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1. Introduction 
 

Beam structure is extensively used in real application, 

ranging from macro-structures (i.e., aerospace, civil, 

marine, mechanical and nuclear structures), to micro-

structures (i.e., actuators, resonators, microphone, switches, 

and RF MEMS) to nano-structures (i.e., atomic force 

microscope, nanoprobes, nanoactuators, nanosensors, and 

nanoswitches). During service life, beams may be subjected 

to various types of dynamic loading. Thus, safe and reliable 

design of beams requires accurate analysis of their 

dynamical behaviors, such as, internal characteristics 

(natural frequencies) and overall behaviors (responses). 

Nikkhoo et al. (2007) studied dynamic behavior and 

modal control of an Euler–Bernoulli beam under the effect 

of moving mass with different number of controlled modes 

and actuators. Adhikary et al. (2012) investigated dynamic 

behavior of reinforced concrete beams under varying rates 

of concentrated loading by using an explicit finite element 

program LS-DYNA. Bouremana et al. (2013) presented a 
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new first-order shear deformation beam theory based on 

neutral surface position for bending and free vibration 

analysis of functionally graded beams. Eltaher et al. (2013, 

2014a, b) studied free vibration of thin and thick nanobeams 

by using finite element method. Bennai et al. (2015) and 

Bourada et al. (2015) developed a new refined hyperbolic 

shear and normal deformation beam theory to study the free 

vibration and buckling of functionally graded (FG) 

sandwich beams. Eltaher et al. (2016) implemented higher-

order shear deformation beam theories to investigate the 

effects of thermal load and shear force on the buckling of 

nanobeams. Tekili et al. (2017) studied free and forced 

vibration of aluminum beams strengthened by carbon/epoxy 

composite under the action of moving loads at a constant 

speed. Bebiano et al. (2017) presented and illustrated the 

application of a semi-analytical Generalised Beam Theory 

(GBT) formulation for the dynamic analysis of high-speed 

railway bridge decks. Katariya and Panda (2018) presented 

numerical evaluation of transient deflection and frequency 

responses of sandwich shell structure using higher order 

theory and different mechanical loadings. Rajasekaran 

(2018) Analyzed axially functionally graded nano-tapered 

Timoshenko beams by element-based Bernstein 

pseudospectral collocation. 

Sınır et al. (2018) exploited perturbation method and 

differential quadrature method to investigate nonlinear free 

and forced vibrations of axially functionally graded Euler-

Bernoulli beams with non-uniform cross-section. Thai et al. 

 
 
 

Free and forced analysis of perforated beams 
 

Alaa A. Abdelrahman 1a, Mohamed A. Eltaher 
2,3, 

Abdallah M. Kabeel 1b, Azza M. Abdraboh 4c and Asmaa A. Hendi 5d 
 

1
 Mechanical Design & Production Department, Faculty of Engineering, Zagazig University, P.O. Box 44519, Zagazig, Egypt 

2
 Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah, Saudi Arabia 

3
 Mechanical Design & Production Department, Faculty of Engineering, Zagazig University, P.O. Box 44519, Zagazig, Egypt 

4
 Physics Department, Faculty of Science, Banha University, Banha, Egypt 

5
 Physics Department, Faculty of Science, University of Jeddah,P.O.Box 80327, Jeddah, Saudi Arabia 

 
 

(Received January 28, 2019, Revised March 19, 2019, Accepted March 26, 2019) 

 
Abstract.  This article presents a unified mathematical model to investigate free and forced vibration responses of perforated 

thin and thick beams. Analytical models of the equivalent geometrical and material characteristics for regularly squared 

perforated beam are developed. Because of the shear deformation regime increasing in perforated structures, the investigation of 

dynamical behaviors of these structures becomes more complicated and effects of rotary inertia and shear deformation should be 

considered. So, both Euler-Bernoulli and Timoshenko beam theories are proposed for thin and short (thick) beams, respectively. 

Mathematical closed forms for the eigenvalues and the corresponding eigenvectors as well as the forced vibration time response 

are derived. The validity of the developed analytical procedure is verified by comparing the obtained results with both analytical 

and numerical analyses and good agreement is detected. Numerical studies are presented to illustrate effects of beam slenderness 

ratio, filling ratio, as well as the number of holes on the dynamic behavior of perforated beams. The obtained results and 

concluding remarks are helpful in mechanical design and industrial applications of large devices and small systems (MEMS) 

based on perforated structure. 
 

Keywords:  resonant frequencies; forced Vibration, perforated beam; dynamical behavior; filling ratio; semi-analytical 

method 

 

489



 

Alaa A. Abdelrahman, Mohamed A. Eltaher, Abdallah M. Kabeel, Azza M. Abdraboh and Asmaa A. Hendi 

(2018) proposed a simple beam theory accounting for shear 

deformation effects with one unknown for static bending 

and free vibration analysis of isotropic nanobeams. Driz et 

al. (2018) presented a novel higher shear deformation 

theory (HSDT) for bending, buckling and free vibration 

investigations of isotropic and functionally graded (FG) 

sandwich plates. Rouhi et al. (2019) illustrated nonlinear 

free and forced vibration of Timoshenko nanobeams based 

on Mindlin's second strain gradient theory. Gul et al. (2019) 

studied dynamics of a functionally graded beam were 

studied using Timoshenko and Euler-Bernoulli beam 

theories considering new spectrums. Greco et al. (2019) 

studied the inverse problem related to the identification of 

the flexural stiffness of an Euler Bernoulli beam to 

reconstruct its profile starting from available response data 

by using genetic algorithm. 

Nowadays, perforation in various structures is necessary 

in design process due to technological reasons, such as, in 

the heat exchangers and nuclear power plants applications 

(Jeong and Amabili 2006), and in ships and offshore 

structures, (Kim et al. 2015). In micro/nano-structures, 

perforation is often necessary for sacrificial-layer removal, 

representing a technological constraint for the designer, De 

Pasquale et al. (2019). In 1996, Pedersen et al. (1996) 

predicted the in plane stiffness behavior and resonance 

frequency of beam-based MEMS resonant sensors by using 

finite difference method. Berggren et al. (2003) modeled 

the properties of regularly periodic holed structures 

materials by equivalent anisotropic materials. Jeong and 

Amabili (2006) studied natural frequencies and the 

corresponding mode shapes of perforated beams, whose 

lower surfaces contacted with an ideal liquid by using 

Rayleigh–Ritz method. Luschi and Pieri (2012) introduced 

closed forms for equivalent bending stiffness in the filled 

and the perforated sections of perforated beam to examine 

bending properties of beams with regular rectangular 

perforations. Tu et al. (2013) presented effects of etching 

holes on complementary metal oxide semiconductor–

capacitive structure by the use of ANSYS simulation. 

Luschi and Pieri (2014) presented closed expressions for 

geometrical properties of perforated beam with periodic 

square to investigate resonance frequencies of slender 

perforated beam. Guha et al. (2015) presented general 

analytical model of capacitance of non-uniform meander 

based RF MEMS shunt switch with perforated structure 

incorporating fringing field effects. Luschi and Pieri (2016) 

developed analytical models to determine the resonance 

frequency of Lamé-mode resonators with a square grid of 

square perforations. Lee (2016) illustrated the effect of 

leakage on the sound absorption of a nonlinear perforated 

panel backed by a cavity. 

