
Steel and Composite Structures, Vol. 32, No. 2 (2019) 281-292 

DOI: https://doi.org/10.12989/scs.2019.32.2.281 

Copyright ©  2019 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=scs&subpage=6                                      ISSN: 1229-9367 (Print), 1598-6233 (Online) 

 
1. Introduction 

 

Many research has been conducted on the behaviors of 

nanostructures from different mechanical, chemical and 

electrical viewpoints. Most of these methods have not found 

widespread use because they are very complex, costly and 

time-consuming. Therefore, Investigations are generally 

carried out by non-classical continuous environment 

modelling by Lian et al. (2010). Fleck and Hutchinson 

(1993) extracted high-order planar equations using strain 

gradient elasticity theory. In this work, high-order elements 

of stress related to coupled stress theory were obtained. 

Lam (2003) introduced extended strain gradient method in 

which three parameters of strain gradient, strain deviation 

and stretch gradient tensors were used to take into account 

the effect of size in explaining planar behavior. Fattahi and 

Mondali (2013) investigated elastic transition in short-fiber 

composites for plane strain case, in the other work they 

studied stress transfer in platelet reinforced composites 

(Fattahi and Mondali 2014). Kong et al. (2009) obtained 

static and dynamic responses of Euler-Bernoulli beam using 

extended strain gradient method and investigated the effects 

of thickness and dimensional parameters on static 

deformation and vibrational behavior of plate. Safaei and 

Fattahi (2017) investigated free vibration response of 

embedded single-layered graphene sheets. Wang et al. 
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(2010) rearranged Timoshenko’s beam equations using 

strain gradient model. The beam was composed of 

functionally graded materials. The vibrational behavior of 

the beam was also investigated. 

The classical continuum mechanics theories are not 

capable of predicting and explaining size-dependent 

behaviors, which occur in micron-and submicron-scale 

structures. However, non-classical continuum theories such 

as non-local theory can acceptably interpret size-

dependencies. Hence, some of studies have investigated 

vibration and dynamic analysis of a functionally graded 

(FG) nonobeam using non-local theory and Molecular 

Dynamic simulation (Moheimani and Ahmadian 2012, 

Damadam et al. 2018, Alizadeh and Fattahi 2019, 

Pourasghar et al. 2015, Sahmani and Fattahi 2017a, b). 

Peddieson et al. (2003) were the first to introduce a model 

for the investigation of Euler-Bernoulli nano-beam based on 

non-local elasticity theory. Several works have also been 

published since then on the analysis of one-dimensional 

systems based on non-local theory (Aydogdu 2009, Reddy 

and Pang 2008, Reddy 2010, Roque et al. 2011). 

Investigation of the stability of nano-sheets under in-sheet 

forces was a great breakthrough in the design of such 

systems enabling buckling and vibrations of these sheets to 

be investigated (Xia and Yang 2003, Pradhan and Murmu 

2009). 

Pasharavesh et al. (2011) considered nonlocal effects in 

inertial and forcing terms to investigate the transverse 

vibrations of nonlinear clamped-clamped and cantilever 

beam using approximate mode shapes. While they found 

that the resonance frequency of cantilever increases with 

increase of size, that of doubly clamped beam reduces with 
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size. Mohammadsalehi et al. (2017) studied the vibration 

behavior of viscoelastic nano plates with DQM method. 

They considered the effects of structural damping 

coefficient, boundary conditions, aspect ratio, and nonlocal 

parameters on nano plates vibration behavior. Qin et al. 

(2017) employed Rayleigh-Ritz method for vibration 

analysis of shells and plates with different boundary 

conditions. In the other work Qin et al. (2018) investigated 

free vibration analysis of cylindrical shells coupled with 

moderately thick annular plates. Jalali et al. (2018) 

investigated the free vibration analysis of annular FG disk 

considering variable thickness with GDQM method. They 

performed the effect of thickness on critical speed and 

natural frequency. In another work Jalali et al. (2018) 

applied vibration analysis of FG micro beams in the thermal 

environment by modified couple stress theory. 

In some papers, analytical solutions and nan-local 

ekasticity theory have been presented for the investigation 

of uniform nano-sheet vibrational behavior (Fattahi and 

Sahmani 2017a, b). In an attempt to investigate the effect of 

non-local modulus on frequency and bending of Nano-

sheets, Aghababaei and Reddy (2009) studied bending and 

vibration of inotrope nano-sheets on simple support and 

provided an analytical solution. The sheet was analyzed 

based on third-order shear theory. Wang and Wang (2011) 

studied the vibration of nano-functional graded sheet by 

changing the characteristics. Sheets obeyed first-order shear 

theory. They used an analytical solution for this problem 

and investigated the effect of non-local modulus on sheet 

frequency. It was observed that increase of non-local 

modulus decreased the frequency of nano-sheet. 

There are different theories for modeling phenomena at 

nano scale such as coupled stress theory, strain gradient and 

non-local theory. Among them, more attention has been 

paid to non-local theory as evidenced by the higher number 

of papers published using this theory possibly because it 

considers a wide range of inter-atomic interactions. Jung 

and Han (2013), showed the application of non-local 

elasticity model for the simulation of nano-scale 

phenomena is suitable and acceptable. Azizi et al. (2015a, 

b) by using carbon nanotubes as reinforcing fibers used this 

theory to address the exceptional mechanical and electrical 

properties of such nanotube-based composites. More 

recently, many researchers (Fattahi and Sahmani 2017a, b, 

c, Fattahi and Safaei 2017, Sahmani and Fattahi 2016, 

Safaei et al. 2017, 2018, 2019, Moradi-Dastjerdi et al. 

2017, 2018, Moradi-Dastjerdi and Payganeh 2017a, b, 

Ghanati and Safaei 2018, Qin et al. 2019, Pourasghar and 

Chen 2019, Pourasghar et al. 2018, Pourasghar and 

Kamarian 2013) have shown that the use of non-local 

theory and mesh-free method promising in studying, FG 

and nano beam, plate, cylinder, panels vibration. 

In this study, we have extended the application of non-

local theory to the vibrations of nano-sheets fabricated from 

FG materials on elastic substrates by developing a 

generalized differential squares numerical method. To 

achieve minimum grid points needed for the calculations, 

we also performed convergence tests and obtained 

minimum point numbers in generalized differential squares 

method. The development of common plate theories for 

functionally graded plates and solving the equations using 

discretization method for different boundary conditions are 

among the novelties of this work. 

