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1. Introduction 

 

Since CNTs have very surprising properties, they are 

used to make composite materials for the development of 

properties of other materials. Therefore, composites made 

of CNTs have recently become widely used in a variety of 

industries, such as the aerospace industry, the construction 

industry and the mechanical engineering industry. The 

structures made of carbon nanotube reinforcement 

composite (CNTRC) have a very good and upgraded 

mechanical properties. Reinforcement of structures with 

carbon nanotubes leads to structures with high strength, 

high toughness, high ultimate strength and low density that 

encourage designer to reach best composition for special 
applications (Ke et al. 2010). Therefore, many researchers 

have recently investigated this topic in a variety of areas. As 

a result, progressive investigations with CNTs subjects have 

been ongoing in recent years. So that CNTs have found 

many applications in different fields such as mechanical and 
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civil engineering (Rafiee et al. 2013). A comprehensive 

literature review on the CNTRC structures can be presented 

to enrich our work. 

On the other hand, beams are one of the most important 

structural members in complex mechanical analysis (Arefi 

et al. 2017). There are different applications for beam in 

various engineering structures in macro, micro or nano 

scales. Therefore, for designing a structure, having an 

understanding of the behavior of the beam for the designer 

is inevitable. Due to the large application of these members 

in the construction of complex structures, many researchers 

have researched this topic (Reddy and El-Borgi 2014). In 

this regard, various theories were presented by investigators 

in order to different analyses of the beam structures in 

mentioned scales. Reddy were used different beams theories 

such as the Euler–Bernoulli, the first order shear 

deformation beam theory (FSDBT), Reddy or parabolic 

shear deformation beam theory (PSDBT) and Levinson 

beam theories based on the nonlocal differential constitutive 

relations of Eringen in his investigations (Reddy 2007). He 

accomplished the parametric investigation in order to study 

the effects of nonlocal parameter on buckling loads, natural 

frequencies and bending behaviors of the nano-beams. 

In addition, the influences of the non-classical stiffness 

strengthening size effects on free vibration of a nonlocal 

Timoshenko beam (Yang and Lim 2012), nonlinear free 
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vibration analysis of rotating composite Timoshenko beams 

(Arvin and Bakhtiari-Nejad 2013) and forced vibration 

analysis of Timoshenko nano-beams based on surface stress 

elasticity theory (Ansari et al. 2014c) were studied by 

various researchers in detail. In order to investigate the 

dynamic and static behaviors of the thick beams, other 

higher-order shear deformation beam theories (HOSBTs) 

has been developed so that aforementioned theories to take 

into account the influence of transverse shear deformation 

to best prediction of behavior of thick beams (Li et al. 

2014, Zidi et al. 2014, Yahia et al. 2015, Bousahla et al. 

2016, El-Haina et al. 2017). There are some other theories 

in relation to beams such as trigonometric shear 

deformation beam theory (TSDBT), exponential shear 

deformation beam theory (ESDBT), hyperbolic shear 

deformation beam theory (HSDBT), and Aydogdu shear 

deformation beam theory (ASDBT) (Simsek and Reddy 

2013a, b, Boukhari et al. 2016). 

The DIR and vibration behavior analysis of the macro 

and nano-beam with considering HOSDBTs and stretching 

effect is very practical and interest topic that has been 

studied by many researchers (Bousahla et al. 2014, 

Bennoun et al. 2016). Since piezoelectric beams have found 

many applications in the electronic industry, many 

researchers have investigated the dynamical behavior of 

these important structural members. Kolahchi et al. a model 

for dynamic instability of embedded single-walled carbon 

nanotubes (SWCNTs) was presented (Kolahchi and Moniri 

Bidgoli 2016). They were modeled SWCNTs by the 

sinusoidal shear deformation beam theory (SSDBT) and 

also the modified couple stress theory (MCST) was 

considered in order to capture the size effects. The results 

presented in their investigation depicted that increasing the 

nonlocal parameter shifts the DIR to right. The thermo-

piezoelectric buckling, nonlinear free vibration and 

dynamic stability for the piezoelectric functionally graded 

beams, subjected to one-dimensional steady heat 

conduction in the thickness direction, were studied by Fu et 

al. (Fu et al. 2012). The effects of the thermal load, electric 

load, and thermal properties of the constituent materials on 

the thermo-piezoelectric buckling, nonlinear free vibration, 

and dynamic stability of the piezoelectric functionally 

graded beam were discussed, and some meaningful 

conclusions have been drawn. The nonlinear dynamic 

stability analysis of embedded temperature-dependent 

viscoelastic plates reinforced by single-walled carbon 

nanotubes (SWCNTs) was investigated by Kolahchi et al. 

(2016). The static, dynamic, and buckling behavior of 

partial interaction composite members was investigated by 

taking into account for the influences of rotary inertia and 

shear deformations (Xua and Wu 2007). Chen et al. (2002) 

the slender laminated composite beam with piezoelectric 

layers subjected to axial periodic compressive loads was 

considered and dynamic stability behaviors of aforemen-

tioned structure were investigated. They was evaluated the 

influence of the feedback control gain on the response of 

the beam. According to obtained results, they indicated that 

the small scale parameter, elastic medium, temperature 

change and electric potential have significantly effect on the 

dimensionless natural frequency and critical fluid velocity. 

Furthermore, the effect of fluid viscosity on the vibration of 

DWBNNTs may be ignored. In another investigation 

Ghorbanpour Arani et al. studied the control and analyze the 

nonlinear dynamic stability of single layered graphene 

sheets (SLGSs) integrated with Zinc oxide (ZnO) actuators 

and sensors (Ghorbanpour Arani et al. 2015b). They 

concluded that the magnetic field and external voltage are 

effective controlling parameters for DIR of system. 

Nonlinear analysis of functionally graded plates was studied 

by Arefi and Allam (2015). 

Use of composite materials causes the increase in 

quality of the mechanical and physical behaviors and 

response of structures. Carbon nanotube reinforcement 

composites (CNTRCs) are one of the best known composite 

materials that have recently been featured. Aforementioned 

composite materials can be used to reinforce the polymer 
composites (Esawi and Farag 2007). improving and 

developing the materials propertied with CNTs makes that 

the CNTRCs achieve a wide applications in micro and nano 
systems (Ashrafi and Hubert 2006). These materials have 

been widely used in the design and construction of nano-

electro-mechanical systems (NEMS)/micro-electro-

mechanical systems (MEMS) (Ghorbanpour Arani et al. 

