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1. Introduction 

 

The booming development of industry puts forward 

higher requirements on material properties so that a variety 

of composites have been developed and improved by 

researchers, such as functionally graded materials, sandwich 

composites, fibre reinforced composite materials, fine 

grained composites. Among these composite materials, 

functionally graded materials that were manufactured by 

Japanese scientists in 1987 have attracted extensive 

attention in various industries due to its excellent 

performance (Koizumi 1997). Fig. 1 presents some 

potential fields for the applications FGMs (Jha et al. 2013, 

Menasria et al. 2017, Dai and Dai 2017, Attia et al. 2015, 

Hao 2007, Ma and Lee 2011, Esfahani et al. 2013, 

Dehrouyeh-Semnani 2017, 2018, Wu et al. 2016). Thus, 

functionally graded structures are an advanced class of 

small-scale structures with promising applications in 

nanotechnology and microtechnology (Ghayesh and 

Farajpour 2019). Specifically speaking, functionally graded 

materials in which the composition and structure show 

continuous gradient change can satisfy the requirements of 

the functional and performance change with position on 

design of each component. In terms of such concept, 

functionally graded pizezomagntic and piezoelectric 

materials were designed intentionally to acquire more 
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pronounced magneto-electric coupling effect, the results of 

which have captured plenty of attention in engineering 

applications as well as scientific researches (Saadatfar and 

Aghaie-Khafri 2014, Ke et al. 2012, Hamidi et al. 2015, 

Guo and Wang 2017). For instance, Arani et al. (2010) used 

the material to extend the availability of life span of 

intelligent equipment. Consequently, researches relevant to 

functionally graded magnetic-electric-elastic materials 

were, are and remain to be a hot topic. 

Based on the special structure of FGMs, those classical 

theories, like Reddy beam model, Timoshenko beam model 

and Euler-Bernoulli beam model, should be modified in 

analyzing problems of FGMs. So far, a multitude of 

researches related to FGMs have been performed by using 

those modified methods and modified displacement fields. 

Eltaher et al. (2013) proposed a modified functionally 

graded beam theory to determine neutral axis position, then 

to study its effect on line vibration of nanobeams. More 

importantly, Zhang and Fu (2013) for the first time derived 

a high order shear deformation theory including the 

physical neutral surface, which is a groundbreaking study 

regarding the displacement functions of functionally graded 

materials. Subsequently, the high order shear deformation 

theory were employed to investigate the nonlinear bending 

behaviors of FGM beams (Zhang 2013) and nonlinear 

bending behaviors of FGM infinite cylindrical shallow 

shells (Zhang 2015) where the results obtained by Ritz 

method revealed the major difference between components 

made of FGMs and components made of homogeneous 

materials. Therefore, it is necessary to introduce the theory 
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to deal with problems of FGMs throughout the course of 

our study. 

Moreover owing to porosity appearing in functionally 

graded materials during manufacturing production, it is 

reasonable to take into account for influence of porosity on 

mechanical behaviors of structures. Chen et al. (2015) 

studied critical buckling load and static bending 

deformation of functionally graded beams subjected to two 

porosity distribution patterns. Chen et al. (2016) provided a 

possible approach to improve the nonlinear vibration 

behaviors of porous beams through comparing different 

types of porosity distribution. Sahmani et al. (2018) 

explored the size-dependent in nonlinear vibration response 

of FG porous plates, for which the model of the Halpin-Tsai 

micromechanical and a simple perturbation method were 

used to undertake the research. Except for above-mentioned 

studies on FG porous beams, the team led by She 

respectively investigated buckling and post-buckling 

behaviors of FG porous tubes (She et al. 2017), linear 

vibrations of FG porous tubes (She et al. 2018a) as well as 

wave propagation of FG porous tubes (She et al. 2018b) 

with the aid of a refined beam model. However, to authors’ 

knowledge, there is no static analysis of porous beams made 

of functionally graded magnetic -thermo-electric-elastic 

materials. So, it is worthwhile to take much effort and some 

time to make clear of the mechanical properties for 

PFGMTEEMs beams. 