She et al. (2017) investigated thermal buckling and 

postbuckling behaviors of functionally graded materials 

(FGM) beams based on Euler–Bernoulli, Timoshenko and 

various higher-order shear deformation beam theories. 

Ghayesh et al. (2017) examined the forced nonlinear size-

dependent vibrations and bending of axially functionally 

graded tapered microbeams incorporating extensibility. 

Guha et al. (2017, 2018) presented a new method for 

design, modelling and optimization of a uniform MEMS 

shunt capacitive switch with perforation on upper beam to 

improve the Pull-in Voltage performance. Abdelbari et al. 

(2018) presented Single variable shear deformation model 

for bending analysis of thick beams. Shafiei and She (2018) 

studied vibration characteristics of two dimensional 

functionally graded (2D-FG) tubes based on higher order 

theory in the thermal environment. Heidari et al. (2018) 

developed numerical study for vibration response of 

concrete beams reinforced by nanoparticles. Bending, 

buckling and free vibration behaviors of perforated nonlocal 

nanobeams has been investigated by Eltaher et al. (2018a, 

b), according to Euler-Bernoulli and Timoshenko beam 

theories with nonlocal differential form of Eringen model. 

They found that, the size-scale and perforation parameters 

such as, perforation size and number of cutouts, have 

significant influences on static and dynamic behavior of 

nanobeams. She et al. (2018a) studied thermal buckling and 

post-buckling behaviors of functionally graded materials 

(FGM) tubes subjected to a uniform temperature rise and 

resting on elastic foundations via a refined beam model. She 

et al. (2018b) predicted wave propagation behaviors of 

functionally graded materials (FG) porous nanobeams based 

on Reddy’s higher-order shear deformation beam theory in 

conjunction with the non-local strain gradient theory. Kerid 

et al. (2019) investigated the magnetic field, thermal loads 

and small scale effects on the dynamic behaviors of 

perforated nanobeams with periodic square networks. 

Cortés et al. (2019) developed geometry simplification of 

open‑cell porous materials for elastic deformation by using 

finite element analysis. 

According to the authors’ knowledge, no researchers 

have attempted to study free and forced vibration responses 

of perforated Euler and Timoshenko beams. Thus, the 

present work aims to fill this gap. So, this article presents 

closed form solutions for resonant frequencies, Eigen mode 

functions, and the forced vibration response for both 

perforated Euler-Bernoulli and Timoshenko beams. Mixed 

Galerkin-Laplace technique is exploited. Numerical studies 

show the significant effects of size and number of cutouts 

on the free and forced behaviors of perforated beam. The 

manuscript is arranged as follows: in Section 2, equivalent 

geometrical parameters, relative bending and shear 

stiffnesses, relative mass and rotary inertia are presented. 

Section 3 presents the mathematical formulation and 

governing equations for perforated beams. Solution 

methodology and closed forms for resonant frequencies, 

Eigen mode functions, and the forced vibration are derived 

in Section 4. The validation with previous respectable work 

is proved in Section 5. Section 6 is devoted to numerical 

results and parametric studies. Finally, at the end 

conclusions are summarized and listed in Section 7. 

 

 

2. Geometric model of perforated beams 
 

In order to keep efficient investigation of the dynamic 

behavior of perforated structures, the structure periodicity 

of the cut out holes should be considered. This section is 

devoted to present analytical closed forms for the equivalent 

geometrical and material characteristics of perforated
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Fig. 1 Geometry of a perforated beam (Luschi and Pieri 

2014) 

 

 

beams. Perforated beam shown in Fig. 1, has a total length 

L, thickness h, width w, with a pattern of square holes of 

spatial period ls , side ls – ts, and number of holes along the 

section are N. The ratio of the spatial period, ts to the period 

length, ls refers to the beam filling ratio, α which can be 

expressed as follows 

 

𝛼 =
𝑡𝑠

𝑙𝑠
       0 ≤ 𝛼 ≤ 1,                    

 𝛼 =  
0      Fully perforated      (𝐴𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙 𝑐𝑎𝑠𝑒)

 1      Fully filled                                                     
  

(1) 

 

2.1 Relative bending stiffness ratio 
 

Assume that, the total induced stress along the cross 

section for both fully filled solid beam and perforated one 

are equal, (Luschi and Pieri 2014, Eltaher et al. 2018a, b).  

Also, the stress distribution throughout the filled segment of 

the perforated beam is assumed to be linear and continuous. 

Based on these assumption, the relative bending stiffness 

ratio of the perforated beam to that of the solid one can be 

expressed as, Luschi and Pieri (2014) 

 
 𝐸𝐼 𝑒𝑞

𝐸𝐼
 

=  
𝛼 𝑁 + 1  𝑁2 + 2𝑁 + 𝛼2 

 1 − 𝛼2 + 𝛼3 𝑁3 + 3𝛼𝑁2 +  3 + 2𝛼 − 3𝛼2 + 𝛼3 𝛼2𝑁 + 𝛼3
  

(2) 

 

where, E is the elasticity modulus of the fully filled beam 

material, I is the second moment of area of the fully filled 

beam. 

The dependency of the relative bending stiffness ratio, 

[EIeq/EI ] is illustrated in Fig. 2. It is noticed that the relative 

bending stiffness increases with increasing the filling ratio 

due to the decrease in the hole size. On the other hand, 

increasing the number of holes at fixed filling ratio results 

in decreasing the relative bending stiffness. This is due to 

increasing the cut out positions with smaller size which 

results in decreasing the bulk material. Moreover, as the 

filling ratio approaches unity; (α > 0.8), the relative bending 

stiffness approaches unity and an insignificant effect of the 

number of holes on the relative bending stiffness is noticed. 

 

2.2 Relative shear stiffness ratio 
 

Due to the perforation process, the cross-sections of the 

beam and its principal axis are no longer orthogonal so the 

shear deformations are not negligible even for slender 

beams. Assume that the unit cell is centered in the hole, the 

relative shear stiffness  ratio of the perforated beam to that 

of the fully solid one can be given by, Luschi and Pieri 

(2014) 
 𝐺𝐴 𝑒𝑞

𝐺𝐴
=  

(1 + 𝑁)𝛼3

2𝑁
  (3) 

 

where, E and G are the elasticity and shear moduli of the 

fully filled beam material, A is the sectional area of the fully 

filled beam. 

Variations of the relative equivalent shear stiffness of 

the perforated beam to that of the solid beam, [ GA eq /GA] 

with both filling ratio and the number of holes are presented 

in Fig. 3. It is seen that the relative shear stiffness increases 

with increasing the filling ratio i.e., decreasing the hole size 

while it is decreasing with increasing the number of holes. 

Additionally, for N > 1, the number of holes has insignificant 

effect on the relative shear stiffneas for filling ratios less 

than 0.5. Moreover, the equivalent resistance of the 

perforated beam to shear deformation is almost zero for 

filling ratios below 0.3. Thus, values of the filling ratios 

below 0.3 are not recommended in the design of perforated 

beam structures. 

