volume of the body. Also in Eq. (1),  is a material 

constant defined as (e0/l) in which e0 is a constant for 

adjusting the model in confirming some valid results by 

MD simulation or experiments model, a and l are intrinsic 

characteristics length and external characteristics length, 
respectively (Gopalakrishnan and Narendar 2013). For 

bounded continuous structures the law of strain-driven 

nonlocal integral (Eq. (1)) is not applicable and does not 

have analytical solutions in most technical interesting cases 

(Peddieson et al. 2003). Thus, in this paper, in order to 

model the size effects, the following differential 

fundamental relation is applied 

 
2(1 ) ij ijkl klC    

 
(2) 

 

in which the two-dimensional Laplacian operator is defined 

as 

2 2
2

2 2x y

 
  

 
, and µ is the nonlocal parameter. We 

further notice that the nonlocal parameter is affected by the 

boundary conditions, mode shapes, and type of motion, 

among others (Gopalakrishnan and Narendar 2013). 

 

2.3 Refined-hyperbolic-shear-deformable-plate 
theory 

 

In the formulation of the present refined-hyperbolic-

shear-deformation-plate theory, the displacement fields are 

obtained based on the following assumptions (Zidi et al. 

2014, Benachour et al. 2011, Bourada et al. 2012): 

 

Fig. 1 A laminated composite plate subjected to an in-plane magnetic field 
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(1) The total transverse displacement is divided into 

bending and shear components, with both of them 

being functions of coordinates x, y and time t only. 

(2) The in-plane displacements are divided into 

bending and shear parts. It is shown that the in-

plane displacements are functions of x, y, t and z in 

which the bending part is the same as that in the 

CPT, but the shear part is in hyperbolic variation in 

thickness direction. 
 

Then, the displacement fields can be assumed as 
 

0
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(3) 

 

where u0 and v0 are the displacements of the middle plane 

of the plate, and ψ(z) defines the shape function 

determining the transverse shear strain changes along the 

thickness direction, assumed as (Shahsavari et al. 2018d) 
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3. Theoretical formulations 
 

From Eq. (3) the strain-displacement relations can be 

obtained as follows 
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where 
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(6) 

3.1 Constitutive equations 
 

In this paper, the laminated plate is made of composite 

materials that constituent layer of elastic orthotropic 

properties. It can be made of several unidirectional plies 

accumulated in different orientations. Orthotropic axes in 

each lamina (indicated by superscript k) are oriented at an 

arbitrary angle  to the (global) plate axis. Using the 

nonlocal elasticity relation (Eq. (2)), the constitutive 

relations (between nonlocal stresses and strains) for each 

layer in the global coordinates can be expressed as (Raghu 

et al., 2016). 
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Now, under the rotation of an angle  around z-axis in 

the x-y plane (measured counterclockwise from the fiber 

direction with respect to the positive x-axis), the 

transformation formulas for the stiffness are as (Reddy, 

2004) 
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in which c = cos(θ), s = sin(θ); Cij (in terms of the Voigt 

notation for the stiffness) are the reduced stiffness 

coefficients which can be further expressed in terms of the 

engineering constants in the material layer as 
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3.2 Governing equations 
 
The Hamilton’s energy principle is applied to derive the 

equation of motion of the plate 
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 
0

0

t

P F-U -U V dt    (10) 

 

in which  indicates a variation, and UP, UF, and V are the 

strain energy of the plate, the energy due to the elastic 

foundation, and work done by the external force, 

respectively. These terms are derived below one by one. 

 
3.2.1 Strain energy 
First, the variation of the strain energy of the plate can 

be expressed as 
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By substituting Eqs. (5) and (7) into Eq. (11) and 

integrating the result, the strain energy can be rewritten as 
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where zk and zk+1 denote the lower and upper z-coordinates 

of the kth layer (k = 1 ‒ n), respectively. Furthermore, by 

substituting Eq. (8) into Eq. (13) and integrating the result, 

the stress resultants are obtained as 

 
2

11 12 16
2

12 22 26
2

16 26

2

2

2

2

2

2

(1 )

(1 )

(1 )

(1 )

(1 )

(1 )

(1 )

(1 )

(1 )

xx

yy

xy

b

xx

b

yy

b

xy

s

xx

s

yy

s

xy

N
A A A

N
A A A

N A A A

M

M

M

M

M

M



















   
   
   
  

    
 
   
   

    
  

    
 
   
   

   
  

     