When analyzing the problems involving nano-structures, 

the effect of size-dependent on the mechanical behaviors 

can not be ignored, which has been demonstrated by the 

experimental results, such as experimental evaluation of the 

length scale for nanocantilevers (Tang and Alici 2011a, b), 

experimental evaluation of positive size effects for the 

bending of micromaterials (Liebold and Müller 2016) and 

experimental study of size-dependent vibration for nickel 

cantilever microbeams (Lei at al. 2016). Nevertheless, the 

classical theories are unable to characterize the size effect in 

nano-structures, because of lack of additional length scale 

parameters. To overcome the difficulty, some researchers 

 

 

had to put forward novel non-classical continuum models to 

capture the size effect, such as nonlocal elasticity theory, 

strain gradient theory and nonlocal strain gradient theory. 

The nonlocal elasticity theory proposed by Eringen and 

Edelen (1972) assumes that the stress tensor at a given point 

is not only dependent on the strain at the reference point but 

also dependent on the strains at all points in the total body. 

Later, a series of researches with respect to nano-structures 

have been carried out in recent years, which manifest that 

the stiffness-softening effect can be taken into account via 

the theory (Nejad et al. 2016, Barati 2017, Ghadiri et al. 

2017, Rahmani and Pedram 2014, Thai et al. 2018). The 

strain gradient theory proposed by Mindlin (1965) that 

includes sixteen additional higher order material constants 

is another size-dependent non-classical theory. Such theory 

states that additional strain graded terms should be 

incorporated into the total stress field in analysis of 

mechanism of nano-structures. Afterwards, Lam et al. 

(2003) developed a modified strain gradient theory where 

the number of the non-classical material parameters is 

reduced to three, whereas determining the values of non-

classical material length scale parameters is still fraught 

with difficulties. Consequently, the modified couple stress 

theory (MCST) elaborated by Yang et al. (2002), including 

merely one non-classical material length scale parameter as 

well as double classical ones, assumes that the strain energy 

density is determined by the strain tensor aligned with the 

symmetric part of the curvature tensor, which can be 

regarded as the special case of the modified strain gradient 

theory. In terms of these modified theories, a number of 

relevant studies have been performed (Dehrouyeh-Semnani 

and Bahrami 2016, Simsek and Reddy 2013, Fourn et al. 

2018, Abdelaziz et al. 2017, Dehrouyeh-Semnani et al. 

2015, 2016, 2017, Chen et al. 2019, Bhattacharya and 

Debabrata 2019, Ghayesh et al. 2017), indicating that the 

stiffness-hardening effect can be taken into account via the 

theories. To consider two types of size-dependent effect, the 

stiffness-softening effect and the stiffness-hardening effect, 

in the same theoretical frame-work, Lim et al. (2015) put 

 

Fig. 1 Potential fields for the applications FGMs 
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forward the nonlocal strain gradient theory that reasonably 

builds a bridge between nonlocal elasticity theory and strain 

gradient theory. But the computational costs of the theory is 

larger than those of the nonlocal elasticity theory and strain 

gradient theories, because both the nonlocal term and stain 

gradient term are taken into account (Farajpour et al. 2018). 

Based on the excellent theory, nonlinear vibration of 

functionally graded nanobeams (Şimşek 2016, Lu et al. 

2017, Li et al. 2016a, Ebrahimi and Barati 2017, Liu et al. 

2019, She et al. 2018c), longitudinal vibration of size-

dependent rods (Li et al. 2016b, El-Borgi et al. 2018), 

nonlinear vibration of nanotubes (Ghayesh and Farajpour 

2018a, She et al. 2018d, Ghayesh and Farajpour 2018b, 

Farajpour et al. 2019), nonlinear bending of curved 

nanotubes(She et al. 2019) and linear bending, buckling and 

vibration of FG nanobeams (Li et al. 2017) were studied in 

the past, the results of which revealed the relation between 

nonlocal parameters and strain gradient parameters very 

fully. 