 

 

 

 

Fig. 2 Variation of the relative bending stiffness with the 

filling ratio at different number of holes 

 

 

 

 

Fig. 3 Variation of the relative shear stiffness with the 

filling ratio at different number of holes 
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2.3 Relative mass per unit length ratio 
 

The relative ratio of the equivalent mass per unit length 

of the perforated beam to that of the fully filled one can be 

expressed as, Eltaher et al. (2018a, b) 
 

 𝜌𝐴 𝑒𝑞

𝜌𝐴
=  

 1 − 𝑁 𝛼 − 2  𝛼

𝑁 + 𝛼
  (4) 

 

The nonlinear variation of the relative ratio of mass per 

unit length of the perforated beam to that of the fully filled 

one for different number of holes is depicted in Fig. 4. It 

may be noticed that the relative ratio of the mass per unit 

length increases with increasing the beam filling ratio while 

it is slightly decreasing with increasing the number of holes. 

For N > 1 and filling ratio α > 0.75, the number of holes has 

no effect on the relative ratio of the mass per unit length. 
 

2.4 Relative rotary inertia ratio 
 

The relative ratio of the equivalent mass per unit length 

of the perforated beam to that of the fully filled one can be 

expressed as, Eltaher et al. (2018a, b) 

 

 

 

Fig. 4 Variation of the relative mass per unit length with 

the filling ratio at different number of holes 

 

 

 

Fig. 5 Variation of the relative rotary inertia with the 

filling ratio at different number of holes 
 

 𝜌𝐼 𝑒𝑞

𝜌𝐼

=  
𝛼  2 − 𝛼 𝑁3 + 3𝑁2 − 2 𝛼 − 3  𝛼2 − 𝛼 + 1 𝑁 + 𝛼2 + 1 

 𝑁 + 𝛼 3
  

(5) 

 

The nonlinear variation of the relative rotary inertia ratio 

with the filling ratio at different number of holes is 

illustrated in Fig. 5. It is seen that the relative rotary inertia 

ratio increases with increasing the beam filing ratio, i.e., 

decreasing the size of holes thus due to increasing the bulk 

material of the beam. In addition, it is decreasing with 

increasing the number of holes at a constant filling ratio this 

due to increasing the cut out positions with smaller sizes. 

 

 

3. Mathematical formulations of perforated beams 
 

3.1 Euler Bernoulli beam theory (EBBT) 
 

The Euler–Bernoulli beam theory is based on that plane 

sections perpendicular to the axis of the beam before 

deformation remain plane, and rotate such that they remain 

perpendicular to the (deformed) axis after deformation 

Eltaher et al. (2012). Based on these assumptions, the axial 

and lateral displacements of a point located at a position (x, 

z) in the deformed configuration are given by 

 

𝑢 𝑥, 𝑧, 𝑡 = −𝑧
𝜕𝑤 𝑥, 𝑡 

𝜕𝑥
, 

𝑤 𝑥, 𝑧, 𝑡 = 𝑤 𝑥, 𝑡  

(6) 

 

where u and w are the axial and lateral displacements of the 

midplane, respectively. Assuming small-strain, the strain 

displacement relations can be written as 

 

𝜀𝑥𝑥 =
𝜕𝑢 𝑥, 𝑧, 𝑡 

𝜕𝑥
= −𝑧

𝜕2𝑤 𝑥, 𝑡 

𝜕𝑥2
       and 

𝛾𝑥𝑧 =
𝜕𝑤 𝑥, 𝑧, 𝑡 

𝜕𝑥
+

𝜕𝑢 𝑥, 𝑧, 𝑡 

𝜕𝑧
= 0 

(7) 

 

Considering linear isotropic homogenous elastic 

materials, the constitutive law can be written as 

 

𝜍𝑥𝑥 = −𝐸𝑧
𝜕2𝑤 𝑥, 𝑡 

𝜕𝑥2
     and     𝜏𝑥𝑧 = 𝐺 𝛾𝑥𝑧 = 0 (8) 

 

The strain energy for the perforated Euler Bernoulli 

beam (PEBB) can be expressed by the following equation 

 

𝜋 =
1

2
  𝜍𝑥𝑥 𝜀𝑥𝑥 +

1

2
𝜏𝑥𝑧𝛾𝑥𝑧 𝑑𝑉

𝑉

 

=
1

2
 𝐾𝑏  

𝜕2𝑤 𝑥, 𝑡 

𝜕𝑥2
 

2

𝑑𝑥

𝑙

0

 

(9) 

 

where Kb =  EI eq  is the equivalent bending stiffness of 

the perforated beam defined in Eq. (2). The kinetic energy 

of the fully filled solid beam is given by, Inman (2014) 
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𝑇 =
1

2
    𝜌  

𝜕

𝜕𝑡
 −𝑧

𝜕𝑤 𝑥, 𝑡 

𝜕𝑥
  

2

 

𝐴

 

𝑙

0

 

  +𝜌  
𝜕𝑤 𝑥, 𝑡 

𝜕𝑡
 

2

 𝑑𝐴 𝑑𝑥 

=
1

2
   𝜌  

𝜕

𝜕𝑡
 −𝑧

𝜕𝑤 𝑥, 𝑡 

𝜕𝑥
  

2

𝑑𝐴

𝐴

 

𝑙

0

 

 +  𝜌  
𝜕𝑤 𝑥, 𝑡 

𝜕𝑡
 

2

𝑑𝐴

𝐴

 𝑑𝑥 

(10) 

 

Simplifying Eq. (10), the kinetic energy for PEBB can 

be written as 
 

𝑇 =
1

2
  𝐼1  

𝜕2𝑤 𝑥, 𝑡 

𝜕𝑥𝜕𝑡
 

2

𝑑𝑥

𝑙

0

+  𝐼0  
𝜕𝑤 𝑥, 𝑡 

𝜕𝑡
 

2

𝑑𝑥
𝑙

0

  (11) 

 

where  𝐼1 =  𝜌𝐼 𝑒𝑞 and 𝐼0 =  𝜌𝐴 𝑒𝑞  refer to the equivalent 

rotary inertia and the equivalent mass per unit length, 

respectively presented by Eqs. (4) and (5). Assuming that 

the beam is subjected to a distributed transverse load, f(x, t), 

then the work done by the external distributed transverse is 

given by 

𝑊 =  𝑓 𝑥, 𝑡  𝑤(𝑥, 𝑡) 𝑑𝑥

𝑙

0

 (12) 

 

The dynamic equation of motion with the associated 

boundary conditions can be obtained by applying the 

generalized Hamilton’s principle as 
 

𝛿   𝜋 − 𝑇 − 𝑊  𝑑𝑡

𝑡2

𝑡1

= 0 (13) 

 

Substituting from Eqs. (9), (11) and (12) into Eq. (13) 

the dynamic equilibrium equation of motion of PEBB can 

be written as 
 

𝐼0

𝜕2𝑤 𝑥, 𝑡 

𝜕𝑡2
− 𝐼1

𝜕4𝑤 𝑥, 𝑡 

𝜕𝑥2𝜕𝑡2
+ 𝐾𝑏  

𝜕4𝑤 𝑥, 𝑡 

𝜕𝑥4
  

= 𝑓 𝑥, 𝑡  

(14) 

 

3.2 Timoshenko beam theory (TBT) 
 

The displacement field of the Timoshenko beam theory 

for pure bending is written as 
 

𝑢 𝑥, 𝑦, 𝑧, 𝑡 = −𝑧𝜑 𝑥, 𝑡 , 𝑣 𝑥, 𝑦, 𝑧, 𝑡 = 0 

and          𝑤 𝑥, 𝑦, 𝑧, 𝑡 = 𝑤 𝑥, 𝑡  
(15) 