 

 

2. Non-local elasticity theory 
 

In this section dominant equations along with different 

boundary conditions are obtained using calculation, changes 

and Hamilton’s principle. To do so it is first necessary to 

investigate the principles of non-local elasticity theory. In 

the classic method, when large-scale beams and sheets are 

investigated, it is assumed that the distance between atoms 

is negligible compared to the length of the object. The effect 

of characteristic length is not considered in the equations; 

while in the problems of nano-beams and nano-sheets, due 

to their small sizes, this effect cannot be neglected and this 

parameter enters the static and dynamic analyses as an 

effective factor. In the following, a summary is presented on 

the principles of non-local elasticity theory. 

As mentioned above, in classic elasticity, stress tensor σ 

at physical point x is a function of strain tensor ε at that 

point. In non-local elasticity theory presented by Eringen, 

stress tensor σ  at point x  in physical environment Ω 

depends on strain tensor ε by an integral equation. In other 

words, structural equation of non-local elasticity theory is 

presented as an integral as 
 

ς x =  α  x′ − x , τ Cε(x′)dv (1) 

 

where α  x′ − x , τ  is a function which is known as non-

local modulus and is in fact a weight function for integral 

equation.  x′ − x  is the distance between local point x 

and non-local point x′ . C  is the fourth-order elasticity 

tensor which exists in classic theory. τ in equation is a 

parameter which is determined by the ratio of internal 

specific length of nanostructure a  and external specific 

length l and shows the significance of small scale in the 

structural integral equation of non-local elasticity theory. In 

fact τ is defined as 
 

τ =
e0a 

l
=  

μ

l2
 (2) 

 

where e0  is a physical parameter and is determined by 

matching non-local elasticity theory and results obtained 

from experiments or simulations. μ = (e0a)2 is known as 

small scale parameter. In structural integral equation, when 

τ tends to zero the effect of integral and nano-localness of 

stress and strain function disappears and the equation tends 

to classical structural equation σ = C: ε. Therefore, non-

local modulus α  x′ − x , τ  should be such that when τ 

tends to zero, it tends to Dirac delta function; i.e. 

 

lim
τ→0

α  x′ − x , τ = δ  x′ − x   (3) 

 

Also function α should have its maximum value at 

local point. By defining a suitable non-local modulus 
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capable of satisfying all required conditions, the differential 

form of structural equation of non-local elasticity theory can 

be obtained from its integral form. By defining non-local 

modulus α as 
 

α  x, τ  = K0(
|x|/ μ

2πμ
) (4) 

 

where K0 is generalized Bessel function and by replacing 

modulus α in the above integral equation, differential form 

of structural equation of non-local elasticity theory is 

obtained as 
 

 1 − μ∇2 ς = C: ε (5) 

 

Elemental form of the above equation is expressed as 

 
 1 − μ∇2 ςij = Cijkl : εkl  (6) 

 

If small scale can be neglected, μ and therefore τ tend 

to zero and above equations transform to classic structural 

equation σ = C: ε. 
Non-local modulus has the following interesting 

characteristics: Its integral value should be 1 at all points of 

the material volume. 
 

 α  x  dv = 1 (7) 

 

Its maximum value is at x = x′  and it is decreased by 

increasing x′ − x . 
When non-local parameter tends to zero, non-local 

modulus has to tend to Dirac delta function so that the non-

local theory including the limit of classical elasticity 

becomes non-local by setting the parameter at zero. For 

small internal specific lengths, i.e. when non-local modulus 

tends to one, non-local theory must be an approximation of 

crystal dynamics theory. By matching curves of planar 

wave propagation with curves of crystal dynamics or 

experiments, α can be determined for a certain material. In 

the following examples of some functions have been 

presented that have found applications: 
 

(a) One-dimensional modules 
 

α  x , τ =  

1

lτ
 1 −

|x|

lτ
 , |𝑥| < 𝑙𝜏

0, |𝑥| ≥ 𝑙𝜏

  (8) 

(1)  

α  x , τ =
1

2lτ
e−

 x  

lτ  (9) 

 

α  x , τ =
1

l πτ
e(−x2/l2τ) (10) 

 

(b) Two-dimensional modules 
 

α  x , τ = (2πl2τ)−1K0( x. x/lτ) (11) 
 

where K0 is modified Bessel function. 
 

α  x , τ = (πl2τ)−1exp⁡(−x. x/l2τ) (12) 

(c) Three-dimensional modules 
 

α  x , t =
1

8(πt)3/2
exp −x. x/4t  , t = l2τ/4 (13) 

 

α  x , τ =  4πl2τ2 −1(x. x)−1/2 exp − x. x/lτ  (14) 

 

For the modulus expressed in Eq. (12) it can be shown 

that the integral equation can be similarly shown in integral 

form 

 1 − τ2l2∇2 ς = C: ε (15) 

 

This equation can be used for one-dimensional problem 

as 

 1 − τ2l2
∂2

∂x2
 ς = C: ε (16) 

 

 

3. Extracting motion equations 
 

A uniform FG sheet with side length L1, width L2 and 

thickness h is assumed as shown in Fig. 1. Coordinate 

system (𝑥, y, z) is introduced at one corner of FG sheet 

midplane such that x, y and z axes are assumed to be along 

the length , width and depth (thickness) directions of the 

nanoplate, respectively. 𝑘𝑤  is Winkler modulus parameter 

corresponding to normal pressure and 𝑘𝐺  is Pasternak 

modulus parameter relevant to transverse shear stress. 

