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1. Introduction 
 

In recent years, many papers have studied the 

functionally graded (FG) materials (e.g., Amar et al. 2018, 

Arioui et al. 2018, Bellifa et al. 2017, Benlahcen et al. 

2018, Fourn et al. 2018, Hachemi et al. 2017, Hebbar et al. 

2018, Houari et al. 2018, Meftah et al. 2017, Sidhoum et al. 

2017, Dehrouyeh-Semnani 2017, 2018, Zenkour and 

Radwan 2019, Zenkour 2018), also many papers have 

considered the effect of material length scale in the study of 

solid structures at micro and/or nanometer scales (e.g., 

Ghayesh 2018, Ghayesh and Farajpour 2018, Ghayesh et al. 

2018, Malikan et al. 2018, Ebrahimi and Habibi 2016, Attia 

and Rahman 2018, She et al. 2017a, b, Attia 2017, Heydari 

and Shariati 2018, Heydari 2018a, b, Dehrouyeh-Semnani 

et al. 2017, Karami et al. 2018c, Radic 2018, Ahouel et al. 

2016, Akgöz and Civalek 2017b, Ebrahimi and Barati 2018, 

Arefi and Zenkour 2017, 2018). Among these papers, 

Eltaher et al. (2018a) preformed the analysis of crack 

occurs under unsteady pressure and temperature in a natural 

gas facility by applying FGM, Eltaher et al. (2018b) also 

used a modified porosity model in bending analysis of 

functionally graded porous nanobeams. She et al. (2017a) 

performed the thermal buckling and post-buckling analysis 

of FG beams using various beam theories. 

On the other hand, many non-classical theories have 

been put forward in the field of nano-mechanics, among 

which the Eringen nonlocal theory (Eringen 1998) is widely 

used due to the fact that the nonlocal theory contains only 
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one material parameter and can reasonably explain the 

mechanical properties of some nanostructures (Numanoğlu 

et al. 2018). However, the Eringen theory has its 

limitations, which has been discussed by some scholars. For 

example, Shaat and Abdelkefi (2017) proved that the 

nonlocal theory is not sufficient to explain the mechanical 

properties of nanostructures well. Thus, they used a 

generalized non-local elastic theory with two non-local 

scale parameters to study the mechanical properties of 

nanostructures. Besides, Eringen’s nonlocal integral law is 

inapplicable to nanostructures of engineering interest due to 

confliction between constitutive and equilibrium require-

ments (Romano and Barretta 2017). All difficulties 

disappear if a stress-driven nonlocal integral formulation 

(Barretta and Sciarra 2018, Barretta et al. 2018, 2019) is 

adopted. In addition, the stiffness enhancement effect which 

can be capture by strain graded theory and modified 

coupled stress theory (Mindlin 1965, Aifantis 1992, Akgöz 

and Civalek 2012, 2013a, b, 2017a) cannot be characterized 

by non-local elastic theory. Since the Eringen nonlocal 

theory and strain gradient theory describe two completely 

different physical properties at the nanometer scale. Lim et 

al. (2015) put forward a new high-order non-local strain 

gradient theory which is a combination of the classical non-

local theory and strain gradient theory. This theory extends 

the classic nonlocal elastic theory, which can characterize 

two different stiffness effects. Following nonlocal strain 

gradient theory, many researchers (e.g., Shahverdi and 

Barati 2017, Xu et al. 2017, Sahmani and Aghdam 2017, Lu 

et al. 2017, 2019, Ghayesh and Farajpour 2018, She et al. 

2018a, b, c, d, 2019, Malikan et al. 2018, Ebrahimi and 

Farazmandnia 2018, Malikan and Nguyen 2018, Faleh et al. 

2018, Apuzzo et al. 2018, Karami et al. 2018a, b, Karami 

and Janghorban 2019, Li et al. 2018, Rajasekaran and 
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Khaniki 2017, Ebrahimi and Dabbagh 2018, Tang et al. 

2019, Aria and Biglari 2018, Amiri et al. 2018) have studied 

the mechanical and acoustic properties of nanostructures in 

detail. 

The carbon nanotube is a kind of new carbon material, 

some papers have studied the properties of nanotubes. For 

example, Eltaher et al. (2018c) presented the vibration 

analysis of size-dependent carbon nanotubes (CNTs), 

Eltaher et al. (2019a) also discussed the characterization 

and behaviors of single walled carbon nanotube, Eltaher et 

al. (2019b) also studied the modal participation of fixed–

fixed single-walled carbon nanotube with vacancies. 