Even though the nonlocal strain gradient theory has 

been widely used to study mechanical behaviors of nano-

materials, there are a few papers regarding nano-structures 

made of functionally graded magneto-thermo- electric-

elastic materials in the open literature. Ebrahimi and 

Dabbagh (2017a) used the theory to perform an exact 

investigation of wave propagation in smart rotating 

magneto-electro-elastic nanoplates. Ma et al. (2017) studied 

wave propagation in MEE shells using the theory whose 

research focus is the influence of nonlocal parameter and 

length scale parameter on wave propagation. A higher-order 

shear deformation in conjunction with the theory were used 

to induce the nonlocal governing equations by Ebrahimi and 

Dabbagh (2017b), where electric voltages, wave number, 

magnetic potential, nonlocal parameter and length scale 

parameter were analyzed in detail. Ebrahimi and Barati 

(2016a) developed a nonlocal strain gradient beam model, 

then used it to study natural frequencies of axially 

functionally graded beams subjected to a nonuniform 

magnetic field. From this review of the literature, we have a 

good knowledge that there is no study relevant to nonlinear 

bending of functionally graded magneto-thermo-electro- 

elastic nanobeams. So, it is worth doing it. 

Obtaining analytical solutions from governing equations 

is always a tough task, especially for solving nonlinear 

equations. To overcome this difficulty, researchers proposed 

and developed various methods for resolving nonlinear 

equations, such as perturbation methods (Mook and Nayfeh 

1979), harmonic balance method (Dai et al. 2014), 

differential transformation method (Zhou 1986) and high 

dimensional harmonic balance method (Hall et al. 2015). 

Among these methods, perturbation methods have been 

widely applied into scientific researches due to their simple 

and practical significance. For instance, a two-step 

perturbation method as one of perturbation methods was 

utilized to study nonlinear vibration of tubes by Zhong et al. 

(2016). Then, with the aid of their analytical solutions, 

buckling and post-buckling behaviors of nanotubes was 

studied by She et al. (2017) and nonlinear vibration of 

functionally graded porous nanoplates was studied by 

Sahmani et al. (2018). Differing from previous studies, 

authors in this article attempt to introduce a two-step 

perturbation method into nonuniform electric field and 

magnetic field, the purpose of which is to obtain analytical 

solutions, and then to get a sense for usage. 

Our study is motivated via the recent analysis of the 

strain gradient length scale, the nonlocal parameters and so 

on within the theoretical framework of the nonlocal strain 

gradient theory. Firstly, the porosity distribution and 

material distribution along the thickness are taken into 

account in the present effective material properties of 

porous functionally graded magneto-thermo-electro-elastic 

materials. Secondly, the displacement function regarding 

the physical neutral surface is used to study mechanical 

behaviors of beams made of FGMs. Thirdly, within the 

theoretical framework of the nonlocal strain gradient theory, 

analytical solutions obtained by an improved perturbation 

method are used to analyze the influence of respective 

physical parameters on the static bending deformation of 

PFGMTEEMs nanobeams. 
 

 

2. Basic equations 
 

2.1 Nonlocal strain gradient theory 
 

Differing from the Eringen’s nonlocal theory (Eringen 

and Edelen 1972) stating that the stress tensor at a given 

point is not only dependent on the strain at the reference 

point but, more importantly, dependent on the strains at all 

points in the entire body and the strain gradient theory (Thai 

et al. 2018, Yang et al. 2002) stating that the physical 

material properties should be considered as atoms 

associated with the higher-order deformations on the 

nanometer length rather than merely modeled them as a 

collection of points, the nonlocal strain gradient theory 

proposed by Lim et al. (2015) takes into account for effects 

of the nonlocal elastic stress field and the strain gradient 

stress field in the whole stress field. Consequently, via 

introducing two scale parameters, the theory can be 

expressed as for magneto-thermo-electric-elastic solids (Ma 

et al. 2017) 
 