2012a, c). That’s why; many researchers focused on the 

problems that concern with FG-CNTRC and they studied 

various problems related to these topics. For example 

thermal stresses analysis; linear and nonlinear vibration and 

dynamic responses of various structures in thermal 

environments were studied by some researchers 

(Ghorbanpour Arani et al. 2012b, 2015a). The influences of 

the various pattern of the of SWCNTs as: UD, FG-V, FG-X 

and FG-O on dimensionless natural frequency of visco-

elastic double-bonded polymeric nano-composite plate was 

studied by Mohammadimehr et al. (2015). They have 

concluded that application of micro/nano-composites in 

micro/nano electromechanical systems leads to important 

and novel responses to raised problem in this context. In 

other work, Wu et al. (2017) investigated the imperfection 

sensitivity of thermal post-buckling behavior of functionally 

graded carbon nanotube-reinforced composite (FG-

CNTRC) beams subjected to in-plane temperature variation. 

Rafiee et al. carried out an investigation on nonlinear 

stability and resonance response of the imperfect plate made 

of piezoelectric FG-CNTRC subjected to various combined 

electrical and thermal loads (Rafiee et al. 2014). The free 

vibration behavior of the pre-twisted functionally graded 

carbon nanotube reinforced composite (FG-CNTRC) beams 

in thermal environment was studied by Ghorbani Shenas et 
al. (2017). 

The effects of the small scales in micro and nano 

structures are the main parameters that they should be 

considered to extract the governing equations of the 

engineering structures in order to have a precise mechanical 

behaviors analysis (Amine et al. 2015, Hichem et al. 2017). 

Therefore in whole of the investigations related to small 

scale structures topic in order to incorporate the small scales 

in equations of motions, various theories such as the strain 

gradient theory and Eringen’s differential nonlocal model 

were used (Khetir et al. 2017). In the other hand, Classical 

continuum models (Zhang and Paulino 2007), nonlocal 
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continuum theory (Ebrahimy and Hosseini 2016), strain 

gradient theory, and modified couple stress models (Ansari 

et al. 2014b) have been used by researchers for analysis of 

nano/micro systems. Generally, based on the nonlocal 

continuum theory the stress at a specified point of the body 

depend on the strains at other near points (Eringen 1983). 

Based on the nonlocal strain gradient theory, Liew et al. 

(2008) analyzed the wave propagation in a SWCNT by 

molecular dynamics simulations. Combination of above 

mentioned aspects of beams leads to an interesting problem 

in scope of mechanical engineering and nano-mechanical-

systems. 

Regard to literature review mentioned above and 

author's knowledge, we can conclude that   there is no 

published work about the DIR of the sandwich nano-beams 

based on NSGET and various HSDBTs. In this study, the 

sandwich piezoelectric nano-beam is including a 

homogenous core and face-sheets reinforced with FG-

CNTs. Also, three patterns of CNTs are employed in order 

to reinforce the top and bottom face-sheets of the beam and 

different HOSDBTs such as TSDBT, ESDBT, HSDBT, and 

ASDBT are considered to extract the governing equations. 

The beam is subjected to thermal and electrical loads while 

is resting on Visco-Pasternak foundation. After verification 

of the obtained results with validated reference, 

comprehensive numerical results are presented to 

investigate the influence of important parameters such as 

various shear deformation theories, nonlocal parameter, 

strain gradient parameter, the volume fraction of the CNTs, 

various distributions of the CNTs, different boundary 

conditions, dimensionless geometric parameters, Visco-

Pasternak foundation parameters, applied voltage and 

temperature change on the dynamic instability 

characteristics of sandwich piezoelectric nano-beam. 

 

 

2. Material properties of Sandwich FG-CNTRC 
nano-beams 
 

The schematic of the structure studied in this research is 

presented in Fig. 1. According to this figure, the sandwich 

nano-beam is made of two FG-CNTRC face-sheets and a 

homogenous piezoelectric core. In this section, the material 

properties of core and two face-sheets are expressed and 

calculated in detail. Also, this can be seen in Fig. 2, the 

CNTs are aligned along thickness direction of the face-

sheets with three patterns named FG(AV), FG(VA) and UD. 

Also it is assumed that the material of the core and face-

sheets matrix have the piezoelectric properties. 

 

 

 

 

Fig. 1 Sandwich piezoelectric nano-beam with FG-

CNTRC face-sheets 

In order to calculate effective material properties of the 

CNTRCs, the total volume can be defined as (Tornabene et 

al. 2017) 
 

CN mW W W 
 (1) 

 

In which, 𝑊𝐶𝑁  and 𝑊𝑚  are the volume of the reinforcing 

phase and matrix, respectively. Also, the mass fraction of 

nanoparticles wCN  and the mass fraction of the polymer 

matrix 𝑤𝑚  are calculated as the following form 

(Tornabene et al. 2016) 
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In which, 𝑀𝐶𝑁  and 𝑀𝑚  characterize the CNTs and the 

matrix masses, respectively. At this point, the volume 

fraction of the CNTs and matrix is defined as 
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To calculate the effective properties of CNTRC, the 

Mori–Tanaka scheme or the rule of mixtures can be used 

(Natarajan et al. 2014). In this investigation to compute the 

effective material properties of face-sheets, the rule of 

mixtures with correction factors is employed. The 

properties of the CNTRC (Young’s modulus (𝐸𝑟𝑐 ) and 

density (𝜌𝑟𝑐 ) of the reinforced composite) are expressed as 

(Rafiee et al. 2014) 
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(4) 

 

In which, 𝜂1, 𝐸11
𝐶𝑁, 𝐺𝐶𝑁 , 𝛼11

𝐶𝑁  and 𝜌11
𝐶𝑁 are the CNT 

efficiency parameter, the Young’s modulus, the shear 

modulus, the expansion coefficient and density of the 

CNTs, respectively and 𝐸𝑚 , 𝐺𝑚 , 𝛼𝑚  and 𝜌m  are the 

corresponding properties for the matrix. It is noted that 

superscript 𝑟𝑐  and 𝑚  denotes the reinforcement 

composite and matrix, respectively. In addition, 𝑉𝐶𝑁  and 

 

 

   

UU Pattern VA Pattern AV Pattern 

Fig. 2 Sandwich piezoelectric nano-beam with FG-

CNTRC face-sheets 
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𝑉𝑚  are related by relation 𝑉𝐶𝑁 + 𝑉𝑚 = 1   (Shen and 

Zhang 2012, Tornabene et al. 2017). According to 

investigations accomplished by Tornabene et al. (2016) if 

the through-the-thickness distribution is represented by 

𝑉𝐶𝑁
𝑑 , the gradual variation of the nanoparticles along the 

normal direction 𝑧  for every layer is given by 

 

𝑉𝐶𝑁 = 𝑉𝐶𝑁
∗ 𝑉𝐶𝑁

𝑑  (5) 

 

Where, 𝑉𝐶𝑁
∗  can be calculated as the following form 
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It is worthy noted that since the present approach is 

general, there is no limitation on the choice of 𝑉𝐶𝑁
𝑑  

(Fantuzzia et al. 2017). The three distributions of the CNTs 

along the face-sheets are introduced as 
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In which 𝑉𝐶𝑁
𝑡  and 𝑉𝐶𝑁

𝑏  represent the volume fractions 

of the CNTs in top and bottom face-sheets, respectively. 