Malikan et al. (2019) presented the transient response 

analysis of CNTs with an internal and external damping. 

Although there is a lot of literature on nanobeams, 

nanoplates, and nanotubes, relatively little research has 

been done on double-layered nanostructures. 

The double-layered nanotubes systems are composed of 

two parallel nanotubes connected continuously through a 

coupled medium. These nanometer systems are widely used 

in the electromechanical systems of nanometer (Khaniki 

2018, Karličić et al. 2016, Mehar and Panda 2019). 

Therefore, it is of great significance to study the wave 

propagation and vibration behaviors of these structures. For 

example, Murmu and Adhikari (2010) studied the vibration 

of the double-nanobeam system. Murmu and Adhikari 

(2011) also discussed the axial instability of double-

nanobeam-systems, and they pointed out that the buckling 

loads are independent of the stiffness of the springs in the 

in-phase type buckling. For Murmu and Adhikari’ works 

(Murmu and Adhikari 2010, 2011), the Euler-Bernoulli 

beam theory in conjunction with the Eringen nonlocal 

theory is employed to build the size-dependent model, and 

the properties of the material are independent of porosity, 

temperature and humidity. Due to the fact that the porous 

materials have ordered porous structure and high surface 

area, which are very important for application in the impact 

damping, noise insulation, catalysis, adsorption, separation, 

ion exchange and chemical sensing fields because of their 

unique porous structures and surface performances. 

Therefore, it is necessary and urgent to research on the 

mechanical properties of double-nanostructures systems. 

Based on Euler-Bernoulli beam theory in conjunction with a 

general bi-Helmholtz nonlocal strain-gradient elasticity 

model which incorporates three material length parameters, 

Barati (2017) studied the wave propagation in the porous 

double-nanobeam systems made of functionally graded 

materials subjected to the combination of thermal and 

mechanical loadings, he pointed out that the phase velocity 

can be decreased as the temperature goes up, besides, the 

presence of porosity can decrease the phase velocity. For 

Barati’s work (Barati 2017), the shear deformation effects 

are neglected and hygro-thermal environment is not 

considered. Therefore, it is necessary that the shear 

deformation and hygro-thermal environment should be 

considered to investigate the wave propagation of the 

double nanobeam systems. 

At present, the existing literatures on porous nanotubes 

are still relatively limited, and the study on wave 

propagation of porous nanotubes is much scarcer. In a word, 

there is no study investigating the wave propagation of 

porous double-layered nanotubes systems in hygro-thermal 

environment. Therefore, the present paper aims to fill in this 

gap. To this end, based on nonlocal strain gradient theory, a 

porosity-dependent and temperature-dependent model is 

developed for the double-layered nanotubes systems. The 

nanotubes are made of functionally graded porous 

materials. Porosity-dependent material properties are 

estimated via a modified power-law rule. The results show 

that the wave propagation characteristics of the double-

layered nanotubes systems are significantly influenced by 

porosity, hygro-thermal loadings, material composition, 

small scaling parameters, interlayer spring, and wave 

number. The results which are observed here can be served 

as a benchmark results for study the porous double 

nanotubes systems. 
 

 

2. Formulations 
 

Consider a double-FG nanotube-system as shown in Fig. 

1, the two nanotubes are referred to as nanotube-1 and 

nanotube-2, the nanotubes are considered to be of length L, 

outer radius R0, inner radius Ri, undergoing flexural 

vibration of displacement w(x,t). In addition, the material 

properties (including Young’s modulus E, thermal 

expansion coefficient α, mass density 𝜌,  moisture 

expansion coefficient 𝛾, Poisson’s ratio 𝜐) only vary along 

the r direction as a power functions (She et al. 2017b) 
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Here, K is the power law index, β is the porosity volume 

fraction, the subscript “c” stands for ceramic, “m” is for 

metal, and the material properties are listed in Table 1. 

Zhang and Fu’ tube model is employed in this paper 

with the following displacement field (Zhang and Fu 2013, 

She et al. 2017b, 2018b, c, d, Babaei et al. 2019a, b) 
 

 

2 0u  
   3 , , , ,u x y z t w x t

 

(2) 

 

 

 

Fig. 1 Configuration of the double nanotubes. The picture 

on the right is from She et al. (2018b) 
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in which 

 

 
(3) 

 

In Eq. (2), u1, u2 and u3 are the displacements along the 

x, y, and z directions, respectively, u is the axial 

displacement (along the x direction), w is the deflection 

(along the z direction), ψ is the rotation, and the comma 

followed by an index signifies partial differentiation with 

respect to the space coordinate associated with that index. 