   2 2 2 2

0[1 ( ) ] 1- ( ) ( )ij ijkl kl mij m nij n ijkl kle a l c x e E x q H x c T               (1) 
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(5) 

 

where ζij, εij, Di, Ei, Bi, and Hi respectively stand for the 

stress, strain, electric displacement, electric field, magnetic 

induction as well as magnetic field; cijkl, emij, sim, qnij, din, χin, 

pi, λi, αkl, ΔT, Φ, φ and ui are elastic, piezoelectric, dielectric 

piezomagnetic, magnetoelectric, magnetic permeability 

coefficient, pyroelectric constants, pyromagnetic constants, 
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Fig. 2 Schematic configuration of a beam made of 

PFGMTEEMs 

 

 

the thermal expansion coefficient, temperature change, 

electric potential, magnetic potential and displacement 

components, separately; Both the nonlocal parameter e0a 

and the length scale parameter l are used to account for the 

size-dependent effect of nanostructures; 2 is the Laplace 

operator. 

We can infer that the nonlocal elasticity constitutive 

equations can be obtained from the above differential 

constitutive Eqs. (1)-(3) when setting l equal to zero and the 

strain gradient constitutive equations can be obtained from 

the above differential constitutive Eqs. (1)-(3) when setting 

e0a equal to zero. Obviously, the nonlocal strain gradient 

theory can build a bridge between the Eringen’s nonlocal 

theory and the strain gradient theory, thus making it 

possible to more reasonably characterize the size-dependent 

effect. 

 

2.2 Description of the structure 
 

For a beam made of porous functionally graded 

magneto-thermos-electric-elastic materials, the effective 

material properties can be defined as (Xiao et al. 2018) 

 

2 1 1and
1

( ) 1    ( ) ( )
2 2

N

f

z
P P z P z P P P

h

   
        

     

(6) 

 

Here, P1 and P2 respectively represent the physical 

material properties of BaTiO3 and CoFeO4. Combined with 

Fig. 2, we have a good knowledge that the top surface at z = 

‒h/2 is full of BaTiO3, while the bottom surface z = +h/2 is 

full of CoFeO4. Moreover, the symbols of N and γ are the 

volume fraction index (0 ≤ N <∞) and porosity volume 

fraction (0 ≤ γ <1). In this article, we merely study the 

beams subjected to evenly distributed porosity. 

It is indicated from Eq. (6) that the porosity and material 

properties are simultaneously distributed along the 

thickness of the beam in the present even porosity 

distribution. 

 

 1 2

2 1 1

1
 ( )

2 2

N

f

P Pz
P P P P

h

  
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   

(7) 

 

From the perspective of common fabrication methods of 

FGMs, as presented in Table 1, the present is much more 

suitable to the actual porosity distribution compared with 

the conventional even porosity distribution shown in Eq. 

(7). The reason is that a porous beam has porosities 

Table 1 Common fabrication methods of functionally 

graded materials (Miyamoto et al. 2001, 

Kieback et al. 2003, Tao et al. 2012) 

Fabrication methods Main features 

Powder 

metallurgy 

method 

Powder 

accumulation 

• Production process is simple. 

• Distribution of components are 

discontinuous. 

• Number of accumulation layer is 

limited. 

• Production efficiency is low. 

• Only be suitable for experiments. 

Wet powder 

spraying 

• Distribution of components are 

continuous. 

• Control accuracy is high. 

• Thickness of accumulation layer is 

small. 

Slip casting 

• Distribution of components are 

continuous. 

• Be very suitable for batch production. 

Centrifugal 

casting 

method 

 

• Production process and equipment are 

simple. 