As mentioned above displacement field is considered as 

 

u = u0 + zϕx − c1z3  ϕx +
∂w0

∂x
  (17) 

 

v = v0 + zϕy − c1z3  ϕy +
∂w0

∂x
  (18) 

 

w = w0 (19) 
 

Therefore strain field is obtained as 
 

εxx =
∂u

∂x
=
∂u0

∂x
+ z

∂ϕx

∂x
− c1z3  

∂ϕx

∂x
+
∂2w0

∂x2
  (20) 

 

εyy =
∂v

∂y
=
∂v0

∂y
+ z

∂ϕy

∂y
− c1z3  

∂ϕy

∂y
+
∂2w0

∂y2
  (21) 

 

2εxz =
∂u

∂z
+
∂w

∂x
=  1 − 3c1z2  ϕx +

∂w0

∂x
  (22) 

 

 

 

Fig. 1 Schematic diagram of a FG sheet 
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2εyz =
∂v

∂z
+
∂w

∂y
=  1 − 3c1z2  ϕy +

∂w0

∂y
  (23) 

 

2εxy =
∂u

∂y
+
∂v

∂x
=
∂u0

∂y
+
∂v0

∂x
+ z 

∂ϕy

∂x
+
∂ϕx

∂y
 

− c1z3  
∂ϕy

∂x
+
∂ϕx

∂y
+ 2

∂w0

∂y ∂x
  

(24) 

 

The relation of strain stress for planar stress is as 

follows 

 

ςxx

ςyy

ςxy

 =  

𝒬11 𝒬12 0
𝒬21 𝒬22 0

0 0 𝒬66

  

εxx

εyy

εxy

  (25) 

 

 
ςxz

ςyz
 = 𝒬66  

εxz

εyz
  (26) 

 

where 𝒬ij  are coefficients of hardness matrices and is 

defined as 

𝒬11 = 𝒬22 =
E

1 − ν2
 

𝒬12 = 𝒬21 =
Eυ

1 − υ2
 

𝒬22 =
E

2 1 + υ 
 

(27) 

 

Hamilton’s principle is 

 

 δU − δV − δK

t

0

 dt = 0 (28) 

 

where U is the total energy of the object. V is the work of 

external forces and K is the total kinetic energy of the 

object. 

Strain energy is expressed as 

 

δU =   ςijδεij

t

0

dVdt

=   ςxxδεxx + ςyyδεyy

t

0

+ 2ςxyδεxy + 2ςxzδεxz

+ ςyzδεyz  dVdt 

(29) 

 

In the following terms within the integral equation are 

integrated to the variable z 

 

 ςxxδεxx dV =  Nxx

δ ∂u0

∂x
+ Mxx

δ ∂ϕx

∂x

− c1Pxx  
δ∂ϕx

∂x
+
δ∂2w0

∂x2
  dxdy 

(30) 

 

 ςyyδεyy dV =  Nyy

δ ∂v0

∂y
+ Myy

δ ∂ϕy

∂y

− c1Pyy  
δ∂ϕy

∂y
+
δ∂2w0

∂y2
  dxdy 

(31) 

 

 2ςxyδεxy dV =  Nxy  
δ ∂v0

∂x
+
δ ∂u0

∂x
 

+ Mxy  
δ∂ϕx

∂y
+
δ∂ϕy

∂x
 

− c1Pxy  
δ∂ϕx

∂y
+
δ ∂ϕy

∂x

+ 2
δ ∂2w0

∂y2
  dxdy 

(32) 

 

 2ςxzδεxz dV =  Qx  δϕx +
δ∂w0

∂x
 

− c2Rx  δϕx +
δ∂w0

∂x
 dxdy 

(33) 

 

 2ςyzδεyz dV =  Qy  δϕy +
δ∂w0

∂y
 

− c2Ry  δϕy +
δ∂w0

∂y
 dxdy 

(34) 

 

In which resultant forces are defined as 
 

 

Nαβ

Mαβ

Pαβ

 =  ςαβ  
1
z

z3
 

h

2

−
h

2

dz       α = 1,2      β = 1,2 (35) 

 

 
Qα

Rα
 =  ςαz  

1
z2 dz

h/2

−h/2

          ,   α = 1,2 (36) 

 

M αβ = Mαβ − c1Pαβ         ,   α = 1,2   ,   β = 1,2 (37) 

 

Q α = Qα − c2Rα                        α = 1,2 (38) 
 

where N is the resultant tension force and is perpendicular 

to cross-section, and M and P are stress torque resultant 

and higher-order stress torque resultant respectively. Qα  is 

shear force and Rα  is higher order stress shear force. Using 

Eqs. (35)-(36) resultant forces are obtained as 
 

ℒ Nxx  =   𝒬11εxx + 𝒬12εyy  

h

2

−
h

2

dz 

= a0

∂u0

∂x
+ a1

∂ϕx

∂x
− c1a3  

∂ϕx

∂x
+
∂2w0

∂x2
   

b0

∂v0

∂y
+ b1

∂ϕy

∂y
− c1b3  

∂ϕy

∂y
+
∂2w0

∂y2
  

(39) 

 

ℒ Nyy  =   𝒬12εxx + 𝒬11εyy  

h

2

−
h

2

dz 

       = b0

∂u0

∂x
+ b1

∂ϕx

∂x
− c1b3  

∂ϕx

∂x
+
∂2w0

∂x2
   

        a0

∂v0

∂y
+ a1

∂ϕy

∂y
− c1a3  

∂ϕy

∂y
+
∂2w0

∂y2
  

(40) 
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ℒ Mxx  =   𝒬11εxx + 𝒬12εyy  

h

2

−
h

2

zdz 

  = a1

∂u0

∂x
+ a2

∂ϕx

∂x
− c1a4  

∂ϕx

∂x
+
∂2w0

∂x2
  

       b1

∂v0

∂y
+ b2

∂ϕy

∂y
− c1b4  

∂ϕy

∂y
+
∂2w0

∂y2
  

(41) 

 

ℒ Myy  =   𝒬12εxx + 𝒬11εyy  

h

2

−
h

2

zdz 

   = b1

∂u0

∂x
+ b2

∂ϕx

∂x
− c1b4  

∂ϕx

∂x
+
∂2w0

∂x2
   

      a1

∂v0

∂y
+ a2

∂ϕy

∂y
− c1a4  

∂ϕy

∂y
+
∂2w0

∂y2
  

(42) 

 

ℒ M xx  = (a1 − c1a3)
∂u0

∂x
+ (a2 − c1a4)

∂ϕx

∂x
 

+(−c1a4 + c1
2a6)  

∂ϕx

∂x
+
∂2w0

∂x2
   

(b1 − c1b3)
∂u0

∂x
+ (b2 − c1b4)

∂ϕx

∂x
 

+(−c1b4 + c1
2b6)  

∂ϕx

∂x
+
∂2w0

∂x2
  

(43) 

 