 

where u, v, and w refer to the components of displacement 

in x, y, and z directions, respectively. Assuming small strain, 

the corresponding kinematic relations can be expressed as 
 

𝜀𝑥𝑥 = −𝑧
𝜕𝜑 𝑥, 𝑡 

𝜕𝑥
     and     𝛾𝑥𝑧 =

𝜕𝑤 𝑥, 𝑡 

𝜕𝑥
− 𝜑 𝑥, 𝑡  (16) 

The constitutive equations is given by 
 

𝜍𝑥𝑥 = −𝐸𝑧
𝜕𝜑 𝑥, 𝑡 

𝜕𝑥
             and 

𝜍𝑥𝑧 = 𝜅𝐺 𝛾𝑥𝑧 =  𝐺𝜅  
𝜕𝑤 𝑥, 𝑡 

𝜕𝑥
− 𝜑 𝑥, 𝑡      

(17) 

 

where κ is the shear correction factor. The strain energy for 

the perforated Timoshenko beam (PTB) can be expressed as 
 

𝜋 =
1

2
  𝜍𝑥𝑥 𝜀𝑥𝑥 + 𝜍𝑥𝑧 𝛾𝑥𝑧  𝑑𝑉

𝑉

 

=
1

2
  𝐾𝑏  

𝜕𝜑 𝑥, 𝑡 

𝜕𝑥
 

2

 

𝑙

0

 

 +𝐾𝑠  
𝜕𝑤 𝑥, 𝑡 

𝜕𝑥
− 𝜑 𝑥, 𝑡  

2

 𝑑𝑥 

(18) 

 

where Kb and 𝐾𝑠 = 𝜅 𝐺𝐴 𝑒𝑞  are the equivalent bending 

and shear stiffness of the PTB, respectively, as defined in 

Eqs. (2) and (3). The kinetic energy of the fully filled solid 

beam is given by, Kim et al. (2017). 
 

𝑇 =
1

2
    𝜌  −𝑧

𝜕𝜑 𝑥, 𝑡 

𝜕𝑡
 

2

 

𝐴

 

𝑙

0

 

  +𝜌  
𝜕𝑤 𝑥, 𝑡 

𝜕𝑡
 

2

 𝑑𝐴 𝑑𝑥 

=
1

2
   𝜌𝑧2  

𝜕𝜑 𝑥, 𝑡 

𝜕𝑡
 

2

𝐴

 

𝑙

0

 

 +  𝜌  
𝜕𝑤 𝑥, 𝑡 

𝜕𝑡
 

2

𝑑𝐴

𝐴

 𝑑𝑥 

(19) 

 

Simplifying Eq. (19), the kinetic energy for PTB can be 

written as 
 

𝑇 =
1

2
  𝐼1  

𝜕𝜑 𝑥, 𝑡 

𝜕𝑡
 

2

𝑑𝑥

𝑙

0

+  𝐼0  
𝜕𝑤 𝑥, 𝑡 

𝜕𝑡
 

2

𝑑𝑥
𝑙

0

  (20) 

 

The work done by the external distributed transverse 

loads, f (x, t) and M (x, t) is given by 
 

𝑊 =  𝑓 𝑥, 𝑡  𝑤 𝑥, 𝑡 + 𝑀 𝑥, 𝑡  𝜑 𝑥, 𝑡  𝑑𝑥

𝑙

0

 (21) 

 

The dynamic equation of motion with the associated 

boundary conditions can be obtained by applying the 

generalized Hamilton’s principle as 
 

𝛿   𝜋 − 𝑇 − 𝑊  𝑑𝑡

𝑡2

𝑡1

= 0 (22) 

 

Substituting from Eqs. (18) to (22) and evaluating the 

integral, the dynamic equations of motion based on TBT 
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can be written as 
 

𝐼0

𝜕2𝑤 𝑥, 𝑡 

𝜕𝑡2
− 𝐾𝑠  

𝜕2𝑤 𝑥, 𝑡 

𝜕𝑥2
−

𝜕𝜑 𝑥, 𝑡 

𝜕𝑥
 = 𝑓 𝑥, 𝑡  (23a) 

 

𝐼1

𝜕2𝜑 𝑥, 𝑡 

𝜕𝑡2
− 𝐾𝑠  

𝜕𝑤 𝑥, 𝑡 

𝜕𝑥
− 𝜑 𝑥, 𝑡  − 𝐾𝑏

𝜕2𝜑 𝑥, 𝑡 

𝜕𝑥2
 

= 𝑀 𝑥, 𝑡  

(23b) 

 

Differentiating Eq. (23b) w.r.t. x and substituting from 

Eq. (23a) for the value of 
𝜕𝜑  𝑥,𝑡 

𝜕𝑥
, the coupled equations can 

be reduced to one single equation. Thus one can write 

 

𝐾𝑏

𝜕4𝑤 𝑥, 𝑡 

𝜕𝑥4
−  𝐼1 +

𝐾𝑏𝐼0

𝐾𝑠
 
𝜕4𝑤 𝑥, 𝑡 

𝜕𝑡2𝜕𝑥2
 

+𝐼0

𝜕2𝑤 𝑥, 𝑡 

𝜕𝑡2
+

𝐼1𝐼0

𝐾𝑠

𝜕4𝑤 𝑥, 𝑡 

𝜕𝑡4
 

 = −𝑀 𝑥, 𝑡 +  𝑓 𝑥, 𝑡 +
𝐼1

𝐾𝑠

𝜕2𝑓 𝑥, 𝑡 

𝜕𝑡2
  

 −
𝐾𝑏

𝐾𝑠

𝜕2𝑓 𝑥, 𝑡 

𝜕𝑥2
  

(24) 

 

 

4. Solution methodology 
 

This section is devoted to present closed forms for the 

resonant frequencies and the forced vibration time response 

for perforated beams. 

 

4.1 Free vibration 
 

4.1.1 Perforated Euler Bernoulli beam (PEBB) 
Considering free vibration analysis, the governing 

equation of motion of (PEBB) can be written as 

 

𝐼0

𝜕2𝑤 𝑥, 𝑡 

𝜕𝑡2
− 𝐼1

𝜕4𝑤 𝑥, 𝑡 

𝜕𝑥2𝜕𝑡2
+ 𝐾𝑏  

𝜕4𝑤 𝑥, 𝑡 

𝜕𝑥4
 = 0 (25) 

 

The free vibration response can be expressed as 
 

𝑤 𝑥, 𝑡 = 𝑊 𝑥 exp 𝑖𝜔𝑡  (26) 

 

where W(x) is the Eigen mode shape function (eigenvector) 

and ω is the natural frequency (eigenvalue) of vibration. 