 

 

3. Formulation 
 

The displacement field based on HOSDBTs is expressed 

as 
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In which, 𝑢  and 𝑤  are the axial and transverse 

displacements, 𝑢0  and 𝑤0  are displacement components 

of the mid-surface along the axial and transverse directions. 

In addition 𝜑 𝑧  is a function of 𝑧  that presents the 

transverse shear and stress distribution along the thickness 

of the nano-beam (Simsek and Reddy 2013a, b, Arefi and 

Zenkour 2017a-h). According to accomplished study, 𝜑 𝑧  

is defined for FSDBT as 𝑧 , PSDBT as 𝑧  1 −
4𝑧2

3𝐻2 , 
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𝐻
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sin  
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 , 
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𝑧
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2

  and also for new HOSDBT as 

the following form (Li et al. 2014, Arefi and Zenkour 

2017a-i) 
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Also in Eq. (8) 𝛾 𝑥 , 𝑡   is the transverse shear strain of 

any point on the neutral axis (Simsek and Reddy 2013a, b) 

and is specified as 
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In Eq. (10), 𝜙 𝑥 , 𝑡   is the total bending rotation of the 

cross sections at any point on the neutral axis. The strain-

displacement relation with considering the thermal strain is 

expressed as 
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In which, ∆𝑇 is the increment of temperature from the 

initial temperature (𝑇0) that is equal to ∆𝑇 = 𝑇 − 𝑇0. In the 

present study, it is assumed that the electric potential as a 

sum of a cosine and linear variation. Then the electric 

potential can be written as (Arefi et al. 2018, Arefi and 

Zenkour 2017a-i, 2018) 
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In Eq. (12), 𝛽 =
𝜋

ℎ
 and also Φ  𝑥 , 𝑡   is electric 

potential distribution along the longitudinal direction (Ke et 

al. 2010); 𝑉0 is the external electric voltage (Liew et al. 

2003). It is noted that  Φ  𝑥 , 𝑡   must satisfy the 

homogeneous electric boundary conditions. Regard to Eq. 

(12), the electric fields can be defined as (Arefi 2016, Arefi 

et al. 2018, Arefi and Zenkour 2017a-i, 2018) 
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The strain-stress relation for reinforcement composite 

face-sheets defined as (Li et al. 2015) 
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In general, the properties associated with the core and 

face-sheets represent with p and f superscripts, respectively. 

Taking into account the voltage applied on piezoelectric 

core layer, the constitutive relations relation of the core is 

specified as 

 

2 2

0 0 0

2 2

31

0
15

15 11

31 33

p p

xx

z

p p

xz x

x xz x

z xx z

u w w
z

x x x zE

z T

e E

w
G e E

z x

D e k E

D e k E









 





     
     

      
  

  
   

  

 

 
 

(15) 

 

In which, 𝐷𝑥  and 𝐷𝑧  represent the electric displace-

ent. In addition, 𝑒31 , 𝑒15  are the piezoelectric constants 

and also 𝑘11, 𝑘33 are the dielectric constants (Liew et al. 

2003, Rafiee et al. 2013). The Hamilton’s principle is used 

to drive governing equation of motion as (Komijani et al. 

2014) 
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Where  𝛿𝑈𝑠 ,  𝛿𝑈𝑓 ,  𝛿𝑇  and 𝛿𝑊  are the variations of 

strain energy, foundation reaction, kinetic energy and 

external works, respectively. Variation of strain energy 𝛿𝑈𝑠 

is calculated as 
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Variation of kinetic energy is represented as 
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Variations of work done by the external forces and the 

linear elastic foundation are written as (Ghorbanpour Arani 

et al. 2012a, Kanani et al. 2014, Komijani et al. 2014) 
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(19) 

 

Where F and Q are the axial and transverse forces per 

unit length respectively and 𝑁 0 is the axial compressive or 

pretension force. Also, 𝐾 𝑤 , 𝐾 𝑠  and 𝐶 𝑑  are linear spring, 

shear and damping coefficient of foundation, respectively. 

Substituting Eqs. (8)-(11) into Eqs. (17)-(19) and 

consequently into Eq. (16), yields the governing equations 

of motions as 
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(20) 

 

Where, 𝑁𝑥 , 𝑄𝑥𝑧    , 𝑀𝑥  and 𝑀𝑥 
ℎ  the resultants of forces 

and the moments. They are expressed as 
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(21) 

 

The integration constants presented in Eq. (20) can be 

presented as 
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In according to nonlocal strain gradient theory (Li and 

Hu 2016), the constitutive relations are expressed as 
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(23) 

 

In Eq. (23), ∇2= 𝜕2/𝜕𝑥 2  is the Laplacian operator, 

𝑒 0𝑎  is the nonlocal parameter and 𝑙  𝑚  is the strain gradient 

length scale parameter. The nonlocal strain gradient 

constitutive relations in Eq. (23) can be written in an 

explicit form as follows 
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(24) 

 

Based on defined mechanical and electrical relations in 

Eq. (24), the resultant components can be calculated as 

follows 
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(25) 

 

Where superscripts 𝑇  and 𝐸  represent thermal and 

electrical loads. Based on this comments, the force and 

moment resultants 𝑁 𝑇 , 𝑁 𝐸 , 𝑀 𝑇1, 𝑀 𝑇2, 𝑀 𝐸1
 and 𝑀 

𝐸2
 are 

expressed as 
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(26) 

 

It is noted that, 𝐴𝑥 , 𝐵𝑥  and 𝐷𝑥  in Eq. (25) are the 

stretching stiffness, stretching-bending coupling stiffness 

and bending stiffness coefficients , respectively, which can 

be obtained as 
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To obtain the equations of motion, Eq. (25) should be 

substituted into Eq. (20). Therefore, four coupled equations 
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of motion are obtained 
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   

   

(28) 

 

In which, 𝐸15 , 𝐸2
31 , 𝐸3

31 , 𝑘𝑥 𝑥  and 𝑘𝑧 𝑧  are calculated 

as the following form 
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 

 
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 
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 
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 























 

(29) 

 

By defining following non-dimensional variables as 
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 15
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A

m
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

 


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

   

  
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(30) 

 

The final dimensionless equations of motion are 

obtained as 
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(31) 
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  

 

2
2 2 15 13

1 3 2

2 2
2 2 31

1 2 2 2 2

1
: 1

1
1 0xx zz

w
E E

R xx

w
E k k

x x R


 



  
      

 

  
     

   

(31) 

 

Boundary conditions to solve Eq. (31) are defined as 

(Ansari et al. 2014a, Ait Amar Meziane et al.  2014 ) 
 