ℒ M xx  = (b1 − c1b3)
∂u0

∂x
+ (b2 − c1b4)

∂ϕx

∂x
 

+ −c1b4 + c1
2b6  

∂ϕx

∂x
+
∂2w0

∂x2
  

 (a1 − c1a3)
∂u0

∂x
+ (a2 − c1a4)

∂ϕx

∂x
 

+(−c1514 + c1
2a6)  

∂ϕx

∂x
+
∂2w0

∂x2
  

(44) 

 

ℒ Pxx  =   𝒬11εxx + 𝒬12εyy  

h

2

−
h

2

z3dz 

 = a3

∂u0

∂x
+ a4

∂ϕx

∂x
− c1a6  

∂ϕx

∂x
+
∂2w0

∂x2
  

       +b3

∂v0

∂y
+ b4

∂ϕy

∂y
− c1b6  

∂ϕy

∂y
+
∂2w0

∂y2
  

(45) 

 

ℒ Pyy  =   𝒬12εxx + 𝒬11εyy  

h

2

−
h

2

z3dz 

= b3

∂u0

∂x
+ b4

∂ϕx

∂x
− c1b6  

∂ϕx

∂x
+
∂2w0

∂x2
 a3

∂v0

∂y
 

         +a4

∂ϕy

∂y
− c1a6  

∂ϕy

∂y
+
∂2w0

∂y2
  

(46) 

 

ℒ Nxy = d0  
∂u0

∂x
+
∂v0

∂y
 + d1  

∂ϕx

∂y
+
∂ϕy

∂x
  

        −c1d3  
∂ϕx

∂y
+
∂ϕy

∂x
+ 2

∂2w0

∂x ∂y
  

(47) 

 

ℒ Mxy = d1  
∂u0

∂x
+
∂v0

∂y
 + d2  

∂ϕx

∂y
+
∂ϕy

∂x
  

          −c1d4  
∂ϕx

∂y
+
∂ϕy

∂x
+ 2

∂2w0

∂x ∂y
  

(48) 

 

ℒ Mxy = d3  
∂u0

∂x
+
∂v0

∂y
 + d4  

∂ϕx

∂y
+
∂ϕy

∂x
  

          −c1d6  
∂ϕx

∂y
+
∂ϕy

∂x
+ 2

∂2w0

∂x ∂y
  

(49) 

 

ℒ Mxy = d3  
∂u0

∂x
+
∂v0

∂y
 + d4  

∂ϕx

∂y
+
∂ϕy

∂x
  

         −c1d6  
∂ϕx

∂y
+
∂ϕy

∂x
+ 2

∂2w0

∂x ∂y
  

(50) 

 

ℒ Qx =  d0 − 3c1d2  ϕx +
∂w0

∂x
  (51) 

 

ℒ Qy =  d0 − 3c1d2  ϕy +
∂w0

∂y
  (52) 

 

ℒ Qx =  d0 − 3c1d2  ϕx +
∂w0

∂x
  (53) 

 

ℒ Qy =  d0 − 3c1d2  ϕy +
∂w0

∂y
  (54) 

 

ℒ Rx =  d2 − 3c1d4  ϕx +
∂w0

∂x
  (55) 

 

ℒ Rx =  d2 − 3c1d4  ϕx +
∂w0

∂x
  (56) 

 

ℒ Ry =  d2 − 3c1d4  ϕy +
∂w0

∂y
  (57) 

 

ℒ Ry =  d2 − 3c1d4  ϕy +
∂w0

∂y
  (58) 

 

ℒ R x =  d0 − 2c2d2 + c2
2d4  ϕx +

∂w0

∂x
  (59) 

 

ℒ R y =  d0 − 2c2d2 + c2
2d4  ϕy +

∂w0

∂y
  (60) 

 

ℒ = 1 − μ∇2= 1 − μ(
∂2

∂x2
+

∂2

∂y2
) (61) 

 

where μ is μ = (e0a)2. 
Now the integral of relations (7) are obtained using 

integration by part. After all simplifications and separating 

285



 

A.M. Fattahi, Babak Safaei and E. Moaddab 

coefficients related to changes of each part of these 

equations, which are connected to equilibrium equations, 

are obtained as 

 

δu0 :       −
∂Nxx

∂x
−
∂Nxy

∂y
 (62) 

 

δv0 :       −
∂Nyy

∂y
−
∂Nxy

∂x
 (63) 

 

δϕx :      −
∂M xx

∂x
−
∂M xy

∂y
+ Q x  (64) 

 

δϕy :      −
∂M yy

∂y
−
∂M xy

∂x
+ Q y  (65) 

 

δw0 :      − c1

∂2Pxx

∂x2
− c1

∂2Pyy

∂y2
 

−2c1

∂2Pxy

∂y ∂x
−
∂Q x

∂x
−
∂Q y

∂y
 

(66) 

 

Now terms for kinetic energy are obtained. Since no 

rotational speed is present speeds related to particles in 

different directions are defined as 

 

u = u0 + zϕx
 − c1z3  ϕx

 +
∂w0 

∂x
  (67) 

 

v = v0 + zϕy
 − c1z3  ϕy

 +
∂w0 

∂y
  (68) 

 

w = w0  (69) 

 

Kinetic energy changes are defined as 

 

δK =   ρ(u δu + v δv + w δw )

t

0

dxdydt (70) 

 

By integrating to z we have 

 

  ρuδu  
t

0

dVdt 

=   m0

∂u0

∂t
 
∂δu0

∂t

t

0

+ m1

∂u0

∂t
 
∂δϕx

∂t
  

−c1m3

∂u0

∂t
 
∂δϕx

∂t
+
∂2δw0

∂x ∂t
 + m1

∂ϕx

∂t

∂δu0

∂t
 

+ m2  
∂ϕx

∂t

∂δϕx

∂t
 – c1m4

∂ϕx

∂t
 
∂δϕx

∂t
+
∂2δw0

∂x ∂t
  

−c1m3  
∂2w0

∂x ∂t
+
∂ϕx

∂t
 
∂δu0

∂t
 

−c1m4  
∂2w0

∂x ∂t
+
∂ϕx

∂t
 
∂δϕx

∂t
 dxdydt 

(71) 

 