• Production efficiency is high and cost 

is low. 

• Conventional raw materials can be 

used. 

• Can produce large FGMs with high 

compactness. 

Electro-

deposition 

method 

 

• Production equipment is simple and 

cost is low. 

• Damage to the matrix material is small. 

• Be very suitable for thin-walled box 

FGMs. 

Laser 

cladding 

method 

 

• Can be used on matrix with arbitrary 

curved surface. 

• Control accuracy is high and 

preparation time is short. 

• Production equipment are complex and 

expensive. 

Vapor 

deposition 

method 

Physical 

vapor 

deposition 

• Deposition is fast, controls of 

components are accurate, and bond 

strength is high. 

• Only be suitable for FGMs with small 

sizes. 

Chemical 

vapor 

deposition 

• Temperature effect is small. 

• Deposition is slow, controls of 

components are discontinuous, and 

bond strength is high. 

• FGMs has low compactness and low 

bond strength. 

Plasma 

spraying 

method 

 

• Be very suitable for ceramic/metal 

FGMs with large sizes. 

• Be easy to control, cost is moderate. 

• Porosity is high, and bond strength is 

low 
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spreading through the thickness due to defect during 

production, which is a random process. 

 

 

3. Nonlinear PFGMTEEMs beam model 
 

As vividly illustrated in Fig. 2, a porous beam with 

length L, width b and thickness h is subjected to an electric 

potential Φ, a magnetic potential φ, two kinds of transverse 

load q as well as a uniform temperature field T. A Cartesian 

coordinate system (O, X, Y, Z) is set at the geometric middle 

plane of the beam where the axis of X coincides with 

symmetric axis of this beam and the axis of Z is 

perpendicular to O-XY plane. Based on the high order shear 

deformation theory (Zhang 2013), the displacement 

functions can be expressed as 
 

   3

1 0 0 1 0

2

3

d
( , , ) ( )

d

( , , ) 0

( , , ) ( )

w
u x y z u x z z c z c

x

u x y z

u x y z w x

 
 
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 



  

(8) 

 

where u0 and w(x) are respective displacements in the 

direction of X axis and Z axis, and θ stands for rotation 

angle with respective to the physical neutral axis. Here, z0 

and c0 are respectively given by 
 

 

 
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z c
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 

 
 
 

   
 

It should be mentioned out that the physical neutral 

surface determined by z0 is changed with variational 

temperature, partly because the effective material properties 

are assumed to be temperature-dependent. As a result, the 

physical neutral surface does not coincide with the 

geometric middle plane of this beam unless for beams made 

of isotropic materials, both z0 and c0 are equivalent to zero. 

With the aid of von-karman nonlinear strain 

displacements theory, the correlation between nonlinear 

strains and displacements can be arrived at 
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where 
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In this study, the distributions of electric potentials and 

magnetic potentials are supposed to be a combination of 

linear and cosine variations (Ansari et al. 2015) 
 

02
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h
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where β = π/h, V0 and Ω shown in Eqs. (10)-(11) 

respectively stand for the applied initial external electric 

voltage and magnetic potential. The components of the 

electric fields (Ex, Ez) and magnetic fields (Hx ,Hz) can be 

derived via substituting Eqs. (10)-(11) into Eq. (5). 
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According to the Hamilton’s principle, we have 
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where ΠS is the strain energy and ΠW is the work performed 

by external forces. 

The variation of the virtual strain energy is given by 
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We substitute Eqs. (9) and (12)-(15) into Eq. (17), 

obtaining 
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in which 
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The variation of the work produced by the external force 

is written as 
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(19) 

 

where NE, NH and NT represent the normal forces produced 

by external electrical potential V0, magnetic potential Ω and 

uniform temperature rise ΔT, respectively. 
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For one-dimension beam, the nonlocal strain graded 

constitutive Eqs. (1)-(3) can be achieved as 
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After substituting Eqs. (18)-(19) into Eq. (16), and 

setting the coefficients of δu, δθ, δw, δΦ, δφ to zero, we can 

obtain the nonlinear governing equations of the beam. 
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In terms of the nonlocal strain graded constitutive Eqs. 