Substitute from Eq. (26) into Eq. (25) yields 

 

 −𝜔2𝐼0 𝑊 𝑥 + 𝐼1𝜔
2 𝑊 ′′  𝑥 + 𝐾𝑏  𝑊 ′′′′ (𝑥) exp 𝑖𝜔𝑡 

= 0 
(27) 

 

Eq. (27) can be expressed as 

 

 𝐾𝑏  𝐷 4 − 𝐼1𝜔2 𝐷 2 − 𝜔2𝐼0  𝑊 𝑥 exp 𝑖𝜔𝑡 = 0 (28) 

 

The general solution of Eq. (28) can be written as 

 

𝑊 𝑥 = 𝐶1 cos 𝐷1𝑥 + 𝐶2 sin 𝐷1𝑥  

+𝐶3 cosh(𝐷2𝑥) + 𝐶4 sinh(𝐷2𝑥) 
(29) 

Considering the simply supported beam, the following 

boundary conditions are imposed 
 
 𝑊 𝑥  𝑥=0 =  𝑊 𝑥  𝑥=𝐿 

=  𝑊 ′′  𝑥  𝑥=0 =  𝑊 ′′ (𝑥) 𝑥=𝐿 = 0 
(30) 

 

Substituting with Eq. (30) into Eq. (29), the natural 

frequency can be expressed as 
 

𝜔𝑛
2 =

 
𝑛𝜋

𝐿
 

4

 
𝐾𝑏

𝐼0
 

1 +  
𝐼1

𝐼0
  

𝑛𝜋

𝐿
 

2 ,        𝑛 = 1, 2, 3, ………… . . ∞ (31) 

 

4.1.2 Perforated Timoshenko beam (PTB) 
By the same way, the resonant frequencies and the mode 

shapes can be obtained for PTB. The dynamic equation of 

motion of (PTB) for the free vibration analysis is written as 
 

𝐾𝑏

𝜕4𝑤 𝑥, 𝑡 

𝜕𝑥4
−  𝐼1 +

𝐾𝑏𝐼0

𝐾𝑠
 
𝜕4𝑤 𝑥, 𝑡 

𝜕𝑡2𝜕𝑥2
 

+𝐼0

𝜕2𝑤 𝑥, 𝑡 

𝜕𝑡2
+

𝐼1𝐼0

𝐾𝑠

𝜕4𝑤 𝑥, 𝑡 

𝜕𝑡4
= 0 

(32) 

 

The free vibration response can be expressed as 
 

𝑤 𝑥, 𝑡 = 𝑊 𝑥 exp 𝑖𝜔𝑡    and 

𝜑 𝑥, 𝑡 = Φ 𝑥 exp 𝑖𝜔𝑡  
(33) 

 

where W(x) is the Eigen mode shape function (eigenvector) 

and ω is the natural frequency (eigenvalue) of vibration. 

Substitute from Eq. (33) into Eq. (32) yields 

 

 
𝐼1𝐼0

𝐾𝑠
𝜔4 𝑊 𝑥 − 𝐼0𝜔

2 𝑊 𝑥 +  𝐼1 +
𝐾𝑏𝐼0

𝐾𝑠
 𝜔2 𝑊 ′′  𝑥   

 + 𝐾𝑏  𝑊 ′′′′ (𝑥) exp 𝑖𝜔𝑡 = 0 

(34) 

 

Eq. (34) can be expressed as 
 

 𝐾𝑏  𝐷 4 −  𝐼1 +
𝐼0𝐾𝑏

𝐾𝑠
 𝜔2 𝐷 2   

 −𝐼0𝜔
2 +

𝜔4𝐼0𝐼1

𝐾𝑠
 𝑊 𝑥 exp 𝑖𝜔𝑡 = 0 

(35) 

 

The general solution of Eq. (35) can be written as 
 

𝑊 𝑥 = 𝐶1 cos 𝐷1𝑥 + 𝐶2 sin 𝐷1𝑥  

+𝐶3 cosh(𝐷2𝑥) + 𝐶4 sinh(𝐷2𝑥) 
(36) 

 

Considering the simply supported beam, the following 

boundary conditions are imposed 
 

 𝑊 𝑥  𝑥=0 =  𝑊 𝑥  𝑥=𝐿 =  𝑊 ′′  𝑥  𝑥=0 

    =  𝑊 ′′ (𝑥) 𝑥=𝐿 = 0 
(37) 

 

Substituting with Eq. (37) into Eq. (36), Considering the 

bending deformation mode (BDM), the natural frequencies 

can be expressed as 
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 𝜔𝑛
2 𝐵𝐷𝑀

=   
𝐾𝑏

2𝐼1
+

𝐾𝑠

2𝐼0
  

𝑛𝜋

𝐿
 

2

+
𝐾𝑠

2𝐼1
 

−    
𝐾𝑏

2𝐼1
+

𝐾𝑠

2𝐼0
  

𝑛𝜋

𝐿
 

2

+
𝐾𝑠

2𝐼1
 

2

− 4  
𝐾𝑏

2𝐼1
  

𝐾𝑠

2𝐼0
   

𝑛𝜋

𝐿
 

4

 

(38a) 

 

On the other hand, the natural frequencies for the shear 

deformation mode (SDM) can be written as 
 

 𝜔𝑛
2 𝑆𝐷𝑀

=   
𝐾𝑏

2𝐼1
+

𝐾𝑠

2𝐼0
  

𝑛𝜋

𝐿
 

2

+
𝐾𝑠

2𝐼1
 

+    
𝐾𝑏

2𝐼1
+

𝐾𝑠

2𝐼0
  

𝑛𝜋

𝐿
 

2

+
𝐾𝑠

2𝐼1
 

2

− 4  
𝐾𝑏

2𝐼1
  

𝐾𝑠

2𝐼0
   

𝑛𝜋

𝐿
 

4

 

(38b) 

 

Neglecting the effect of rotary inertia, the natural 

frequencies can be expressed as 
 

𝜔𝑛 =  

𝐾𝑏

𝐼0
  

𝑛𝜋

𝐿
 

4

1 +
𝐾𝑏

𝐾𝑠
 

𝑛𝜋

𝐿
 

2 

1/2

,     𝑛 = 1, 2, 3, . . … . . ∞ (39) 

 

4.2 Forced vibration response using mixed 
Galerkin Laplace technique 

 

4.2.1 Forced vibration response of (PEBBT) 
Consider a simply supported beam with length L, width 

b and thickness h. the beam is subjected to a uniformly 

distributed load with intensity P.  The mixed Galerkin- 

Laplace technique is adopted to obtain the time response of 

the forced vibration of perforated beams. In this technique, 

the spatial dependency of the forced vibration response is 

detected by the Galerkin technique while the time 

dependency is obtained by the Laplace and inverse Laplace 

techniques. Consequently, the forced vibration time 

response is expressed by a series of two separate multiplied 

functions, the first function is a spatially dependent function 

and must satisfies all boundary conditions while the second 

is a time dependent one and must satisfies all initial 

conditions. The transverse deflection function can be 

expressed in the form 
 

𝑤𝑛 𝑥, 𝑡 =  𝑇𝑗 (𝑡)𝑊𝑗 (𝑥)
𝑛

𝑗 =1
 (40) 

 

where Wj(x) is the j-th shape function which satisfy all the 

boundary conditions and Tj t  is the corresponding time 

dependent amplitude which satisfy the initial conditions. 

The shape functions are chosen to be linearly independent, 

orthonormal and must satisfy all boundary condition for the 

convergence of Galerkin method. 
 