  ρvδv  
t

0

dVdt 

=   m0

∂v0

∂t
 
∂δv0

∂t

t

0

+ m1

∂v0

∂t
 
∂δϕy

∂t
  

−c1m3

∂v0

∂t
 
∂δϕy

∂t
+
∂2δw0

∂y ∂t
 + m1

∂ϕy

∂t

∂δv0

∂t
 

+ m2  
∂ϕy

∂t

∂δϕy

∂t
− c1m4

∂ϕy

∂t
 
∂δϕy

∂t
+
∂2δw0

∂y ∂t
  

−c1m3  
∂2w0

∂y ∂t
+
∂ϕy

∂t
 
∂δv0

∂t
 

−c1m4  
∂2w0

∂y ∂t
+
∂ϕy

∂t
 
∂δϕy

∂t
 dxdydt 

(72) 

 

  m0wδw  
t

0

 dVdt (73) 

 

Now the integral of relations (27) are obtained using 

integration by part. After all simplifications and separating 

coefficients related to changes of each variable of these 

equations which are connected to equilibrium equations are 

obtained as 

 

δu0 ∶ −m0

∂2u0

∂t2
− m1

∂2ϕx

∂t2
 

+c1m3

∂2ϕx

∂t2
+ c1m3

∂3w

∂t2 ∂x
 

(74) 

 

δv0 ∶ −m0

∂2v0

∂t2
− m1

∂2ϕy

∂t2
 

+c1m3

∂2ϕy

∂t2
+ c1m3

∂3w

∂t2 ∂y
 

(75) 

 

δϕx ∶ −m1

∂2u0

∂t2
− m2

∂2ϕx

∂t2
+ c1m4

∂2ϕx

∂t2
 

+c1m4

∂3w

∂t2 ∂x
+ c1m3

∂2u0

∂t2
+ c1m4

∂2ϕx

∂t2
  

−c1
2m6

∂2ϕx

∂t2
δϕx − c1

2m6

∂3w

∂t2 ∂x
 

(76) 

 

δϕy ∶ −m1

∂2v0

∂t2
− m2

∂2ϕy

∂t2
+ c1m4

∂2ϕy

∂t2
 

+c1m4

∂3w

∂t2 ∂y
+ c1m3

∂2v0

∂t2
+ c1m4

∂2ϕy

∂t2
 

−c1
2m6

∂2ϕy

∂t2
δϕy − c1

2m6

∂3w

∂t2 ∂y
 

(77) 

 

δw ∶ c1
2m6

∂4w0

∂t2 ∂x2
 – c1m4

∂3ϕx

∂t2 ∂x
+  c1

2m6

∂3ϕx

∂t2 ∂x
 

− c1m3

∂3u0

∂t2 ∂x
+ c1

2m6

∂4w0

∂t2 ∂y2
− c1m3

∂3v0

∂t2 ∂y
 

−c1m4

∂3ϕy

∂t2 ∂y
+  c1

2m6

∂3ϕy

∂t2 ∂y
− m0

∂2w0

∂t2
 

(78) 
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where coefficients of m are defined as 

 

 
 
 

 
 

m0

m1

m2

m3

m4

m6 
 
 

 
 

=  

 
 
 

 
 

z0

z1

z2

z3

z4

z6 
 
 

 
 h

2

−
h

2

ρ(z)dz (79) 

 

where q is external transverse force which is exerted on 

the upper surfaces. fu  and fv  are extended longitudinal 

forces along the direction of x and y respectively. M, V and 

P are torque resultant, and stress force resultant on the edges 

of the sheet. MR  is the torque resultant of higher order 

stress on the edges of the sheet which are obtained by shear 

third order theory. kw  and kG  are elastic substrate 

coefficients. Finally, by replacing Eqs. (17)-(18) and (28) in 

Hamilton’s equation and setting the coefficients related to 

changes of each variables of equilibrium equation at zero in 

the form of obtained force terms we have 

 

∂Nxx

∂x
+
∂Nxy

∂y
= fu + m0

∂2u0

∂t2
+ m1

∂2ϕx

∂t2
 

−c1m3

∂2ϕx

∂t2
− c1m3

∂3w

∂t2 ∂x
 

(80) 

 

∂Nyy

∂y
+
∂Nxy

∂x
= fv + m0

∂2v0

∂t2
+ m1

∂2ϕy

∂t2
 

−c1m3

∂2ϕy

∂t2
− c1m3

∂3w

∂t2 ∂y
 

(81) 

 

∂M xx

∂x
+
∂M xy

∂y
+ Q x = (m1 − c1m3)

∂2u0

∂t2
 

+ m2 − 2c1m4 + c1
2m6 

∂2ϕx

∂t2
 

+(c1m4 − c1
2m6)

∂3w

∂t2 ∂x
 

(82) 

 

∂M yy

∂y
+
∂M xy

∂x
+ Q y = (m1 − c1m3)

∂2v0

∂t2
 

+ m2 − 2c1m4 + c1
2m6 

∂2ϕy

∂t2
 

+(c1m4 − c1
2m6)

∂3w

∂t2 ∂y
 

(83) 

 

c1

∂2Pxx

∂x2
+ c1

∂2Pyy

∂y2
+ 2c1

∂2Pxy

∂y ∂x
 

+
∂Q x

∂x
+
∂Q y

∂y
−  kw w − kG∇

2w  

= m0

∂2w0

∂t2
+  c1m4 −  c1

2m6 
∂3ϕx

∂t2 ∂x
 

+q +  c1m4 −  c1
2m6 

∂3ϕx

∂t2 ∂x
 

−c1
2m6  

∂4w0

∂t2 ∂y2
+

∂4w0

∂t2 ∂x2
  

+c1m3  
∂3u0

∂t2 ∂x
+

∂3v0

∂t2 ∂y
  

(84) 

To obtain equilibrium equations in the form of 

displacement terms, terms related to forces or their 

equivalents must be replaced but forces are not explicitly in 

the form of displacement terms. The operator ℒ   is used; 

and since this operator is linear, by applying it in 

equilibrium equation and replacement of Eqs. (1)-(3)-(15) 

the following equations can be obtained in the form of 

replacement terms 

 

a0

∂2u0

∂x2
+ d0

∂2u0

∂y2
+  b0 + d0 

∂2v0

∂x ∂y
 

+(a1 − c1a3)
∂2ϕx

∂x2
+ (d1 − c1d3)