11 12 16 11 12 16

12 22 26 12 22 26

66 16 26 66 16 26 66

11 12 16 11 12 16 11 12 16

12 22 26 12 22 26 12 22 26

16 26 66 16 26 66 16 26

s s s

s s s

s s s

s s s

s s s

s

B B B B B B

B B B B B B

B B B B B B

B B B D D D D D D

B B B D D D D D D

B B B D D D D D

    
    
    
         

   
   
   
      

0

0

0

66

11 12 16 11 12 16 11 12 16

12 22 26 12 22 26 12 22 26

16 26 66 16 26 66 16 26 66

xx

yy

xy

s s

s s s s s s s s s

s s s s s s s s s

s s s s s s s s s

D

B B B D D D H H H

B B B D D D H H H

B B B D D D H H H








  
  
 
 
 
  
  
  
  
  
 
      
      
      
            

b

xx

b

yy

b

xy

s

xx

s

yy

s

xy













 
  
 
  
   
 
  
   
  
  
   
 
  
   
  
  
    

 (14) 

 
2

44 45

2
45 55

(1 )

(1 )

s ss s
yz yz

s ss s

xz xz

Q A A

A AQ

 

 

        
    

        

 (15) 

 

in which the constitutive stiffness coefficients are given by 
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3.2.2 Energy associated with the elastic foundation 
Second, the energy associated with the elastic foundation can 

be defined as 
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The Pasternak model foundation is a two-parameter 

elastic model, which consists of a shear layer parameter 

with stiffness KP (physically, this parameter is related to the 

shearing part) and a spring with stiffness KW (Winkler 

model). Thus the distributed reaction between the Pasternak 

foundation and the laminated composite plate can be 

expressed by (Shahsavari et al. 2018d) 
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It is clear that the Pasternak model reduces to the 

Winkler foundation model when KP = 0. 

 

3.2.3 External work 
The load potential or work done by external forces is 

given by 
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where 𝑁𝑥𝑥
0 ,   𝑁𝑦𝑦

0 , and 𝑁𝑥𝑦
0

 
are axial compressive and in-

plane shear loads, and q is the distributed transverse force 

induced by the in-plane magnetic field, which will be 

defined below 

 

3.2.4 Classical Maxwell’s equations 
Based on the classical form of Maxwell equations 

(Narendar et al. 2012, Gopalakrishnan and Narendar 2013), 

the basic relations among the current density J, the strength 

of the electric field e, the magnetic field h and the magnetic 

permeability  are 
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where the strengths of the magnetic and electric fields are 

defined as 
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in which  is Hamilton operator (vector) in the Cartesian 

coordinate, U = (u, v, w) denotes the displacement vector 
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and H = (Hx, 0, 0) is the given magnetic field vector. In this 

article, this vector is assumed to be within the laminated 

composite plate along the x-direction. Thus, we can rewrite 

the vector of the magnetic field as 
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Substituting Eq. (22) to the first expressions of Eq. (20) 

yields 
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Moreover, substituting Eq. (23) into the expressions for 

the Lorentz force (induced by the in-plane uniaxial 

magnetic field), one obtains 
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in which fx, fy and fz are the Lorentz forces along x, y and z 

directions, respectively, and in our case they are 
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In this article, we assume that the displacement of 

laminated composite plates w (x, y, z) and Lorentz force act 

only in z-direction (Kiani 2014) 
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Accordingly, it is possible to obtain the external Lorentz 

magnetic force (Wang et al. 2012, Karami and Janghorban 

2016, Jalaei and Arani 2018), which acts on the laminated 

composite plates. Based on the displacement field of 

refined-hyperbolic-shear-deformation-plate theory Eq. (3), 

we have 
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3.3 Equilibrium equations in terms of displacements 
 

For the laminated composite plate thickness in each 

layer is equal and the equations of motion can be written by 

substituting the expressions for δUP, δUF and δV
 
from Eqs. 

(12), (17), and (19) into Eq. (10), and integrating, and 

collecting the coefficients of δu0, δv0, δwb and δws which are 

listed below 
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By substituting Eqs. (14), (15), (18), (19) and (27) into 

Eqs. (28)-(32), the equations of motion for the nonlocal 

laminated composite plate can be expressed in terms of 

displacements (u0, v0, wb, ws) as follow 
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In which dij, dijk 
and dijkl denote the differential operators 

defined below 
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4. Closed-form solution of laminated composite 
plates 
 
A rectangular plate with length a and width b under the 

magnetic field and in-plane loads is shown in Fig. 2. 