Clearly, for Timoshenko beam model, g(y, z) = 0, for Euler 

beam model, g(y, z) = z. 

The strains of interest are (She et al. 2019) 

 

 

(4) 

 

in which, εxx is the axial strain, γxz and γxy are shear strains. 

Now, Hamilton’s principle can be written as 

 

 
(5) 

 

where, Π is energy functional, t1 and t2 are initial and final 

time, respectively, and 
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in which 
 

 

(7) 

 

in which, NT and NC are the hygro-thermal resultants, and 

the stress resultants Ni, Mi, Pi, Qi, NTi, Kc is interlayer 

spring, mass inertias I0, I1, I2, I3 are evaluated by integration 

of the direct stress across the cross-sectional area, as 
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in which, ΔT and ΔC are temperature and humidity changes, 

respectively, A is the area of the cross section of the 

nanotube. The motion equations can be obtained by 

integrating Eq. (6) into Eq. (5), as 
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The non-local strain gradient theory is employed. This 

theory combines two major advantages of strain gradient 

theory and non-local theory, involving two length scale 

parameters, one is strain gradient parameter l, and the other 
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Table 1 Material Properties for SUS304 (v = 0.3262) and Si3N4 (v = 0.24) (Reddy and Chin 1998, 

Zhong et al. 2016) 

Materials Properties P0 P-1 P1 P2 P3 

Si3N4 

𝐸𝑐(Pa) 348.43e+9 0.0 -3.070e-4 2.160e-7 -8.964e-11 

α𝑐  (1/K) 5.8723e-6 0.0 9.095e-4 0.0 0.0 

ρ
𝑐
 Kg/m3  2370 0.0 0.0 0.0 0.0 

𝛾𝑐(wt%H2O)−1 0.0 0.0 0.0 0.0 0.0 

SUS304 

𝐸𝑚 (Pa) 201.04e+9 0.0 3.079e-4 -6.543e-7 0.0 

α𝑚  (1/K) 12.33e-6 0.0 8.086e-4 0.0 0.0 

ρ
𝑚
 Kg/m3  8166 0.0 0.0 0.0 0.0 

𝛾𝑚(wt%H2O)−1 0.0005 0.0 0.0 0.0 0.0 
 

643



 

Gui-Lin She, Yi-Ru Ren and Fuh-Gwo Yuan 

one is non-local parameter ea. According to the hypothesis 

of non-local strain gradient theory, the relation between 

stress and strain can be expressed as (Lim et al. 2015) 

 

 
(10) 

 

in which, ∇2 is the Laplace operator. 

 For hygro-thermal environments, the stress-displace-

ment relations can be given as 
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in which Γ = 1 ‒ l22, G 𝑟 = 𝐸 𝑟  2 1 + 𝜐 𝑟     is 

shear modulus, 𝜎𝑥𝑥  is the axial stress, 𝛾𝑥𝑧  and 𝛾𝑥𝑦  are 

shear stresses. Integration of stresses across the cross-

section of the nanotubes gives the stress resultants 
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Substitution of Eq. (12) into Eq. (9) yields the equation 

of motion for wave propagation of the double nanotubes 

systems, i.e. 
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Let A11 = A0, ‒2E11 + H11 + D11 =A1, ‒E11 = H11 = A2, B11 

= A4, I0 = I0
*, I1 ‒ 2I2 + I3 = I1

*, ‒I2 + I3 = I2
*, I3 + I3

*, then Eq. 

(14) becomes 
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3. Dispersion relation 
 

In this section, the dispersion behavior of the double 

nanotube system will be examined, the dispersion of the 

wave speed (e.g., phase velocity) will be studied. The 

double-layer nanotube system experiences three kinds of 

motion as 

 

Out of phase:  (16a) 

 

In phase:  (16b) 

 

One nanotube fixed:  (16c) 

 

The solution of governing equations can be presented by 

(She et al. 2018a, d) 

 

 
(17a) 

 

 
(17b) 

 

 
(17c) 

 

in which, 𝑖 =  −1, ω is the circular frequency, κ is the 

wave number, Um, Φm, and Wm are wave amplitudes. 