∂2ϕx

∂y2
 

+(b1 − c1b3 + d1 − c1d3)
∂2ϕy

∂x ∂y
− c1a3

∂3w0

∂x3
 

+ −c1b3 − 2c1d3 
∂3w0

∂x ∂y2
= ℒ 𝓊  

(85) 

 

a0

∂2v0

∂y2
+ d0

∂2v0

∂x2
+  b0 + d0 

∂2u0

∂x ∂y
 

+(a1 − c1a3)
∂2ϕy

∂y2
+ (d1 − c1d3)

∂2ϕy

∂x2
 

+(b1 − c1b3 + d1 − c1d3)
∂2ϕx

∂x ∂y
− c1a3

∂3w0

∂y3
 

+(−c1b3 − 2c1d3)
∂3w0

∂y ∂x2
= ℒ 𝓋  

(86) 

 

(a1 − c1a3)
∂2u0

∂x2
 

+(d1 − c1d3)
∂2u0

∂y2
(b1 − c1b3 + d1 − c1d3)

∂2v0

∂x ∂y
 

+(a2 − 2c1a4 + c1
2a6)

∂2ϕx

∂x2
 

+(d2 − 2c1d4 + c1
2d6)

∂2ϕx

∂y2
+ (−c1a4 + c1

2a6)
∂3w0

∂x3
 

+(b2 − 2c1b4 + c1
2b6 + d2 − 2c1d4 + c1

2d6)
∂2ϕy

∂x ∂y
 

+(−c1b4 + c1
2b6 − 2c1d4 + 2c1

2d6)
∂3w0

∂x ∂y2
) 

+ −d0 − 2c2d2 − c2
2d4  ϕx +

∂w0

∂x
 = ℒ Φ x  

(87) 

 

(a1 − c1a3)
∂2v0

∂y2
+ (d1 − c1d3)

∂2v0

∂x2
 

+(b1 − c1b3 + d1 − c1d3)
∂2u0

∂x ∂y
 

+(a2 − 2c1a4 + c1
2a6)

∂2ϕy

∂y2
 

+(d2 − 2c1d4 + c1
2d6)

∂2ϕy

∂x2
 

+ −c1a4 + c1
2a6 

∂3w0

∂y3
 

+(b2 − 2c1b4 + c1
2b6 + d2 − 2c1d4 + c1

2d6)
∂2ϕx

∂x ∂y
 

(88) 
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+(−c1b4 + c1
2b6 − 2c1d4 + 2c1

2d6)
∂3w0

∂y ∂x2
) 

  −d0 − 2c2d2 − c2
2d4  ϕy +

∂w0

∂y
 = ℒ Φ y  

(88) 

 

c1a3

∂3u0

∂x3
+ c1a3

∂3v0

∂y3
+  c1a4 − c1

2a6 
∂3ϕx

∂x3
 

+ c1a4 − c1
2a6 

∂3ϕy

∂x3
+  2c1d3 + c1b3 

∂3u0

∂y2 ∂x
 

+ 2c1d3 + c1b3 
∂3v0

∂x2 ∂y
 

+(c1b4 − c1
2b6 − 2c1

2d6 + 2c1d4)
∂3ϕx

∂y2 ∂x
 

+(c1b4 − c1
2b6 − 2c1

2d6 + 2c1d4) 

−c1
2a6  

∂4w

∂x4
+
∂4w

∂y4
 +  −2c1

2b6 − 4c1
2d6 

∂4w

∂y2 ∂x2
 

+(d0 − 2c1d2 + c2
2d4)  

∂2w

∂x2
+
∂ϕx

∂x
+
∂2w

∂y2
+
∂ϕy

∂y
   

−ℒ kw w − kG∇
2w = ℒ 𝓌  

(89) 

 

where coefficients a, b and c are defined as 

 

 
 
 

 
 

a0

a1

a2

a3

a4

a6 
 
 

 
 

=  𝒬11

h/2

−h/2

 
 
 

 
 

1
z

z2

z3

z4

z6 
 
 

 
 

dz 

 
 
 

 
 

b0

b1

b2

b3

b4

b6 
 
 

 
 

=  𝒬22

h/2

−h/2

 
 
 

 
 

1
z

z2

z3

z4

z6 
 
 

 
 

dz 

 
 
 

 
 

d0

d1

d2

d3

d4

d6 
 
 

 
 

=  𝒬66

h/2

−h/2

 
 
 

 
 

1
z

z2

z3

z4

z6 
 
 

 
 

dz 

(90) 

 

And also 𝓊  , 𝓋  , Φ x  , Φ y  and 𝓌  are defined as 

 

𝓊 = fu + m0

∂2u0

∂t2
+ m1

∂2ϕx

∂t2
 

−c1m3

∂2ϕx

∂t2
− c1m3

∂3w

∂t2 ∂x
 

(91) 

 

𝓋 = fv + m0

∂2v0

∂t2
+ m1

∂2ϕy

∂t2
 

−c1m3

∂2ϕy

∂t2
− c1m3

∂3w

∂t2 ∂y
 

(92) 

 

Φ x = (m1 − c1m3)
∂2u0

∂t2
 

+ m2 − 2c1m4 + c1
2m6 

∂2ϕx

∂t2
 

(93) 

+(c1m4 − c1
2m6)

∂3w

∂t2 ∂x
 (93) 

 

Φ y = (m1 − c1m3)
∂2v0

∂t2
 

+ m2 − 2c1m4 + c1
2m6 

∂2ϕy

∂t2
 

+(c1m4 − c1
2m6)

∂3w

∂t2 ∂y
 

(94) 

 

𝓌 = +m0

∂2w0

∂t2
+  c1m4 −  c1

2m6 
∂3ϕx

∂t2 ∂x
 

+ c1m4 −  c1
2m6 

∂3ϕx

∂t2 ∂x
 

−c1
2m6  

∂4w0

∂t2 ∂y2
+

∂4w0

∂t2 ∂x2
  

+c1m3  
∂3u0

∂t2 ∂x
+

∂3v0

∂t2 ∂y
  

(95) 

 

The obtained boundary conditions would be 

 