0

0

u w for clamped ends

u w for hinged ends
x





    


    

  

(32) 

 

 

4. Non-linear vibration analysis 
 
In order to solve DIR equations of motion, DQ method 

is employed. Based on the aforementioned method, the 

approximate solution of a function 𝑓 𝑥  can be found in 

the form 

   
1

N

j j

j

f x x



 

(33) 

 

Where, 𝑁 is the total number of grid points, inside a 

closed interval. In this method, the smooth basis functions 

are selected as the various functions form such as 

Chebyshev polynomials, Exponential polynomials, and 

Fourier polynomials (Tornabene et al. 2014a, b). Also, the 

Eq. (33) for the one-dimensional case can be written in 

matrix form as 
 

𝑓 = 𝐶𝜆 (34) 
 

In which, 𝑓 =  𝑓 𝑥1 , 𝑓 𝑥2 , 𝑓 𝑥3 , … , 𝑓 𝑥𝑁  
𝑇  is the 

vector of the unknown function values, 𝜆 is the vector of 

the unknown coefficients 𝜆𝑗  and the components of the 

coefficient matrix 𝐶  are given by 𝐶𝑖𝑗 = 𝜓𝑗  𝑥𝑖  for 

𝑖, 𝑗 = 1.2.3, … , 𝑁 (Tornabene et al. 2014a). Since the n'th 

order derivative of the Eq. (33) can be computed, the 

derivative is directly transferred to the functions 𝜓𝑗  𝑥 , 

because the unknown coefficients 𝜆𝑗  do not depend on the 

variable 𝑥 (Tornabene et al. 2014b) 
 

   

1

, 1,2,3,.., 1

nn N
j

jn n
j

d xd f x
n N

dx dx






  
 

(35) 

 

Eq. (35) is rewritten as following matrix form 
 

 
 ( ) ( ) ( ) ( )

, 1,2,3,...,

i

n

jn n n n

ij jn

x

d x
f C with C x

dx

for i j N


   

 
 

(36) 

 
 ( ) ( ) ( ) ( )

, 1,2,3,...,

i

n

jn n n n

ij jn

x

d x
f C with C x

dx

for i j N


   

   
 

Therefore, the governing equations and boundary 

conditions are discretized by means of aforementioned 
method (Ghorbanpour Arani et al. 2012a, b). In this 

investigation, the cosine pattern is employed to generate the 

DQ point system as the following form 

 11
1 cos , 1,2,.....,

2 1
j

j
x j N

N

   
    

     

(37) 

 

In addition, column vectors for variables 𝑢, 𝑤, 𝜙 and 

Φ are considered as follows 
 

   

   
1 2 1 2

1 2 1 2

... , ... ,

... , ... ,

N N

N N

u u u u w w w w

   

 

     
 

(38) 

 

To solve Eq. (31) and associated boundary conditions 

Eq. (32) for DIR analysis of the sandwich piezoelectric 

nano-beam by DQ method, the weighting coefficients for 

the second, third and fourth derivatives with attention to Eq. 

(36) are determined as the following form 
 

 

   

   

 
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r
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j

N

r
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j
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





   









 
 

 





 







  





 

(39) 

 

In which weighting coefficients 𝐶𝑖𝑗
𝜁

  are expressed as 
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   













 
 
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

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


 


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
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
 
 









 

(40) 

 

It is noted that in Eq. (40), 𝑀 𝜍𝑖  is represented as 

following form 
 

   
1

N

i i j

j
i j

M


  



 
 

(41) 

 

The weighting coefficients for various derivatives such 

as the second, third and fourth derivatives are defined as 
 

   

     
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    
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 

 

 



 

 





 

 
 

(42) 
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Dynamic instability region analysis of sandwich piezoelectric nano-beam with FG-CNTRCs face-sheets based on... 

Applying the Eqs. (39) and (40) to Eq. (31), one can 

obtain a set of linear ordinary differential equations as 
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The boundary conditions of the sandwich nano-beam 

using DQ method are expressed as 
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The discretized forms of the governing equations can be 

expressed as 
 

  0GMd Cd K PK d   
 

(45) 

 

Where 𝑀 ,  𝐶 , and 𝐾  are the mass, damping, and 

stiffness matrices, respectively, 𝐾𝐺  is the geometrical 

stiffness matrix, 𝑑  is the displacement vector (i.e., 

𝑑 =  [𝑢, 𝑣, 𝑤]), and 

 

   cosCr CrP t P P t   
 

(46) 

 

In which 𝜔 is the frequency of excitation, 𝑃𝑐𝑟  is the 

static buckling load, 𝛼 and 𝛽 may be defined as static and 

dynamic load factors, respectively 

 

 

5. Bolotin method 
 

In order to determine the DIR of piezoelectric sandwich 

nano-beam, the method suggested by Bolotin (Maraghi et 

al. 2013) is used. Hence, the component of d can be written 

in the Fourier series with the period 2T as 
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(47) 

 

Where 𝑎𝑘  and 𝑏𝑘  are undetermined constants 

according to this method. Regarding to aforementioned 

method, the first instability region is usually the most 

important in studies of structures. It is due to the fact that 

the first DIR is wider than other DIRs, and the structural 

damping in higher regions becomes neutralized (Maraghi et 

al. 2013). Substituting Eq. (47) into Eq. (45) and setting the 

coefficients of each sine and cosine as well as the sum of 

the constant terms to zero, yield 

 
2

0
2 2 4

Cr G Cr GK P K P K C M
  
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(48) 
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Solving the above equation based on the eigenvalue 

problem, the variation of 𝜔  with respect to α  can be 

plotted as the DIR. 
 

 

6. Numerical results and discussion 
 

A comparison is carried out to verify the reliability of 

the present formulation and solution methodology. In this 

section, numerical results are presented for the DIR of the 

sandwich piezoelectric nano-beam with FG-CNTRC face-

sheets including different HOSDBTs embedded in Visco-

elastic-Pasternak environment subjected to external 

constant voltage and change temperature. The material 

properties and geometrical specifications of the sandwich 

piezoelectric nano-beam are presented in Table 1. To justify 

the accuracy of the present study, a comparison with 

existing references based on Timoshenko beam theory is 

presented. It is necessary noted that in this comparison 

thickness of the core are equal to zero and CNTs aligned as 

uniform pattern along to height of the beam. Fig. 3 shows 

comparison between the obtained results in present study 

and results achieved by Ke et al. (2010) in Reference. 

Regarding to these comparisons it is deduced that the 

current extracted formulations have the acceptable accuracy 

and precision. Fig. 3 presents the numerical results of the 

natural frequency of a beam as a function of 𝐿/ℎ ratio. 

According to data presented in Fig. 3, the numerical results 

of current method are in good agreement with literature. 