(20)-(25), the stress resultants of PFGMTEEMs beam are 

determined as 
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Herein, the coefficients appearing in Eqs. (31)-(39) can 

be recalculated by 
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The governing equations of the PFGMTEEMs nano-

beams proposed in Eqs. (26)-(30) can be reformulated as 
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It is indicated from Eq. (26) that N is a constant. 
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In the actual project, multiple physical fields, including 

the temperature field, the electric field, the magnetic field 

and the stress field, are interacted on each other at the 

boundary conditions of the PFGMTEEMs beams, which is 

a typical multiple fields coupling problem. To date, no 

research has explored the original boundary conditions of 

beams made of functionally graded magneto-thermo-

474



 

Nonlinear bending of functionally graded porous nanobeam subjected to multiple physical load based on... 

electro-elastic materials. Thus, we introduce the concept of 

the simplified boundary condition (Dehrouyeh-Semnani 

2017) to establish the equivalent boundary conditions of 

PFGMTEEMs nanobeams. 

For simply supported ends (S-S): 
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For immovable clamped ends (C-C): 
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Next, we begin to introduce the following dimensionless 

parameters in order to make the calculation as quickly and 

compactly as possible. 
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General governing equations proposed in Eqs. (40)-(43) 

can be rewritten as 
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The dimensionless boundary conditions of the 

PFGMTEEMs nanobeams can be extracted as 

 

 For simply supported ends (S-S): 

 

0, ; 0, 0, 0, 0, 0, 0;u w M P         
 

(50) 

 

 For immovable clamped ends (C-C): 

 

0, ; 0, 0, 0, 0, 0;u w         
 (51) 

 

 

4. Method of solution 
 
In this section, to obtain corresponding analytical 

solutions, an improved perturbation method called a two-

step perturbation technique is introduced to resolve the 

nonlinear governing equations. Before seriously acquiring a 

set of perturbation equations, the expanded forms of 

dimensionless displacement, dimensionless rotation angle, 

dimensionless transverse load, dimensionless electric 

potential, dimensionless magnetic potential are assumed to 

be 
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It should be noted that the small perturbation parameter 

ε in Eq. (52) has no additional physical significance. Via 

substituting Eq. (52) into Eqs. (46)-(49), then collecting 

terms of the same order ε, we get 
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4.1 For a PFGMTEEMs beam with simply 
supported ends 

 

In order to solve above-derived perturbation equations, 

asymptotic solutions of dimensionless displacement, 

dimensionless rotation angle, dimensionless electric 

potential aligned with dimensionless magnetic potential, 

satisfying boundary conditions of simply supported ends, 

are approximated as 
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We substitute Eq. (65) into Eqs. (53)-(55) to arrive at 
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10 1 2 10 10 1 10 21 0m l B r m r A m C a D a    
 

(66) 

 

  2 2 1 1 2 1 1

3 10 4 10 10 2 10 31 0m l r B m r A m C a D a    
 

(67) 

 

  2 2 1 1 1 1

10 4 10 5 9 10 10 101 0m l B a A a r C m r D m    
 

(68) 

 

where 
 

2 2 2 2 3

1 33 11 2 33 11 3 33 11 4 6 8 5 7 8; ; ; ; ;a X X m a Y Y m a T T m a r m r a r m r m         
 

2 2 2 2 3

1 33 11 2 33 11 3 33 11 4 6 8 5 7 8; ; ; ; ;a X X m a Y Y m a T T m a r m r a r m r m         
 

 

Via solving Eqs. (66)-(68), we get 

 
1 1 1 1 1 1

10 1 10 10 2 10 10 3 10; ; ;B A C A D A    
 (69) 