 

Case 1: Out of phase. Substituting Eq. (17) into the 

second and third equations of Eq. (15), one has 
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From Eqs. (18) and (19), we can obtain two positive 

roots, one of which is a larger one for the shear wave and 

the other one is for the bending wave. In the following 

study, only the bending wave will be presented and studied. 

Upon rearrangement, Eqs. (18)-(19) become 
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The present phase speed 𝐶𝑝
𝑝𝑟𝑒𝑠𝑒𝑛𝑡

of the flexural wave 

can be determined as 
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and 
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(24) 

Case 2: In phase. Substituting Eq. (17) into the second 

and third equations of Eq. (15) 
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Hence, the flexural phase velocity, is given by 
 

 

(27) 

 

In which, a, b, and c have the same forms as Eq. (23), 

and 
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Case 3: One nanotube fixed. Substituting Eq. (17) into 

the second and third equations of Eq. (15) 
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Solution of Eqs. (29)-(30) gives 
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 2
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*

10 1 3f I  

(32) 

 

 

4. For Timoshenko beam model 
 
For Timoshenko beam model, g(y, z) = 0, in that case, 

Eq. (15) becomes 
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Using similar steps, we can obtain the expressions of the 

phase velocities 𝐶𝑝
𝑇𝑖𝑚𝑜𝑠 ℎ𝑒𝑛𝑘𝑜  for Timoshenko beam model. 

 

Case 1: Out of phase 
 

 

(34) 

 

in which, κs is shear correction coefficient which have the 

form  (She et 

al. 2017b). 
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Case 2: In phase 
 

 

(36) 

 

In which 
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Case 3: One nanotube fixed 
 

 

(38) 

In which 
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(39) 

 

 

5. For Euler-Bernoulli beam model 
 

For Euler-Bernoulli beam model, g(y, z) = z, in that 

case, Eq. (15) becomes 
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(40b) 

 

Then, we can obtain the expressions of phase velocities 

𝐶𝑝
𝐸𝑢𝑙𝑒𝑟  for Euler beam model. 

 

Case 1: Out of phase 
 

 

(41) 

 

Case 2: In phase 
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Case 3: One nanotube fixed 
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(4) 

 

It is worth noting that, for the wave propagation analysis 

of nanotubes here, we assume that the waves cannot reach 

the boundary conditions of nanotubes. That is to say, in 

comparison of wavelength, nanotubes may be viewed as 

infinite. In this particular case, wave response will be 

studied far from boundary conditions. 
 

 

6. Examples and analysis 
 

In order to validate the present investigation, numerical 

results are presented. It can be seen from Fig. 2 that Euler 

beam model can present reliable results only when the wave 

number κ < 0.02, while Timoshenko beam model can still 
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(b) In phase 
 

 

(c) One nanotube fixed 

Fig. 2 Flexural phase velocity vs. wavenumber for 

different theories at β = 0.1, R0 = 20 nm, Ri = 10 nm, 

ΔT = ΔC = 0, K = 1, ea = 1 nm, l = 0.2 nm, k = 109 

 

 

give accurate results when wave number κ = 0.1. For higher 

wave numbers, the phase velocity given by the present 

model is higher than that of Timoshenko beam model, and 

at the same time, is lower than that of Euler beam model, 

which indicates considering the shear deformation is 

necessary. Although different models give different results 

for large wave numbers, the trends of the curves presented 

by the three models are consistent. 

To study the effects of non-local parameter and strain 

gradient parameter on phase velocities, the dispersion 

relations of the double-nanotubes systems are shown in Fig. 

2. It can be seen from the figure that before the wave 

number reaches a certain value, the phase velocity increases 

 

(a) Effect of nonlocal parameter ea 
 

 

(b) Effect of strain gradient parameter l 
 

 

(c) Effect of ea/l 

Fig. 3 Flexural phase velocity vs. wavenumber for different 

size parameters at β = 0.1, R0 = 20 nm, Ri = 10 nm, 

ΔT = ΔC = 0, K = 1, k = 109 (Out of phase) 

 

 

with the increase of the wavenumber. According to the 

established model, after a certain wave number, the change 

of phase velocity depends on the values of non-local and 

strain gradient parameters. The results show that the size 

parameters have no effects on the dispersion relations when 

the wavenumber is very small. However, at higher 

wavenumbers, the phase velocity is more affected by the 

size parameters. The Eringen non-local theory only 

considers the softening stiffness with the increase of 

nonlocal parameter. 