 𝑊𝑖 𝑥 𝑊𝑗  𝑥 𝑑𝑥
𝐿

0

= 𝛿𝑖𝑗  (41) 

 

where δij  is the kroners delta. Although wn satisfies the 

boundary conditions, it generally, does not satisfy equation 

(14). Substitute from Eq. (40) into (14) the residual function 

can be expressed as 

𝑅 𝑛 𝑥, 𝑡 = 𝐼0   𝑇 𝑖(𝑡)𝑊𝑖 𝑥 
𝑛

𝑖=1
 

− 𝐼1   𝑇 𝑖 𝑡 𝑊𝑖
 2  𝑥 

𝑛

𝑖=1
 

+ 𝐾𝑏   𝑇𝑖 𝑡 𝑊𝑖
 4  𝑥 

𝑛

𝑖=1
 − 𝑃  

(42) 

 

The shape function that satisfies all boundary and the 

normal modes orthogonality conditions can be expressed as 
 

𝑊𝑖 𝑥 =  
2

𝐿
sin  

𝑖𝜋𝑥

𝑙
  (43a) 

 

Then the derivatives of the shape function can be 

expressed as 
 

𝑊𝑖
(2) 𝑥 = −𝜆𝑖𝑊𝑖 𝑥    and   𝑊𝑖

 4  𝑥 =  𝜆𝑖 
2𝑊𝑖 𝑥 , 

𝜆𝑖 =  
𝑖𝜋

𝑙
 

2

,          𝑖 = 1,2, …… . . , 𝑛 

(43b) 

 

To the satisfy the orthogonality conditions required for 

the Galerkin technique, the following relations should be 

verified 
 

 𝑅 𝑛 𝑥, 𝑡 𝑊𝑖 𝑥 𝑑𝑥𝑑𝑡 = 0
Ω

,     𝑖 = 1,2, … . , 𝑛 (44) 

 

where Ω = [0, l]⨯[0, t]. This leads to n equations verified by 

the functions Tj(t) 
 

   𝐼0   𝑇 𝑗 (𝑡)𝑊𝑗  𝑥 
𝑛

𝑖=1
 

𝑙

0

𝑡

0

− 𝐼1   𝑇 𝑗 (𝑡)𝑊𝑗
(2) 𝑥 

𝑛

𝑖=1
 

+ 𝐾𝑏   𝑇𝑗 (𝑡)𝑊𝑗
(4) 𝑥 

𝑛

𝑖=1
 

− 𝑃  𝑊𝑖 𝑥 𝑑𝑥𝑑𝑡 = 0  

(45) 

 

Using Eq. (41), Eq. (45) can be rewritten as 
 

 𝐼0 + 𝐼1 𝜆𝑗   𝑇 𝑗  𝑡 +  𝜆𝑗  
2
𝐾𝑏𝑇𝑗  𝑡  

=  𝑃 
𝐿

0

𝑊𝑗  𝑥 𝑑𝑥 = 𝑝   
2

𝐿
×

𝐿

𝑗𝜋
  1 − 𝑐𝑜𝑠 𝑗𝜋   

(46) 

 

Eq. (46) can be rewritten as 
 

𝑇 𝑗  𝑡 +
 𝜆𝑗  

2
𝐾𝑏

 𝐼0 + 𝐼1 𝜆𝑗   
𝑇𝑗  𝑡  

=
1

 𝐼0 + 𝐼1 𝜆𝑗   
 𝑃 

𝐿

0

𝑊𝑗  𝑥 𝑑𝑥 

=

𝑝   
2

𝐿
×

𝐿

𝑗𝜋
 

 𝐼0 + 𝐼1 𝜆𝑗   
 1 − 𝑐𝑜𝑠 𝑗𝜋  = 𝑃𝑗  

(4) 
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with 
 

𝑃𝑗 =

𝑝   
2

𝐿
×

𝐿

𝑗𝜋
 

 𝐼0 + 𝐼1 𝜆𝑗   
 1 − 𝑐𝑜𝑠 𝑗𝜋   

(47b) 

 

Using the Laplace transform techniques and the initial 

conditions 
 

 𝑑
𝑘𝑇𝑗  𝑡 

𝑑𝑡𝑘
 
𝑡=0

=  
𝜕𝑘𝑤 𝑥, 0 

𝜕𝑡𝑘
𝑊𝑗 (𝑥)𝑑𝑥

𝐿

0

,

𝑘 = 0, 1, 2, …… 

(47c) 

 

The functions Tj(t) are determined independent of one 

another as 
 

𝑇𝑗  𝑡 =

𝑝   
2

𝐿
×

𝐿

𝑗𝜋
 

 𝜆𝑗  
2
𝐾𝑏

 1 − 𝑐𝑜𝑠 𝑗𝜋   1 − 𝑐𝑜𝑠 𝛽𝑗 𝑡   
(48a) 

 

The elastodynamic transverse deflection throughout the 

PEBB span can be given by 
 

𝑤𝑛 𝑥, 𝑡 =  𝛼𝑗 𝑠𝑖𝑛(
𝑗𝜋𝑥

𝐿
)  1 − 𝑐𝑜𝑠 𝛽𝑗 𝑡  

𝑛

𝑗 =1
 (48b) 

 

with 
 

𝛼𝑗 =

𝑝  
2

𝐿
  

2

𝐿
×

𝐿

𝑗𝜋
 

 𝜆𝑗  
2
𝐾𝑏

 1 − 𝑐𝑜𝑠 𝑗𝜋      and 

𝛽𝑗 =  
 𝜆𝑗  

2
𝐾𝑏

 𝐼0 + 𝐼1 𝜆𝑗   
 

1/2

 

(48c) 

 

Using Eqs. (48), the relation for the residual can be 

obtained to check the equilibrium equation versus the 

number of terms used to express the dynamic response of 

PBs. 
 

4.2.2 Forced vibration response of (PTBT) 
Neglecting the effect of the rotary inertia, the residual 

function of Eq. (24) can be expressed as 
 

𝑅 𝑛 𝑥, 𝑡 =  𝐼0  
𝑑2𝑇𝑖(𝑡)

𝑑𝑡2
𝑊𝑖 𝑥 

𝑛

𝑖=1

−
𝐼0 𝐾𝑏

𝐾𝑠
  𝑇 𝑖 𝑡 𝑊𝑖

 2  𝑥 
𝑛

𝑖=1
 

+ 𝐾𝑏   𝑇𝑖 𝑡 𝑊𝑖
 4  𝑥 

𝑛

𝑖=1
 − 𝑃  

(49) 

 

Considering the simply supported beam, the shape 

function that satisfies all boundary conditions and its 

derivatives are written as expressed in Eqs. (43). To satisfy 

the orthogonality conditions of the residual function as 
 

 𝑅 𝑛 𝑥, 𝑡 𝑊𝑖 𝑥 𝑑𝑥𝑑𝑡 = 0
Ω

,     𝑖 = 1,2, … . , 𝑛 (50) 

 

where Ω = [0, l]⨯[0, t]. This leads to n equations verified by 

the functions Tj(t) 
 

    𝐼0

𝑑2𝑇𝑗  𝑡 

𝑑𝑡2
𝑊𝑗  𝑥 

𝑛

𝑖=1

𝑙

0

𝑡

0

−
𝐼0𝐾𝑏

𝐾𝑠
  

𝑑2𝑇𝑗  𝑡 

𝑑𝑡2
𝑊𝑗

 2  𝑥 
𝑛

𝑖=1
 

+ 𝐾𝑏   𝑇𝑗  𝑡 𝑊𝑗
 4  𝑥 

𝑛

𝑖=1
 

− 𝑃  𝑊𝑖 𝑥 𝑑𝑥𝑑𝑡 = 0 

(51) 