Nxx = P1 or u0 = u 0 in x = 0 and x = L1 

Nxy = 0  or u0 = u 0 in y = 0 and y = L2 

Nyy = P2 or v0 = v 0 in y = 0 and y = L2 

Nxy = 0  or v0 = v 0 in x = 0 and x = L1 

Mxx = M1or ϕx = ϕ x  in x = 0 and x = L1 

Mxy = 0 or ϕx = ϕ x  in  y = 0 and y = L2 

Myy = M2 or  ϕy = ϕ y  iny = 0 and y = L2 

Myx = 0 or ϕy = ϕ y  in    x = 0 and x = L1 

c1

∂Pxx

∂x
+ c1

∂Pxy

∂y
+ Q x − N xx

∂w0

∂x
= V1 

or     w0 = w 0 in x = 0 and x = L1 

(96) 

 

 

4. Making equations dimensionless 
 
To simplify the equations and increase precision, the 

equations are made dimensionless. To do so first we can 

eliminate the time dependency of displacement fields by 

defining them as 
 

u0(x, y, t) = u 0(x, y)eiωt 

v0(x, y, t) = v 0(x, y)eiωt 

w0(x, y, t) = w 0(x, y)eiωt 

ϕx(x, y, t) = ϕ x(x, y)eiωt 

ϕy(x, y, t) = ϕ y(x, y)eiωt 

(97) 

 

This is done because free vibrations of displacement 

field changes are harmonic with time. Then all parameters 

are made dimensionless as 

 

X = x/L1                     0 < 𝑋 < 1 

Y = y/L2                       0 < Y < 1 

Z = z/h                          0 < Z < 1 

h =
h

L1
,          

L1

L2
= α,          τ = μ/L1

2 

(98) 
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𝒰0 =
u 0

L1
,          𝒱0 =

v 0

L2
,          𝒲0 = w 0/L1 

E c =
Ec

Ec
,           E m =

Em

Ec
, 

     ρ c =
ρc

ρc

,           ρ m = ρm /ρc  

𝒩 xx =
N xx

h LEc

,       𝒩 yy =
N yy

h LEc

,       𝒩 xy =
N xy

h L1Ec

 

ϖ = ωh 
ρc

Ec
,          Kg =

kg

EcLh 
,          Kw =

kw L

Ech 
 

(98) 

 

a0

∂2𝒰0

∂X2
+ α2d0

∂2𝒰0

∂Y2
+ α b0 + d0 

∂2𝒰0

∂X ∂Y
 

+(a1 − c1a3)
∂2ϕx

∂X2
+ (d1 − c1d3)α2

∂2ϕx

∂Y2
 

+(b1 − c1b3 + d1 − c1d3)α
∂2ϕy

∂X ∂Y
 

−c1a3

∂3𝒲0

∂X3
+ (−c1b3 − 2c1d3)α2

∂3𝒲0

∂X∂Y2
= −ω2ℒ  𝓊  

(99) 

 

αa0

∂2𝒱0

∂Y2
+

d0

α
∂2𝒱0

∂X2

+  b0 + d0 α
∂2𝒰0

∂X ∂Y
 

+(a1 − c1a3)α2
∂2ϕy

∂Y2
+ (d1 − c1d3)

∂2ϕy

∂X2
 

+(b1 − c1b3 + d1 − c1d3)α
∂2ϕx

∂X ∂Y
 

−c1a3α
3
∂3𝒲0

∂Y3
+  −c1b3 − 2c1d3 α

∂3𝒲0

∂Y∂X2
 

= −ω2ℒ  𝓋  

(100) 

 

(a1 − c1a3)
∂2𝒰0

∂X2
+ (d1 − c1d3)α2

∂2𝒰0

∂Y2
 

+(b1 − c1b3 + d1 − c1d3)
∂2𝒱0

∂X ∂Y
 

+(a2 − 2c1a4 + c1
2a6)

∂2ϕx

∂X2
 

+(d2 − 2c1d4 + c1
2d6)α2

∂2ϕx

∂Y2
 

+ −c1a4 + c1
2a6 

∂3𝒲0

∂X3
 

+(b2 − 2c1b4 + c1
2b6 + d2 

−2c1d4 + c1
2d6)α

∂2ϕy

∂X ∂Y
+ (−c1b4 + c1

2b6 

+ −d0 − 2c2d2 − c2
2d4  ϕx +

∂𝒲0

∂X
 = −ω2ℒ  Φ x  

(101) 

 

(a1 − c1a3)α
∂2𝒱0

∂Y2
+ (d1 − c1d3)/α

∂2𝒱0

∂X2
 

+(b1 − c1b3 + d1 − c1d3)α
∂2𝒰0

∂X ∂Y
 

+(a2 − 2c1a4 + c1
2a6)α2

∂2ϕy

∂Y2
 

(102) 

+(d2 − 2c1d4 + c1
2d6)

∂2ϕy

∂X2
 

+(−c1a4 + (b2 − 2c1b4 + c1
2b6 + d2 

−2c1d4 + c1
2d6)α

∂2ϕx

∂X ∂Y
 

+(−c1b4 + c1
2b6 − 2c1d4 + 2c1

2d6)α
∂3𝒲0

∂Y∂X2
) 

+ −d0 − 2c2d2 − c2
2d4  ϕy + α

∂𝒲0

∂Y
  

= −ω2ℒ  Φ y  

(102) 

 

c1a3

∂3𝒰0

∂X3
+ c1a3α

2
∂3𝒱0

∂Y3
+  c1a4 − c1

2a6 
∂3ϕx

∂X3
 

+ c1a4 − c1
2a6 

∂3ϕy

∂X3
 

+ 2c1d3 + c1b3 α
2
∂3𝒰0

∂Y2 ∂X
 2c1d3 + c1b3 

∂3𝒱0

∂X2 ∂Y
 

+(c1b4 − c1
2b6 − 2c1

2d6 + 2c1d4)α2
∂3ϕx

∂Y2 ∂X
 

+(c1b4 − c1
2b6 − 2c1

2d6 + 2c1d4)α
∂3ϕy

∂X2 ∂Y
 

−c1
2a6  

∂4𝒲

∂X4
+ α4

∂4𝒲

∂Y4
  

+ −2c1
2b6 − 4c1

2d6 α
2

∂4𝒲

∂Y2 ∂X2
 

+(d0 − 2c1d2 + c2
2d4) 