The Navier solution can be developed for the 

rectangular laminated plate under simply supported 

boundary conditions. In this study, two types of simply 

supported (SS) (SS-1, SS-2) boundary conditions for the 

rectangular laminated plate under magnetic field along the 

x-axis (Hx, 0, 0) and in-plane loads in x- and y-directions 

(𝑁𝑥
0 ≡ 𝜆𝑁,   𝑁𝑦

0 ≡ 𝛾𝑁) are considered, as discussed below. 

 

4.1 Analytical solutions for antisymmetric cross-ply 
laminates under boundary condition SS-1 

 

For this case, the following plate stiffness elements are 

identically zero 
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The following SS-1 boundary conditions are imposed at 

the edges: 
 

1. On edges x = 0, a: 
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2. On edges y = 0, b: 
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Following the Navier solution method and considering 

the boundary condition Eqs. (38)-(39), the solutions of the 

displacements u0(x, y), v0(x, y), wb(x, y), and ws(x, y) that 

satisfy the boundary conditions exactly can be assumed as 
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where ω is the eigen-frequency associated with the (m,n)-th 

eigen-mode, and α = mπ/a, β = nπ/b. Also, Umn, Vmn, Wbmn, 

and Wsmn are four unknown coefficients to be determined, 

which form the amplitude vector. 

 

4.2 Analytical solutions for antisymmetric angle-ply 
laminates under boundary condition SS-2 

 

For this case, the following plate stiffness elements are 

identically zero 
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 (41) 

 

The following SS-2 boundary conditions are imposed at 

the edges: 
 

1. On edges x = 0, a: 
 

 0, , , , , , , 0b s

b s b s xy xx xxu w w w y w y N M M      (42) 

 

2. On edges y = 0, b: 
 

 0, , , , , , , , , 0b s

b s e b s e xy yy yyv w w w w x w x w x N M M        (43) 

 

Similar to the cross-ply laminate case, the solutions of 

the displacements which satisfy the boundary conditions 

exactly can be assumed as 
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4.3 Eigenvalue problem for buckling problems 
 

By substituting Eq. (40) or Eq. (44) into Eqs. (32)-(35), 

we obtain the following eigenvalue equations 

 

       - 0K P    (45) 

 

where [K], [P], and {Δ} are the stiffness matrix, applied 

force matrix, and the unknown amplitude vector, 

respectively. 

179



 

Davood Shahsavari, Behrouz Karami and Maziar Janghorban 

Table 1 Material properties of the laminated composite 

plates 

Type E2 (GPa) E1 G12 G13 G23 ν12 

1(a) 1 (3,10,20,30,40)E2 0.6E2 0.6E2 0.5E2 0.25 

2(b) 1 25E2 0.5E2 0.5E2 0.2E2 0.25 
 

(a) (Noor 1975); (b) (Phan and Reddy 1985) 

 

 

Table 2 Normalized uniaxial critical buckling load 𝑁  of 

simply supported isotropic nanobeam with λ = 1, 

γ = 0, a = 10 nm, b = → ∞ , E1 = E2 = 30(MPa), 

and ν12= ν21 = 0.3 

a/h 
μ 

(nm2) 

NFSDT 

(k = 2/3)*a 
NHSDT(b) NTVRPT(a) Present 

20 

0 9.8005 9.8067 9.8067 9.8005 

1 8.9466 8.9528 8.9528 8.9201 

2 8.1838 8.1900 8.1900 8.1849 

100 

0 9.8668 9.8671 9.8671 9.8668 

1 8.9804 8.9807 8.9807 8.9805 

2 8.2402 8.2405 8.2405 8.2403 
 

(a) (Narendar 2011); (b) (Pradhan 2009) 

 

 

5. Numerical results 
 

In this section, various numerical examples are 

presented to show the accuracy of the refined-hyperbolic-

shear-deformation-plate theory and the behavior of buckling 

of laminated composite plates rested on the elastic 

Pasternak foundation with and without the nonlocal 

parameter. The plate is under the in-plane magnetic field as 

well as in-plane mechanical loads. In these examples, the 

effects of several parameters such as nonlocal parameter, 

magnetic field, foundation parameters, moduli ratio, 

thickness ratio, length-to-width ratio, lay-up numbers, fiber 

orientations, symmetric or antisymmetric lay-up of layers, 

eigenmodes m and n and various coupled conditions on the 

critical buckling load are investigated. To present the 

numerical results and compared some of them with existing 

ones, the following non-dimensional and dimensional 

parameters are introduced (Kim et al. 2009, Thai and Kim 

2010, Murmu et al. 2013) 
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Two types of laminated composite plates are employed 

in this study. In Table 1, these material properties are listed. 