 

Using Eq. (43), Eq. (51) can be rewritten as 
 

𝑑2𝑇𝑗  𝑡 

𝑑𝑡2
+ 𝜂𝑗

2 𝑇𝑗  𝑡  

=  
1

𝐼0  1 +  
𝐾𝑏

𝐾𝑠
  𝜆𝑗   

  𝑃 
𝐿

0

𝑊𝑗  𝑥 𝑑𝑥 = 𝑃𝑗  

(52a) 

 

with 
 

𝑃𝑗 =

 
 
 

 
 𝑝   

2

𝐿
×

𝐿

𝑗𝜋
 

𝐼0  1 +  
𝐾𝑏

𝐾𝑠
  𝜆𝑗   

 
 
 

 
 

 1 − 𝑐𝑜𝑠 𝑗𝜋      and 

𝜂𝑗
2  =

 𝜆𝑗  
2
𝐾𝑏

𝐼0  1 +  
𝐾𝑏

𝐾𝑠
  𝜆𝑗   

 

(52b) 

 

Using the Laplace transform techniques and the initial 

conditions 
 

 𝑑
𝑘𝑇𝑗  𝑡 

𝑑𝑡𝑘
 
𝑡=0

=  
𝜕𝑘𝑤 𝑥, 0 

𝜕𝑡𝑘
𝑊𝑗  𝑥 𝑑𝑥

𝐿

0

,   

𝑘 = 0, 1, 2, …… 

(53) 

 

The functions Tj(t) are determined independent of one 

another. 
 

𝑇𝑗  𝑡 =

 
 
 

 
 𝑝   

2

𝐿
×

𝐿

𝑗𝜋
 

 𝜆𝑗  
2
𝐾𝑏

 
 
 

 
 

 1 − 𝑐𝑜𝑠 𝑗𝜋   1 − 𝑐𝑜𝑠 𝜂𝑗 𝑡   (54a) 

 

Finally, an approximate closed form describing the 

dynamic transverse deflection throughout the PTB span can 

be expresses as 
 

𝑤𝑛 𝑥, 𝑡 =  Λ𝑗 𝑠𝑖𝑛(
𝑗𝜋𝑥

𝐿
)  1 − 𝑐𝑜𝑠 𝜂𝑗 𝑡  

𝑛

𝑗=1
 (54b) 

 

with 
 

Λ𝑗 =

 
 
 

 
 𝑝  

2

𝐿
  

2

𝐿
×

𝐿

𝑗𝜋
 

 𝜆𝑗  
2
𝐾𝑏

 
 
 

 
 

 1 − 𝑐𝑜𝑠 𝑗𝜋      and 

𝜂𝑗 =  
 𝜆𝑗  

2
𝐾𝑏

𝐼0  1 +  
𝐾𝑏

𝐾𝑠
  𝜆𝑗   

 

1/2

 

(54c) 
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Using Eqs. (54), an expression for the residual can be 

obtained to check the equilibrium equation for the 

considered number of terms in the closed form solution. 
 

 

5. Numerical results 
 

This section is keen mainly to two subsections. The first 

subsection is devoted to validate the proposed analytical 

procedure for analyzing the dynamic behavior of perforated 

beams. The resonant frequencies of a simply supported 

Timoshenko solid beam are compared with analytical and 

numerical results presented by Song et al. (2016). 

The second subsection is devoted to study and analyze 

the free and forced transverse vibration behaviors of 

perforated beams considering both PEBBT and PTBT. 

Beams with different (h/L) ratios are considered to 

investigate the shear deformation effect due to the 

perforation process. Effects of beam filling ratio as well as 

the number of holes on the dynamic behavior of perforated 

beams are investigated for each case. Through this 

subsection, consider a simply supported beam with L = 1 m, 

cross sectional area, A = w*h, the moment of inertia I = 

(wh3/12). The beam is subjected to a uniformly distributed 

load of intensity 75 N/m, which is applied suddenly at t = 0 

and then maintained constant. The beam is made of steel 

with mass density, ρ = 7860 kg/m3 and modulus of 

elasticity, E = 210 GPa and modulus of rigidity, G = 81 Gpa. 

The dynamic behavior is investigated considering four 

values of %(h/L) ratio; h/L = 1%, 2%, 8%, and 20%. In all 

cases the beam length and width are kept constant; L = 1 m 

and w = 0.02 m. 
 

5.1 Validation of uniform solid Timoshenko beam 
 

Consider a simply supported uniform solid Timoshenko 

beam with the following material and geometric properties: 

Modulus of elasticity, E = 202 GPa, modulus of rigidity, G 

= 77.7 GPa, mass density, ρ = 15267 kg/m3, length, L = 

4.352 m, cross sectional area, A = 1.31×10-3 m2, the second 

moment of area, I = 5.71×10-7 m4, the shear correction 

factor, k = 0.7. Song et al. (2016) analyzed the same 

problem analytically by the exact and spectral element 

method (SEM) and numerically using the finite element 

(FEM). The developed analytical methodology is applied to 

detect the circular frequencies of the problem for the two 

case with and without the rotary inertia (RI). The obtained 

natural circular frequencies are listed in Table 1. It is 

noticed that good agreement is noticed between the 

obtained values of the natural frequencies are and that 

obtained by Song et al. (2016) with maximum relative error 

of 2.52% at the 10th mode. Additionally, insignificant effect 

of the rotary inertia on the resonant frequencies is noticed 

for the lowest fifth modes while only 1.2% drop in the 

circular frequency due to the rotary inertia effect is detected 

at the 10th mode. 
 

5.2 Free vibration analysis 
 

Through this section, effects of both filling ratio and the 

number of holes on the nondimensional resonant 

frequencies of the perforated beams are investigated. The 

Table 1 Natural circular frequencies for solid uniform 

Timoshenko beam (Hz) 

Mode 

Present study Song et al. (2016) 

% Error With 

RI 

Without 

RI 
Exact SEM FEM 

1 6.295 6.296 6.3 6.3 6.3 0.0635 

2 25.136 25.150 25.18 25.18 25.18 0.11915 

3 56.398 56.469 56.61 56.61 56.61 0.2491 

4 99.873 100.094 100.52 100.52 100.52 0.4238 

5 155.281 155.808 156.85 156.85 156.85 0.6643 

10 597.447 604.622 620.28 620.28 620.28 2.5243 
 

 

 

nondimensional frequency can be defined as 
 

𝜛𝑛 = 𝜔𝑛  𝐿2 
𝜌𝐴

𝐸𝐼
   (55) 

 

The dependency of the nondimensional resonant 

frequencies, ϖn  on the beam filing ratios and the number 

of holes for the first lowest fifth modes for both stocky and 

slender beams are depicted in Figs. 6-13. It is noticed that, 

for all values of %R, except for the case of N = 1 for PEBB, 

the nondimensional resonant frequencies are increasing 

with increasing the beam filling ratio due to the decreasing 

in the hole size and consequently increasing the beam 

equivalent stiffness. On the other hand, these 

nondimensional resonant frequencies are decreasing with 

increasing the number of holes at constant beam filling ratio 

because of increasing the cutout positions with smaller sizes 

which decreases the beam equivalent stiffness. It is also 

noticed that, for all values of %R, due the shear deformation 

effect smaller values of the nondimensional resonant 

frequencies are predicted by PTBT compared to that 

obtained by PEBBT in which the shear deformation effect is 

neglected. 