Fig. 4 shows variation of dynamic load factor of 

sandwich piezoelectric nano-beam with FG -CNTRC face-

sheets in terms of the frequency of dynamic excitation for 

various Visco-Winkler and Pasternak coefficients of 

foundation. According to the presented results in this figure 

can be concluded that with increasing viscosity, spring and 

shearing coefficients of the foundation DIR shifts to right as 

frequency of dynamic excitation for instability of the beam 

to increase. Also enhancing the mentioned parameters 

causes the DIR of the sandwich piezoelectric nano-beam 

becomes narrower that this makes the system more stable 

and also instability occur in less excitation frequency range. 

This is due to the fact that increasing the mentioned 

parameters causes the stiffness of the beam to increase. 

The effects of 
𝐿

ℎ
 ratio on the DIR are investigated and 

the obtained results presented in Fig. 5. Regarding to these 

results can be concluded that increasing the 
𝐿

ℎ
 ratio leads to 

the DIR becomes wider and shifts to lefts. Therefore it can 

be deduced that the increase in 
𝐿

ℎ
 ratio causes the sandwich 

piezoelectric becomes more instable. Therefore this makes 

 

 

 

 

Fig. 3 The comparison between obtained results in present 

work and results yielded in Ref (Ke et al. 2010) 

 

 

the instability to occur at low frequencies and DIR become 

wider. Also, with wider range of instability, the frequencies 

that fall within the range of instability are more. 

The influences of various HOSDBTs on the DIR of the 

sandwich piezoelectric nano-beam are studied and achieved 

results represented in Fig. 6. With attention to these results 

can be deduced that FSDBT has more stability with respect 

to other HOSDBTs. Therefore it can be said that this theory 

(FSDBT) provides more stiffness for the sandwich 

piezoelectric nano-beam. 

 

 

 
 

 

Fig. 4 The effects of the Pasternak foundation coefficients 

on DIR 

Table 1 The material and geometrical properties of the constituent material of the sandwich piezoelectric nano-beam 

(Ke et al. 2010, Rafiee et al. 2013, Arefi and Zenkour 2017a-i) 

Materials Density (
𝒌𝒈

𝒎𝟑
) 

Young’s moduli 

(GPa) 

Heat expansion 

coefficient (1/𝑪𝒐) 
𝒆𝟑𝟏(𝐂/𝐦𝟐) 𝒆𝟏𝟓(𝐂/𝐦𝟐) 𝒌𝟏𝟏(𝐂/𝐕𝐦) 𝒌𝟑𝟑(𝐂/𝐕𝐦) 

Piezoelectric 5.55 × 103 226 0.9 × 10−𝟔 −2.2 5.8 5.64 × 10−𝟗 6.35 × 10−𝟗 

CNT 1400 5.6 × 103 3.4584 × 10−𝟔     
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Fig. 5 The effects of the 
𝐿

ℎ
 ratio on DIR 

 

 

 

Fig. 7 presented the effects of small scale parameters on 

the DIR of the sandwich piezoelectric nano-beam. 

According to these results can be concluded that increasing 

the nonlocal and strain gradient parameters lead to shift the 

DIR to left and right as this cause decrease and increase the 

stability of the sandwich nano-beam, respectively. Also 

enhancing the nonlocal and strain gradient parameter cause 

the DIR becomes wider and narrower. 
 

 

 

 

Fig. 6 The effects of various HOSDBTs on DIR of the 

sandwich piezoelectric nano-beam 
 

 

 

 
 

 

Fig. 7 The effects of nonlocal parameter and strain 

gradient parameter on DIR of the sandwich 

piezoelectric nano-beam 

In Fig. 8, the effects of the volume fraction of the CNTs 

(𝑉𝐶𝑁𝑇) on the DIR of sandwich piezoelectric nano-beam are 

investigated. Regarding to these results can be deduced that 

enhancing the volume fraction of the CNTs in top and 

bottom face-sheets leads to shift DIR to right therefore this 

causes the instability to occur at high frequencies and DIR 

become narrower. Also, with narrower range of instability, 

the frequencies that fall within the range of instability are 

less. 

The dynamic load factor of the sandwich piezoelectric 

nano-beam versus to non-dimensional excitation frequency 

is calculated for various 
ℎ𝑓

ℎ𝐻
 ratio and these results are 

presented in Fig. 9. According to aforementioned results, it 

can be concluded that increasing 
ℎ𝑓

ℎ𝐻
 ratio leads to decrease 

of non-dimensional excitation frequency and therefore 

instability is occurred in low frequency. In other hand with 

attention to obtained results can be concluded that DIR 

becomes wider by increasing 
ℎ𝑓

ℎ𝐻
 ratio. 

The influences of the various distributions of the CNTs 

in face-sheets on the DIR of sandwich piezoelectric nano-

beam are investigated and achieved results represented in 

Fig. 10. Regarding to aforementioned results can be 

deduced that DIR is occurred in high frequencies for VA 

pattern and in low frequency for AV pattern. 

The effects of the applied voltage and temperature 

change on the DIR of the sandwich piezoelectric nano-beam 

are showed in Fig. 11. According to these results, increasing 

the temperature change and applied voltage cause the DIR 

shift to left as instability occur in low frequencies. Also 

 

 

 

 

Fig. 8 The effects of various volume fraction of CNTs 

on DIR of the sandwich piezoelectric nano-beam 

 

 

 

 

Fig. 9 The effects of various 
ℎ𝑓

ℎ𝐻
 on DIR of the sandwich 

piezoelectric nano-beam 
 

167



 

Mohammad Arefi, Mahmoud Pourjamshidian and Ali Ghorbanpour Arani 

 

Fig. 10 The effects of various patterns of CNTs in face-

sheets on DIR of the sandwich piezoelectric 

nano-beam 

 

 

 
 

 

Fig. 11 The effects of applied voltage and temperature 

change on DIR of the sandwich piezoelectric 

nano-beam 

 

 

enhancing of the applied voltage leads to the DIR become 

wider and therefore instability occurs in a greater range of 

excitation frequencies. 

 

 

7. Conclusions 
 

Analysis of the DIR of the sandwich piezoelectric nano-

beams with FG-CNTRC face-sheets was implemented in 

this investigation. Various HOSDBTs were employed to 

investigate DIR of the piezoelectric sandwich nano-beams 

with FG-CNTRC face-sheets. Also the applied constant 

voltage and also the nonlocal strain gradient theory to 

involve the nonlocal and strain gradient parameters were 

considered in deriving the equations of motion. Then, the 

governing equations were solved by the DQM and the 

dynamic laud factor versus non-dimensional excitation 

frequencies for DIR was obtained. The effects of some 

parameters such as various shear deformation theories, 

nonlocal parameter, the volume fraction of the CNTs, 

various distributions of the CNTs, the ratio of the face-

sheets thickness to core thickness and other important 

parameters in designing and controlling the DIR were 

studied in detail. The most important results of this study 

are presented as: 

 

(1) The nonlocal parameters   𝑒𝑎0  and the strain 

gradient parameter (𝑙𝑚 ) have significant effects on 

the DIR of the sandwich piezoelectric nano-beam 

with FG-CNTRC face sheets. It is observed that 

enhancing aforementioned parameters leads to shift 

the DIR to left and right, respectively as instability 

occur in low and high excitation frequencies. 