In all examples, the length of the laminated composite plate 

is fixed. 

5.1 Validation 
 

The nonlocal buckling of laminated composite plates is 

developed for the first time in the present work. Hence, the 

results are obtained and compared with available ones in the 

literature to validate the present nonlocal refined-

hyperbolic-shear-deformable plate theory. Table 2 lists the 

critical buckling loads of nonlocal isotropic beam using the 

present formulation, as compared to those based on the 

theories of nonlocal first-order-shear-deformation theory 

(NFSDT) (Narendar 2011), nonlocal higher-order-shear-

deformation theory (NHSDT) (Pradhan 2009), and nonlocal 

two-variable-refined-plate theory (NTVRPT) (Narendar 

2011). As it is shown, the present results are in excellent 

agreement with those reported by Narendar (2011) and 
Pradhan (2009). 

 

5.2 Buckling analysis 
 

Let us consider a rectangular and simply supported 

laminated composite plate with length a, width b, and 

thickness h, which is surrounded by a Pasternak foundation 

and subjected to an in-plane magnetic field. Also uniform 

compressive edge loads of magnitude (λN) along x-direction 

and (γN) along y-direction of the plate as shown in Fig. 2 

are also applied with 𝑁𝑥𝑥
0 = 𝜆𝑁, 𝑁𝑦𝑦

0 = 𝛾𝑁, 𝑁𝑥𝑦
0 = 0 in 

Eqs. (34)-(35). 
 

5.2.1 Effect of moduli ratios and elastic foundations 
In Table 3, the uniaxial and biaxial critical buckling 

loads of a cross-ply [0/90/0] laminated plate made of 

Material 1 is first presented for different moduli ratios as 

compared with various methods (Reddy 2004, Singh et al. 

2013). It is observed that the present results are acceptable 

for different values of moduli ratio (E1/E2 = 3, 10, 20, 30) 

even when compared with analytical results of Reddy 

(Reddy 2004) and meshless method (Singh et al. 2013), 

except for the high moduli ratio case. As it is observed, the 

buckling loads for the case of uniaxial compression are 

always higher than the corresponding biaxial ones. Listed in 

Table 3 is also the influence of the size effect and elastic 

foundation on the uniaxial and biaxial critical buckling 

loads of the laminated plate. It is seen that with increasing 

nonlocal parameter, the laminated plate structure becomes 

more flexible, resulting in a reduced buckling load under a 

constant foundation stiffness. This is due to the fact that 

with increasing nonlocal parameter, the interaction forces 

between atoms of structure will decrease and thus the 

laminated plate becomes softer. However, the difference 

between nonlocal and local results decreases with 

increasing spring constant and shear layer parameter of the 

elastic foundation. It is also observed from Table 3, that 

existence of an elastic foundation would increase the 

buckling load of the laminated composite plates. This is 

reasonable since a composite plate on the foundation is 

stiffer than that without foundation. Moreover, when the 

laminated plate rests on the Pasternak foundation 

(𝐾 𝑊 ≠ 0, 𝐾 𝑃 ≠ 0), the stiffness of the system due to an 

extra shear layer increases, and consequently, leads to the 

increase in bending rigidity and buckling load of the 

structure. 

180



 

On buckling analysis of laminated composite plates using a nonlocal refined four-variable model 

 

 

 

5.2.2 Effect of thickness ratios and magnetic field 
The uniaxial buckling loads of the cross-ply [0/90] and 

angle-ply [45/-45] laminated plates with two layers for 

various values of thickness ratio (a/h = 10, 20, 50, 100) are 

presented in Table 4. The results obtained by different 

methods (Mixed Interpolation Smoothing Quadrilateral 

element with 24 DOFs (MISQ24), First-order Shear 

Deformation Theory (FSDT) using Finite Element Method 

(FEM) to solve the problem, and Higher-Order Shear 

Deformation Theory (HSDT)) (Nguyen-Van et al. 2011, 

Chakrabarti and Sheikh 2003, Reddy and Phan 1985) are 

also listed for comparison. It is easy to see that the present 

results are in good agreement with those reported in 

references (Nguyen-Van et al. 2011, Chakrabarti and Sheikh 

2003, Reddy and Phan 1985) for all the cases ranging from 

very thin to moderately thick plates. It is further observed 

from the present results that increasing the nonlocal 

parameter (magnetic field) will lead to a/an decrease 

(increase) in buckling loads, respectively. Moreover, it is 

also concluded that for both of cross-ply and angle-ply 

 

 

 

 

laminated plate with two layers, the nonlocal parameter and 

magnetic field will influence more the buckling loads for 

small values of the thickness ratios. 