 
∂2w

∂X2
+
∂ϕx

∂X
+ α2

∂2𝒲

∂Y2
+ α

∂ϕy

∂Y
   

−ℒ  Kw w − KG∇
2w = −ω2ℒ  𝓌  

(103) 

 

where coefficients a, b and d are defined as 

 

 
 
 

 
 

a0

a1

a2

a3

a4

a6 
 
 

 
 

=  𝒬11

−1/2

−1/2

/Ec

 
 
 

 
 

1 ∗ h 

z ∗ h 2

z2 ∗ h 3

z3 ∗ h 4

z4 ∗ h 5

z6 ∗ h 7 
 
 

 
 

dz 

 
 
 

 
 

b0

b1

b2

b3

b4

b6 
 
 

 
 

=  𝒬22/Ec

1/2

−1/2

 
 
 

 
 

1 ∗ h 

z ∗ h 2

z2 ∗ h 3

z3 ∗ h 4

z4 ∗ h 5

z6 ∗ h 7 
 
 

 
 

dz 

 
 
 

 
 

d0

d1

d2

d3

d4

d6 
 
 

 
 

=  𝒬66/Ec

1/2

−1/2

 
 
 

 
 

1 ∗ h 

z ∗ h 2

z2 ∗ h 3

z3 ∗ h 4

z4 ∗ h 5

z6 ∗ h 7 
 
 

 
 

dz 

(104) 

 

Operator ℒ  is transformed to 

 

ℒ = 1 − τ∇2= 1 − τ(
∂2

∂x2
+

∂2

∂y2
) (105) 
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In above equations 𝓊  , 𝓋  , Φ x  , Φ y  and 𝓌  are defined 

as 

𝓊 = fu + m0

∂2𝒰0

∂t2
+ m1

∂2ϕx

∂t2
 

−c1m3

∂2ϕx

∂t2
− c1m3

∂3𝒲

∂t2 ∂X
 

(106) 

 

𝓋 = fv + m0

∂2𝒱0

∂t2
+ m1

∂2ϕy

∂t2
 

−c1m3

∂2ϕy

∂t2
− αc1m3

∂3𝒲

∂t2 ∂Y
 

(107) 

 

Φ x = (m1 − c1m3)
∂2𝒰0

∂t2
 

+ m2 − 2c1m4 + c1
2m6 

∂2ϕx

∂t2
 

+(c1m4 − c1
2m6)

∂3𝒲

∂t2 ∂X
 

(108) 

 

Φ y = (m1 − c1m3)/α
∂2𝒱0

∂t2
 

+ m2 − 2c1m4 + c1
2m6 

∂2ϕy

∂t2
 

+(c1m4 − c1
2m6)α

∂3𝒲

∂t2 ∂Y
 

(109) 

 

𝓌 = +m0

∂2𝒲0

∂t2
+  c1m4 −  c1

2m6 
∂3ϕx

∂t2 ∂X
 

+ c1m4 −  c1
2m6 

∂3ϕx

∂t2 ∂X
 

−c1
2m6  α

2
∂4𝒲0

∂t2 ∂Y2
+

∂4𝒲0

∂t2 ∂X2
  

+c1m3  
∂3𝒰0

∂t2 ∂X
+

∂3𝒱0

∂t2 ∂Y
  

(110) 

 

 

5. Conclusions 
 

In this section equilibrium equations obtained in the 

previous sections are discretized and solved using 

differential squares method. These equations were solved 

using a code in software MATLAB. In order to investigate 

the precision and stability of the solutions obtained from 

differential squares method; they were compared and 

validated with results published in other references (Jung 

and Han 2013). In this work the upper part of the sheet 

consisted of ceramic phase and its lower part was pure 

metal. FG material which was considered here was 

composed of silicon nitride and stainless steel with the 

following characteristics. The boundary conditions 

considered here were a combination of simple and clamped 

boundary conditions. The characteristics of materials and 

properties of different materials used in this research are 

presented in Tables 1 and 2. 

Dimensionless frequencies for functional graded sheet 

are presented in Table 3 based on sheet thickness, local 

parameter and aspect ratio for simple support condition. It is 

obvious that numerical results presented in this research had 

very small differences of about 0.01% from the results of 

Table 1 Characteristics of metal and ceramic phases 

Properties material 𝐄 (𝐆𝐏𝐚) 𝛒 (𝐊𝐠/𝐦𝟑) 𝛎 

Si3N4 348.46 2370 0.24 

SUS304 201.049 8166 0.32 
 

 

 

Table 2 Parameters used in the problem 

𝛍 (𝐧𝐦𝟐) 0,1,2 

L1 /h 10, 20 

KG  (GPa/nm) 0.005 

Kw  (GPa/nm) 0.5 

L1 /L2 1,2 

Boundary condition SSSS 

Coefficient of shear stress 5/6 
 

 

 

Table 3 Comparison of dimensionless frequencies for a 

sheet with a simple support according to reference 

(Jung and Han 2013), analytical and numerical 

solutions 

𝐋𝟏/𝐡 𝐋𝟏/𝐋𝟐 𝛍 Reference Present solution 

1 

10 

0 0.0441 0.0442 

1 0.0403 0.0403 

2 0.0374 0.0373 

20 

0 0.0113 0.0115 

1 0.0103 0.0102 

2 0.0096 0.0097 

2 

10 

0 0.01055 0.01054 

1 0.0863 0.0864 

2 0.0748 0.0748 

20 

0 0.0279 0.0279 

1 0.0229 0.0229 

2 0.0198 0.0198 
 

 

 

reported in other references. The results showed that the 

natural frequencies predicted by numerical method of 

extended differential squares matched greatly with those 

obtained from analytical method. 

In this work, the vibrations of nano-sheets prepared 

from FG materials placed on elastic substrates have been 

investigated. This analysis was performed based on non-

local elasticity theory and the application of numerical 

method of generalized differential squares. In order to 

obtain minimum grid points required for the calculations, 

convergence test was performed and minimum point 

numbers in generalized differential squares method was 

obtained. As was seen, the number of points required for the 

gridding of the sheet for conducting the analysis, common 

numerical methods such as finite elements were smaller and 

this method had higher convergence speed and power. 

Therefore, this method can be applied as a dynamic and 

strong method for solving complicated problems in 

mechanics including nano-mechanics. 
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