Considering the beam height to length ratio, %R = 

%(h/L) it is noticed that, at smaller values of %R, large 

deviations between the nondimensional resonant 

frequencies predicted by EBBT and that obtained by TBT, 

 
 

 

Fig. 6 Variation of ϖ1 with the filling ratio for both PEBB 

and PTB at different number of holes for %R = 8% 

and 20% 
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Fig. 7 Variation of ϖ1 with the filling ratio for both PEBB 

and PTB at different number of holes for %R = 1% 

and 2% 
 

 

 

Fig. 8 Variation of ϖ2 with the filling ratio for both PEBB 

and PTB at different number of holes for %R = 8% 

and 20% 
 

 

 

Fig. 9 Variation of ϖ2 with the filling ratio for both PEBB 

and PTB at different number of holes for %R = 1% 

and 2% 
 

 

consequently, the EBBT can’t efficiently predict the 

resonant frequencies of perforated beams within this range 

of filling ratio for all number of holes. For relative height to 

length ratio, %R = 1% both PTBT and PEBBT predict 

almost the same values fffpor the nondimensional resonant 

frequencies for the first lowest forth modes for all values of 

filling ratios greater than 0.3. Thus, EBBT can be employed 

to investigate the resonant frequencies of PBs with %R = 

 

Fig. 10 Variation of ϖ3 with the filling ratio for both PEBB 

and PTB at different number of holes for %R = 8% 

and 20% 

 

 

 

Fig. 11 Variation of ϖ3 with the filling ratio for both PEBB 

and PTB at different number of holes for %R = 1% 

and 2% 
 

 

 

Fig. 12 Variation of ϖ4 with the filling ratio for both PEBB 

and PTB at different number of holes for %R = 8% 

and 20% 

 

 

1% in the perforation range having α ≥ 0.3. Increasing this 

ratio results in decreasing the perforation applicability zone 

of EBBT to predict the dynamic behaviors of PBs. 

It is also seen that for stocky perforated beams with %R 

of 8%, small deviation between the 1st resonant frequency 

predicted by EBBT and that obtained TBT for α ≥ 0.5 for all 

number of holes. This deviation is increasing with increasing 
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Fig. 13 Variation of ϖ4 with the filling ratio for both PEBB 

and PTB at different number of holes for %R = 1% 

and 2% 
 

 

the vibration modes. At higher values of %R = 20%, large 

deviations between the nondimensional resonant 

frequencies obtained from PEBB and the predicted by PTB 

even for the 1st mode. 
 

5.3 Forced vibration response 
 

In this section, the forced time response of a simply 

supported perforated beam under a uniformly distributed 

time constant load having an intensity of 75 N/m is 

investigated. To check the applicability of the simplest 

EBBT to investigate the transient response of perforated 

beams, beam with two different values of %R (2% and 

20%) using both EBBT and TBT. One thousand terms are 

considered in the residual equation to satisfy the 

equilibrium dynamic equation of motion with relative error 

percentage of 0.063%. Effects of the beam filling ratio, the 

number of holes as well as the beam slenderness ratio on 

the transient time response of perforated beams are 

investigated. 

The time dependency of the forced vibration response of 

PEBB and PTB at different filling ratios and different 

number of holes for both stocky and slender beams are 

illustrated in Figs. 14-19. Generally, it is noticed that almost 

the same quantitative values of the maximum transverse 

deflection are predicted by both PEBB and the 

corresponding PTB for both stocky and slender beams for 

all values of filling ratios and number of holes. On the other 

hand, it may be noticed that, the filling ratio has a 

significant effect on both amplitude and the phase shift of 

the forced vibration time response of both PEBB and the 

corresponding PTB. As the beam filling ratio increases, the 

forced vibration amplitude decreases due to decreasing the 

hole size which results in decreasing the system flexibility. 

Moreover the peaks values of these amplitudes are shifted 

to right with increasing the filling ratio. On the other hand, 

increasing the number of holes results in increasing the 

maximum transverse deflection due to increasing the cut out 

positions which increases the system flexibility. The 

reciprocal of the beam slenderness ratio, %R significantly 

affects the transient time response for both PEBB and PTB. 

Increasing the relative percentage ratio, %R results in 

decreasing the maximum transverse deflection. As depicted 

from Figs. 14-19, the ratio of the transvers deflection 

 

Fig. 14 Variation of Wmax with the filling ratio for stocky 

PBs with %R = 20% at N = 1 

 

 

 

Fig. 15 Variation of Wmax with the filling ratio for slender 

PBs with %R = 2% at N = 1 

 

 

 

Fig. 16 Variation of Wmax with the filling ratio for stocky 

PBs with %R = 20% at N = 3 

 

 

obtained from %R = 2% to that obtained from %R = 20% is 

almost one thousands due to the decrease in the system 

flexibility with increasing the reciprocal of the slenderness 

ratio. 
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Fig. 17 Variation of Wmax with the filling ratio for slender 

PBs with %R = 2% at N = 3 

 

 

 

Fig. 18 Variation of Wmax with the filling ratio for stocky 

PBs with %R = 20 % at N = 10 
 

 

6. Conclusions 
 

Vibration behaviors of perforated Euler Bernoulli and 

Timoshenko beams are investigated analytically.  Due to 

the shear deformation effects associated with perforation 

process, conditions that govern employing the EBBT to 

analyze the dynamic behavior of perforated beams are 

determined. The validity of the developed analytical 

technique is checked by comparing the obtained results for 

both solid and perforated beams with the corresponding 

analytical and numerical results and good agreement is 

noticed. To investigate the effects of shear deformation 

pronounced in perforated beams, both Stocky and slender 

beams are analyzed. Effects of the beam filling ratio and the 

number of holes on the free and forced vibration 

characteristics of perforated beams are illustrated. The 

following concluding remarks are detected: 
 

 If the resonant frequencies are the major factor in 

designing the perforated beam structures,  EBBT 

can be employed to accurately predict the resonant 

frequencies of very slender beams with a reciprocal 

slenderness ratio of 1% and for filling ratio greater 

than 0.3. On the other hand, if the global transient 

 

Fig. 19 Variation of Wmax with the filling ratio for slender 

PBs with %R = 2% at N = 10 
 

 

response is the major interest, EBBT can efficiently 

predict the transient time response of perforated 

beams with any value of the reciprocal of the 

slenderness ratio and for any range of filling ratio 

and number of holes. 

 The resonant frequencies are increased with 

increasing the beam filling ratio due to the 

decreasing in the hole size which increases the 

system equivalent stiffness. On the other side, these 

resonant frequencies are decreased with increasing 

the number of holes due to the decrease in the 

equivalent stiffness of the system. 

 The perforated beam filling ratio as well as the 

number of holes is significantly affect the maximum 

transvers vibration amplitude of the forced vibration 

time response. The amplitude of the forced vibration 

response decreases with increasing the filling ratio 

due to the decrease in the system flexibility while it 

is increases with increasing the number of holes due 

to decreasing the system equivalent stiffness. 

 The reciprocal of the slenderness ratio, %R, highly 

affects the forced vibration time response of both 

PEBB and PTB. Increasing the value of %R results 

in large drop in the forced vibration amplitudes. 
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