 

5.2.3 Effect of the lay-up numbers and fiber 
orientations 

In Fig. 3, uniaxial buckling loads of the square 

antisymmetric laminated plates with two, four and ten 

layers of angle-ply composite plates are presented to 

illustrate the effects of the nonlocal parameter as well as the 

variation of fiber orientations (ply-angle) from 0-90. As it 

can be seen, in the laminated composite plate with 

increasing number of layers, the buckling load will increase. 

For fixed lay-up numbers and if the composite plate is made 

of two antisymmetric layers, the maximum buckling loads 

will occur when ply-angles equal to 0 and 90; however, if 

the plate is made of more than two layers, the maximum 

buckling load will occur at ply-angle  45. Besides, an 

increment in nonlocal parameter is proportional to the 

decrement in the peak value of buckling load. 

 

Table 3 Normalized uniaxial and biaxial critical buckling load 𝑁  of a symmetrically laminated 

composite plate resting on elastic foundations with different moduli ratio, and nonlocal 

parameter, (layup [0/90/0] of Material 1, a/h = 100, for uniaxial: λ = 1, γ = 0, for biaxial: 

λ = 1, γ = 1) 

Load type 𝐾 𝑊  𝐾 𝑃  μ Method 
E1/E2 

3 10 20 30 

Uniaxial 

0 0 

0 

Reddy(a) 5.7540 11.4920 19.7120 27.9360 

Meshless Method(b) 5.7580 11.4880 19.6741 27.8366 

Present 5.7502 11.4774 19.6701 27.8508 

1 Present 4.8022 9.5853 16.4274 23.2596 

2 Present 4.1226 8.2288 14.1026 19.9679 

100 

0 

0 Present 15.8823 21.6095 29.8022 37.9830 

1 Present 14.9344 19.7174 26.5596 33.3917 

2 Present 14.2547 18.3609 24.2347 30.1000 

10 

0 Present 35.8823 41.6095 49.8022 57.9830 

1 Present 34.9344 39.7174 46.5596 53.3917 

2 Present 34.2547 38.3609 44.2347 50.1000 

Biaxial 

0 0 

0 

Reddy(a) ─ 5.7460 9.5910 12.1470 

Meshless Method(b) 2.8790 5.7441 9.5659 12.0962 

Present 2.8751 5.7387 9.8351 13.9254 

1 Present 2.4011 4.7927 8.2137 11.6298 

2 Present 2.0613 4.1144 7.0513 9.9839 

100 

0 

0 Present 7.9411 10.8048 14.9011 18.9915 

1 Present 7.4672 9.8587 13.2798 16.6959 

2 Present 7.1274 9.1805 12.1174 15.0500 

10 

0 Present 17.9411 20.8048 24.9011 28.9915 

1 Present 17.4672 19.8587 23.2798 26.6959 

2 Present 17.1274 19.1805 22.1174 25.0500 
 

(a) (Reddy 2004); (b) (hpg et al. 2013) 
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Fig. 3 The variation of uniaxial critical buckling load 

𝑁  vs fiber orientations (ply-angle) of the square 

antisymmetric laminated composite plate resting 

on elastic foundation with different values of the 

nonlocal parameter and lay-up numbers (number of 

layers), (Material 2 with a/b = 10 and SS-2, λ = 1, 

γ = 0, 𝐾 𝑊  = 100, 𝐾 𝑃 = 10) 

 

 

5.2.4 Effect of different lay-ups of layers 
We now study the effect of different lay-ups of layers on 

the uniaxial and biaxial buckling of laminated composite 

plates resting on Pasternak foundation with various 

nonlocal parameters, magnetic parameters, and aspect ratio. 

Listed in Table 5 are the normalized critical buckling loads 

of four-layer symmetric [0/90/90/0] and antisymmetric 

[0/90/0/90] cross-plies laminated composite plates 

subjected to buckling loads in x-, or y-direction (uniaxial 

compression) and in both directions (biaxial compressions). 