The effect of inter-layer stiffness on the phase of double-

layered nanotubes systems is shown in Fig. 4. As can be 

seen from the figure, for Case 1 and Case 3 (Out of phase 
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(a) Out of phase (b) In phase 

 

(c) One nanotube fixed 

Fig. 4 Flexural phase velocity vs. wavenumber for different foundation stiffness at β = 0.1, R0 = 20 nm, Ri = 10 nm, 

ΔT = ΔC = 0, K = 1, ea = 1 nm, l = 0.2 nm 

  

(a) Out of phase (b) In phase 

 

(c) One nanotube fixed 

Fig. 5 Flexural phase velocity vs. wavenumber for different moisture rise at β = 0.1, K = 1, R0 = 20 nm, Ri = 10 nm, 

ΔT = 0, ea = 1 nm, l = 0.2 nm, k = 109 
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and one nanotube fixed, Fig. 4(a) and (c)), the phase 

velocity is related to the value of inter-layer stiffness, and 

the larger the value of inter-layer stiffness is, the larger the 

value of phase velocity is. Moreover, this effect of inter-

layer stiffness on phase velocity is only significant in the 

case of small wave number, and for the case of large wave 

number, the effect of inter-layer stiffness on wave velocity 

is negligible. At the same time, we can see that for the in-

phase case (Fig. 4(b)), the inter-layer stiffness has 

negligible effects on the dispersion curves, and as the inter-

layer stiffness goes up, all the dispersion curves show as 

one curve. 

The influences of temperature and humidity on the 

dispersion relationship are plotted in Figs. 5-6. It can be 
 

 

 

(a) Out of phase 
 

 

(b) In phase 
 

 

(c) One nanotube fixed 

Fig. 6 Flexural phase velocity vs. wavenumber for different 

temperatures at β = 0.1, R0 = 20 nm, Ri = 10 nm, ΔC 

= 0, K = 1, ea = 1 nm, l = 0.2 nm, k = 109 

seen from these figures that the increase of temperature and 

humidity can reduce the phase velocity of the nanotubes. In 

other words, the higher the temperature is (the higher the 

humidity is), the slower the phase velocity is. 

The influences of porosity and power law index on the 

dispersion relation are plotted in Figs. 7-8. When the wave 

number κ = 0.01 (See Fig. 7), the phase velocity increases 

with the increasing of porosity volume fraction, however, 

when the wave number κ = 1, the phase velocity decreases 

with the increasing of porosity volume fraction. In other 

words, as the porosity volume fraction β increases, the 

phase velocity can either rise or decline, depending on the 

wavenumber. Meanwhile, we can see from Fig. 8 that, the 

phase velocities decrease as the power law index K 
 

 

 

(a) Out of phase 
 

 

(b) In phase 
 

 

(c) One nanotube fixed 

Fig. 7 Flexural phase velocity vs. wavenumber for different 

porosity volume fraction at K = 1, R0 = 20 nm, Ri = 

10 nm, ΔT = ΔC = 0, ea = 1 nm, l = 0.2 nm, k = 109. 
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(a) Out of phase 
 

 

(b) In phase 
 

 

(c) One nanotube fixed 

Fig. 8 Flexural phase velocity vs. wavenumber for different 

power law index at β = 0.1, R0 = 20 nm, Ri = 10 nm, 

ΔT = ΔC = 0, ea = 1 nm, l = 0.2 nm, k = 109 

 

 

increases. These phenomena show that the porosity volume 

fraction and material composition have significant effect on 

the dispersion relations of double-layered nanotubes. 
 

 

7. Conclusions 
 

This research work studies the transverse wave 

propagation in the double-layered nanotubes systems by 

using the nonlocal strain gradient theory. Based on the 

above analysis, we can draw the following conclusions 
 

(1) The small scaled parameters on phase velocity are 

negligible for small wavenumbers, but the effects 

are remarkable for large wavenumbers. 

(2) The power law index have significant influences on 

the phase velocity. 

(3) As the porosity volume fraction β increases, the 

phase velocity can either rise or decline, depending 

on the wavenumber. 

(4) The presence of humidity and temperature can 

reduce the phase velocity of the solid waves. 

(5) In the case of large wavenumber, the influence of 

motion type on wave velocity is not obvious. Only 

for small wavenumber, the in-phase type and the 

out-of-phase type give the minimum and maximum 

phase velocities respectively. 
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