(2) With attention to results, can be deduced that 

various HOSDBTs have the important effects on the 

DIR analysis. Also it can be concluded that among 

the various HOSDBTs, FSDBT has larger excitation 

frequencies of the DIR with respect to other 

HOSDBTs. 

(3) Investigation on the effect of the Visco-elastic-

Pasternak foundation parameters on the DIR of the 

sandwich piezoelectric nano-beam leads to 

important conclusions. Increasing the Winkler (𝐾𝑤 ), 

damping (𝐶𝑑 ) and shearing (𝐾𝑠) coefficients caused 

that the excitation frequencies increases as DIR 

occur in larger excitation frequencies. Also it is 

noted that enhancing aforementioned parameters 

leads to DIR becomes narrower range. In addition 

the applied constant voltage and temperature change 

has important influences on DIR of the sandwich 

piezoelectric nano-beam as increasing the 

mentioned parameters leads to decreasing excitation 

frequencies for instability and instability occurs in a 

wider range of excitation frequencies. 

(4) Volume fraction of the CNTs in face-sheets can 

strongly change the non-dimensional excitation 

frequencies for DIR of sandwich piezoelectric nano-

beam. The numerical results indicate that DIR for 

different HOSDBTs shift to right with increasing 

the volume fraction of CNTs in face-sheets. Also it 

is deduced that enhancing the volume fraction of 

CNTs causes DIR occur in a narrower range of the 

excitation frequencies and also VA pattern is more 

stable with respect to other distribution pattern. 

 

 

References 
 
Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (‎2014‎), 

“An efficient and simple refined theory for buckling and free 

vibration of exponentially graded sandwich plates under various 

boundary conditions”, J. Sandw. Struct. Mater., 16(3), 293-318‎. 

Amine, Z., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), 

“A mechanical response of functionally graded nanoscale beam: 

an assessment of a ‎refined nonlocal shear deformation theory 

beam theory”, Struct. Eng. Mech., Int. J., 54(4), 693-710. 

Ansari, R., Faghih Shojaei, M., Mohammadi, V., Gholami, R. and 

Sadeghi, S. (2014a), “Nonlinear forced vibration analysis of 

functionally graded carbon nanotube-reinforced composite 

Timoshenko beams”, Compos. Struct., 113, 316-327. 

Ansari, R., Shojaei, M.F., Mohammadi, V., Gholami, R. and 

Darabi, M.A. (2014b), “Nonlinear vibrations of functionally 

graded mindlin microplates based on the modified couple stress 

theory”, Compos. Struct., 114, 124-134. 

168



 

Dynamic instability region analysis of sandwich piezoelectric nano-beam with FG-CNTRCs face-sheets based on... 

Ansari, R., Mohammadi, V., Faghih Shojaei, M., Gholami, R. and 

Sahmani, S. (2014c), “On the forced vibration analysis of 

Timoshenko nanobeams based on the surface stress elasticity 

theory”, Compos. Part B: Eng., 60, 158-166. 

Arefi, M. (2016), “Analysis of wave in a functionally graded 

magneto-electro-elastic nano-rod using nonlocal elasticity 

model subjected to electric and magnetic potentials”, Acta 

Mech., 227, 2529-2542. 

Arefi, M. and Allam, M.N.M. (2015), “Nonlinear responses of an 

arbitrary FGP circular plate resting on the Winkler-Pasternak 

foundation”, Smart. Struct. Syst., Int. J., 16(1), 81-100. 

Arefi, M. and Zenkour, A.M. (2017a), “Transient analysis of a 

three-layer microbeam subjected to electric potential”, Int. J. 

Smart. Nano. Mater., 8(1), 20-40. 

Arefi, M. and Zenkour, A.M. (2017b), “Size-dependent free 

vibration and dynamic analyses of piezo-electro-magnetic 

sandwich nanoplates resting on viscoelastic foundation”, Phys 

B: Cond. Matt., 521, 188-197. 

Arefi, M. and Zenkour, A.M. (2017c), “Electro-magneto-elastic 

analysis of a three-layer curved beam”, Smart Struct. Syst., Int. 

J., 19(6), 695-703. 

Arefi, M. and Zenkour, A.M. (2017d), “Influence of magneto-

electric environments on size-dependent bending results of 

three-layer piezomagnetic curved nanobeam based on sinusoidal 

shear deformation theory”, J. Sandw. Struct. Mater. 

DOI: 1099636217723186 

Arefi, M. and Zenkour, A.M. (2017e), “Effect of thermo-magneto-

electro-mechanical fields on the bending behaviors of a three-

layered nanoplate based on sinusoidal shear-deformation plate 

theory”, J. Sandw. Struct. Mater. DOI: 1099636217697497 

Arefi, M. and Zenkour, A.M. (2017f), “Size dependent vibration 

and bending analyses of the piezomagnetic three-layer 

nanobeams”, Appl. Phys. A, Mater. Sci. Processing. 

Arefi, M. and Zenkour, A.M. (2017g), “Thermo-electro-

mechanical bending behavior of sandwich nanoplate integrated 

with piezoelectric face-sheets based on trigonometric plate 

theory”, Compos. Struct., 162, 108-122. 

Arefi, M. and Zenkour, A.M. (2017h), “Transient sinusoidal shear 

deformation formulation of a size-dependent three-layer piezo-

magnetic curved nanobeam”, Acta. Mech., 228(10), 3657-3674. 

Arefi, M. and Zenkour, A.M. (2017i), “Vibration and bending 

analysis of a sandwich microbeam with two integrated piezo-

magnetic face-sheets”, Compos. Struct., 159, 479-490. 

Arefi, M. and Zenkour, A.M. (2017j), “Wave propagation analysis 

of a functionally graded magneto-electro-elastic nanobeam rest 

on Visco-Pasternak foundation”, Mech. Res. Commun., 79, 51-

62. 

Arefi, M. and Zenkour, A.M. (2018), “Employing the coupled 

stress components and surface elasticity for nonlocal solution of 

wave propagation of a functionally graded piezoelectric Love 

nanorod model”, J. Intel. Mater. Syst. Struct., 28(17), 2403-

2413. 

Arefi, M., Pourjamshidian, M. and Ghorbanpour Arani, A. (2017), 

“Application of nonlocal strain gradient theory and various 

shear deformation theories to nonlinear vibration analysis of 

sandwich nano-beam with FG-CNTRCs face-sheets in electro-

thermal environment”, Appl. Phys. A, 123, 323. 