It is noted: (1) for the square composite plate (a = b), the 

critical buckling loads are the same by the uniaxial buckling 

compression in either x- or y-direction due to the fact that 

the composite plate is still orthotropic for these two types of 

lay-ups; (2) the critical uniaxial buckling load, regardless of 

its compression direction, is always larger than that under 

biaxial compressions; (3) the critical uniaxial buckling load 

in x-direction increases with increasing aspect ratio a/b for 

both lay-ups of the composite plates with fixed magnetic 

field and fixed nonlocal parameter; (4) under both uniaxial 

Table 4 Normalized uniaxial critical buckling load 𝑁  of cross-ply and angle-ply square laminated 

composite plates with various values of thickness ratio, magnetic field (MP) and nonlocal 

parameter, (λ = 1, γ = 0, for cross-ply: Material 1 with [0/90], E1/E2 = 40 and SS-1 and for 

angle-ply: Material 2 with [45/-45] and SS-2) 

 MP μ Method 
a/h 

10 20 50 100 

Cross-ply 

0 

0 

MISQ24*a 11.360 12.551 12.906 13.039 

FSDT*b 11.349 12.510 12.879 12.934 

HSDT*c 11.563 12.577 12.895 12.943 

Present 11.560 12.576 12.895 12.942 

1 Present 9.654 10.503 10.769 10.808 

2 Present 8.288 9.0167 9.245 9.279 

50 

0 Present 11.965 12.632 12.898 12.942 

1 Present 10.140 10.569 10.773 10.809 

2 Present 8.854 9.094 9.250 9.279 

100 

0 Present 12.371 12.687 12.902 12.943 

1 Present 10.625 10.635 10.778 10.809 

2 Present 9.419 9.171 9.255 9.280 

Angle-ply 

0 

0 

MISQ24*a 12.042 14.500 15.374 15.510 

FSDT*b 12.600 14.629 15.329 15.435 

HSDT*c 12.622 14.644 15.336 15.441 

Present 12.617 14.642 15.336 15.441 

1 Present 10.537 12.229 12.808 12.895 

2 Present 9.046 10.498 10.995 11.070 

50 

0 Present 13.311 14.744 15.343 15.441 

1 Present 11.366 12.350 12.816 12.896 

2 Present 10.014 10.639 11.005 11.071 

100 

0 Present 14.006 14.845 15.349 15.442 

1 Present 12.200 12.471 12.824 12.897 

2 Present 10.983 10.780 11.014 11.073 
 

(a) (Nguyen-Van et al. 2011); (b) (Chakrabarti and Sheikh 2003); (c) (Reddy and Phan 1985) 
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and biaxial buckling loads and for cross-ply symmetric and 

antisymmetric laminated plates, the critical buckling loads 

increase with increasing magnetic field (MP) and increase 

with decreasing nonlocal parameter; (5) In the case of high 

magnetic field, the size effects has a minor role on the 

buckling responses, so, the imposed magnetic field is a key 

parameter for critical buckling controlling of the laminated 

composite plates. 
 

 

6. Conclusions 
 

The uniaxial and biaxial buckling loads of the 

symmetric and antisymmetric laminated composite plates 

resting on the Pasternak elastic foundation and subjected to 

the in-plane magnetic field are studied considering nonlocal 

effect. The equations of motion are derived based on the 

novel refined-hyperbolic-shear-deformation-plate theory 

combined with the nonlocal elasticity theory. Both the 

cross-ply and angle-ply laminated plates under two kinds of 

simply supported lateral boundary conditions (namely, SS-1 

and SS-2), are examined. The expressions for the buckling 

loads of the laminated composite plates are derived by 

applying the Navier solution method. Various numerical 

examples are carried out to study the influences of the 

diverse range of parameters on the buckling behavior of the 

laminated plates. Based on these examples, the following 

conclusions can be drawn: 
 

 The results obtained by the present model with 

only four variables, are found to be accurate and 

comparable to those obtained by higher-order-shear-

deformation theories which involve more number 

of unknown variables. 

 Unlike the local plate models, the proposed new 

 

 

model can capture the size effects in laminated 

composite plates. 

 For the given material properties and plate geometry, 

the influence of the applied magnetic field increases 

monotonically with decreasing thickness ratio. 

 When the laminated composite plate is made of an 

odd number of layers, its critical buckling loads are 

larger than that made of an even number of layers 

adjacent to the odd number. 
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