Arefi, M. Zamani, M.H. and Kiani, M. (2018), “Size-dependent 

free vibration analysis of three-layered exponentially graded 

nanoplate with piezomagnetic face-sheets resting on Pasternak’s 

foundation”, J. Intel. Mater. Syst. Struct., 29(5), 774-786. 

Arvin, H. and Bakhtiari-Nejad, F. (2013), “Nonlinear free 

vibration analysis of rotating composite Timoshenko beams”, 

Compos. Struct., 96, 29-43. 

Ashrafi, B. and Hubert, P. (2006), “Vengallatore S. Carbon 

nanotube-reinforced composites as structural materials for 

microactuators in microelectromechanical systems”, 

Nanotechnol., 17, 4895-4903. 

Bennoun, M., Sid Ahmed Houari, M. and Tounsi, A. (2016), “A 

novel five variable refined plate theory for vibration analysis of 

functionally ‎graded sandwich plates”, Mech. Adv. Mater. 

Struct., 23(4), 423-431. 

Boukhari, A., Hassen, A.A., Tounsi, A. and Hassan, S. (2016), “An 

efficient shear deformation theory for wave propagation of 

functionally graded ‎material plates”, Struct. Eng. Mech., Int. J., 

57(5), 837-859. 

Bousahla, A.A., Benyoucef, S., Tounsi, A. and Hassan, S. (2016), 

“On thermal stability of plates with functionally graded 

coefficient of thermal expansion‎”, Struct. Eng. Mech., Int. J., 

60(2), 313-335‎. 

Chen, L.-W., Lin, C.-Y. and Wang, C.-C. (2002), “Dynamic 

stability analysis and control of a composite beam with 

piezoelectric layers”, Compos. Struct., 56, 97-109. 

Ebrahimy, F. and Hosseini, S.-H. (2016), “Nonlinear electroelastic 

vibration analysis of NEMS consisting of double-viscoelastic 

nanoplates”, Appl. Phys. A, 122(10), 922. 

El-Haina, F., Bakora, A., Anis Bousahla, A. and Tounsi, A. (2017), 

“A simple analytical approach for thermal buckling of thick 

functionally graded sandwich plates‎”, Struct. Eng. Mech., Int. 

J., 63(5), 585-595‎. 

Eringen, A.C. (1983), “On differential equations of nonlocal 

elasticity and solutions of screw dislocation and surface waves”, 

J. Appl. Phys., 54(9), 4703-4710. 

Esawi, A. and Farag, M. (2007), “Carbon nanotube reinforced 

composites: potential and current challenges”, Mater. Des., 28, 

2394-2401. 

Fantuzzia, N., Tornabenea, F., Bacciocchia, M. and Dimitri, R. 

(2017), “Free vibration analysis of arbitrarily shaped 

Functionally Graded Carbon Nanotube-reinforced plates”, 

Compos. Part B: Eng., 115, 384-408. 

Fu, Y., Wang, J. and Mao, Y. (2012), “Nonlinear analysis of 

buckling, free vibration and dynamic stability for the 

piezoelectric functionally graded beams in thermal 

environment”, Appl. Math. Model., 36, 4324-4340. 

Ghorbani Shenas, A., Malekzadeh, P. and Ziaee, S. (2017), 

“Vibration analysis of pre-twisted functionally graded carbon 

nanotube reinforced composite beams in thermal environment”, 

Compos. Struct., 162(15), 325-340. 

Ghorbanpour Arani, A., Kolahchi, R., Mosallaie Barzoki, A.A., 

Mozdianfard, M.R. and Noudeh Farahani, M. (2012a), “Elastic 

foundation effect on nonlinear thermo-vibration of embedded 

double-layered orthotropic graphene sheets using differential 

quadrature method”, Proceedings of the Institution of 

Mechanical Engineers, Part C: J. Mech. Eng. Sci., 1-18. 

Ghorbanpour Arani, A., Vossough, H., Kolahchi, R. and Mosallaie 

Barzoki, A.A. (2012b), “Electro-thermo nonlocal nonlinear 

vibration in an embedded polymeric piezoelectric micro plate 

reinforced by DWBNNTs using DQM”, J. Mech. Sci. Technol., 

26 (10), 3047-3057. 

Ghorbanpour Arani, A., Roudbari, M.A. and Amir, S. (2012c), 

“Nonlocal vibration of SWBNNT embedded in bundle of CNTs 

under a moving nanoparticle”, Physica B, 407, 3646-3653. 

Ghorbanpour Arani, A., Vossough, H. and Kolahchi, R. (2015a), 

“Nonlinear vibration and instability of a visco-Pasternak 

coupled double-DWBNNTs-reinforced microplate system 

conveying microflow”, J. Mech. Eng. Sci., 1-17. 

Ghorbanpour Arani, A., Kolahchi, R. and Zarei, M.S. (2015b), 

“Visco-surface-nonlocal piezoelasticity effects on nonlinear 

dynamic stability of graphene sheets integrated with ZnO 

sensors and actuators using refined zigzag theory”, Compos. 

Struct., 132(15), 506-526. 

Hichem, B., Benrahou, K.H., Bousahla, A.A. and Tounsi, A. 

(2017), “A nonlocal zeroth-order shear deformation theory for 

nonlinear postbuckling of ‎nanobeams”, Struct. Eng. Mech., Int. 

169



 

Mohammad Arefi, Mahmoud Pourjamshidian and Ali Ghorbanpour Arani 

J., 62(6), 695-702. 

Kanani, A.S., Niknam, H., Ohadi, A.R. and Aghdam, M.M. 

(2014), “Effect of nonlinear elastic foundation on large 

amplitude free and forced vibration of functionally graded 

beam”, Compos. Struct., 115, 60-68. 

Ke, L.-L., Yang, J. and Kitipornchai, S. (2010), “Nonlinear free 

vibration of functionally graded carbon nanotube-reinforced 

composite beams”, Compos. Struct., 92, 676-683. 

Khetir, H., Bouiadjra, M.B., Houari, M.S.A. and Tounsi, A. 

(2017), “‎A new nonlocal trigonometric shear deformation 

theory for thermal buckling analysis of embedded ‎nanosize FG 

plates”, Struct. Eng. Mech., Int. J., 64(4), 391-402. 

Kolahchi, R. and Moniri Bidgoli, A.M. (2016), “Size-dependent 

sinusoidal beam model for dynamic instability of single-walled 

carbon nanotubes”, Appl. Math. Mech. -Engl. Ed., 37(2), 265-

274. 

Kolahchi, R., Safari, M. and Esmailpour, M. (2016), “Dynamic 

stability analysis of temperature-dependent functionally graded 

CNT-reinforced visco-plates resting on orthotropic elastomeric 

medium”, Compos. Struct., 150, 255-265. 

Komijani, M., Esfahani, S.E., Reddy, J.N., Liu, Y.P. and Eslami, 

M.R. (2014), “Nonlinear thermal stability and vibration of 

pre/post-buckled temperature-and microstructure-dependent 

functionally graded beams resting on elastic foundation”, 

Compos. Struct., 112, 292-307. 

Li, L. and Hu, Y. (2016), “Wave propagation in fluid-conveying 

viscoelastic carbon nanotubes based on nonlocal strain gradient 

theory”, Comput. Mater. Sci., 112, 282-288. 

Li, J., Wu, Z., Kong, X., Li, X. and Wu, W. (2014), “Comparison 

of various shear deformation theories for free vibration of 

laminated composite beams with general lay-ups”, Compos. 

Struct., 108, 767-778. 

Li, L., Hu, Y. and Ling, L. (2015), “Wave propagation in 

viscoelastic single-walled carbon nanotubes with surface effect 

under magnetic field based on nonlocal strain gradient theory”, 

Physica E, 75, 118-124. 

Liew, K.M., Yang, J. and Kitipornchai, S. (2003), “Postbuckling of 

piezoelectric FGM plates subject to thermo-electro-mechanical 

loading”, Int. J. Solids Struct., 40, 3869-3892. 

Liew, K.M., Hu, Y.G. and He, X.Q. (2008), “Flexural wave 

propagation in single-walled carbon nanotubes”, J. Comput. 

Theor. Nanosci., 5(4), 581-586. 

Maraghi, Z.K., Ghorbanpour Arani, A., Kolahchi, R., Amir, S. and 

Bagheri, M.R. (2013), “Nonlocal vibration and instability of 

embedded DWBNNT conveying viscose fluid”, Compos.: Part 

B, 45, 423-432. 

Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. 

(2015), “Free vibration of viscoelastic double-bonded polymeric 

nanocomposite plates reinforced by FG-SWCNTs using MSGT, 

sinusoidal shear deformation theory and meshless method”, 

Compos. Struct., 131, 654-671. 

Natarajan, S., Haboussi, M. and Manickam, G. (2014), 

“Application of higher-order structural theory to bending and 

free vibration analysis of sandwich plates with CNT reinforced 

composite”, Compos. Struct., 113, 197-207. 

Rafiee, M., Yang, J. and Kitipornchai, S. (2013), “Large amplitude 

vibration of carbon nanotube reinforced functionally graded 

composite beams with piezoelectric layers”, Compos. Struct., 

96, 716-725. 

Rafiee, M., He, X.Q. and Liew, K.M. (2014), “Non-linear dynamic 

stability of piezoelectric functionally graded carbon nanotube-

reinforced composite plates with initial geometric 

imperfection”, Int. J. Non-Linear Mech., 59, 37-51. 

Reddy, J.N. (2007), “Nonlocal theories for bending, buckling and 

vibration of beams”, Int. J. Eng. Sci., 45, 288-307. 

Reddy, J.N. and El-Borgi, S. (2014), “Eringen’s nonlocal theories 

of beams accounting for moderate rotations”, Int. J. Eng. Sci., 

82, 159-177. 

Shen, H.-S. and Zhang, C.-L. (2012), “Non-linear analysis of 

functionally graded fiber reinforced composite laminated plates, 

Part I: Theory and solutions”, Int. J. Non-Linear Mech., 47, 

1045-1054. 

Simsek, M. and Reddy, J.N. (2013a), “A unified higher order beam 

theory for buckling of a functionally graded microbeam 

embedded in elastic medium using modified couple stress 

theory”, Compos. Struct., 101, 47-58. 

Simsek, M. and Reddy, J.N. (2013b), “Bending and vibration of 

functionally graded microbeams using a new higher order beam 

theory and the modified couple stress theory”, Int. J. Eng. Sci., 

64, 37-53. 

Tornabene, F., Fantuzzi, N., Ubertini, F. and Viola, E. (2014a), 

“Strong formulation finite element method based on differential 

quadrature: a survey”, Appl. Mech. Rev., 67, 020801. 

Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2014b), “The 

strong formulation finite element method: stability and 

accuracy”, Frattura ed Integrità Strutturale, 29, 251-265. 

Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E. (2016), 

“Effect of agglomeration on the natural frequencies of 

functionally graded carbon nanotube-reinforced laminated 

composite doubly-curved shells”, Compos. Part B: Eng., 89, 

187-218. 

Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2017), “Linear 

static response of nanocomposite plates and shells reinforced by 

agglomerated carbon nanotubes”, Compos. Part B: Eng., 115, 

449-476. 

Wu, H., Kitipornchai, S. and Yang, J. (2017), “Imperfection 

sensitivity of thermal post-buckling behaviour of functionally 

graded carbon nanotube-reinforced composite beams”, Appl. 

Math. Model., 42, 735-752. 

Xua, R. and Wu, Y. (2007), “Static, dynamic, and buckling 

analysis of partial interaction composite members using 

Timoshenko’s beam theory”, Int. J. Mech. Sci., 49, 1139-1155. 

Yahia, S.A., Hassen, A.A., Mohammed Sid Ahmed, H. and Tounsi, 

A. (2015), “‎Wave propagation in functionally graded plates with 

porosities using various ‎higher-order shear deformation plate 

theories”, Struct. Eng. Mech., Int. J., 53(6), 1143-1165. 

Yang, Y. and Lim, C.W. (2012), “Non-classical stiffness 

strengthening size effects for free vibration of a nonlocal 

nanostructure”, Int. J. Mech. Sci., 54, 57-68. 

Zhang, Z.J. and Paulino, G.H. (2007), “Wave propagation and 

dynamic analysis of smoothly graded heterogeneous continua 

using graded finite elements”, Int. J. Solids Struct., 44(11), 

3601-3626. 

Zidi, M., Tounsi, A., Sid Ahmed Houari, M., Adda Bedia, E.-A. 

and Anwar Bég, O. (2014), “Bending analysis of FGM plates 

under hygro-thermo-mechanical loading using a four ‎variable 

refined plate theory”, Aerosp. Sci. Tech., 34, 24-34. 

 

 

CC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

170



 

Dynamic instability region analysis of sandwich piezoelectric nano-beam with FG-CNTRCs face-sheets based on... 

Abbreviation 
 

FG Functionally Graded 

CNTs Carbon Nanotubes 

TSDBT Trigonometric Shear Deformation Beam Theory 

ESDBT Exponential Shear Deformation Beam Theory 

HSDBT Hyperbolic Shear Deformation Beam Theory 

ASDBT Aydogdu Shear Deformation Beam Theory 

SWCNT Single-Walled Carbon Nanotube 

CFs Carbon Fibers 

CNTRCs Carbon Nanotube-Reinforced Composites 

MEMS Micro-Electro-Mechanical Systems 

NEMS Nano-Electro-Mechanical Systems 
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