 

in which 
 

2 3 3 3 3

2 5 1 3 5 2 10 2 1 10 4 3 2 9 2 4 9

1 2 2 2 2 2

2 4 1 3 4 2 10 1 1 10 3 3 1 9 2 3 9

;
a a a a a a m r r a m r r a m r r a m r r

a a a a a a m r r a m r r a m r r a m r r


    
 

    
 

 

 3 3

3 5 1 2 5 3 3 4 2 2 4 4 10 1 4 10 2 3

2 2 2 2 2 2

2 4 1 3 4 2 10 1 1 10 3 3 1 9 2 3 9

;
m a a r a a r a a mr a a mr m r r r m r r r

a a a a a a m r r a m r r a m r r a m r r


    
 

    
 

 

 3 3

2 5 1 1 5 3 2 4 2 1 4 4 1 4 9 2 3 9

3 2 2 2 2 2

2 4 1 3 4 2 10 1 1 10 3 3 1 9 2 3 9

;
m a a r a a r a a mr a a mr m r r r m r r r

a a a a a a m r r a m r r a m r r a m r r


    


      
 

The substitution of Eqs. (65) and (69) into Eq. (56) 

yields 
 

 
   

 

3 2 2

1 7 1 8 8 2 2 4 32 2 2 4

1 1121 1

10

2 2 2

1
sin( )

2 ( ) 1

q

E H T

r m r r m r m r m
m l c H m

A m

m N N N m

    

 



     
   

     
    
   

(70) 

 

By substituting Eq. (65) and Eq. (69) into Eq. (60), 𝜆9
2 

is determined as 
 

    

 
 

2 2 2 2 2

21 11 1 11 1
2 1

10
4 2 2

1 11

( 1) 1 1 1 sin( )

1 4 cos(2 )

m

q

m l m B c E m m m
A

c E m m l m

   


 

            
  

     
(71) 

 

We substitute Eq. (65) into Eq. (61)-(63), again, 

obtaining 
 

  2 2 3 3 2 3 3

10 1 2 10 10 1 10 21 9 3 9 0m l B r m r A m C b D b    
 

(72) 

 

  2 2 3 3 2 3 3

3 10 4 10 10 2 10 31 9 3 9 0m l r B m r A m C b D b    
 

(73) 

 

  2 2 3 3 3 3

10 4 10 5 9 10 10 101 9 3 3 0m l B b A b r C m r D m    
 

(74) 
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Nonlinear bending of functionally graded porous nanobeam subjected to multiple physical load based on... 

where 
 

2 2 2 2 3

1 33 11 2 33 11 3 33 11 4 6 8 5 7 89 ; 9 ; 9 ; 9 ; 27 3 ;b X X m b Y Y m b T T m b r m r b r m r m         
 

2 2 2 2 3

1 33 11 2 33 11 3 33 11 4 6 8 5 7 89 ; 9 ; 9 ; 9 ; 27 3 ;b X X m b Y Y m b T T m b r m r b r m r m         
 

 

Via solving Eqs. (72)-(74), we get 
 

3 3 3 3 3 3

10 1 10 10 2 10 10 3 10; ; ;B A C A D A    
 (75) 

 

in which 
 

2 3 3 3 3

2 5 1 3 5 2 10 2 1 10 4 3 2 9 2 4 9

1 2 2 2 2 2

2 4 1 3 4 2 10 1 1 10 3 3 1 9 2 3 9

27 27 27 27

9 9 9 9

b a b b b b m r r b m r r b m r r b m r r

b b b b b b m r r b m r r b m r r b m r r


    
 

      
 

 3 3

3 5 1 2 5 3 3 4 2 2 4 4 10 1 4 10 2 3

2 2 2 2 2 2

2 4 1 3 4 2 10 1 1 10 3 3 1 9 2 3

3 3 3 27 27

9 9 9 9

m b b r b b r b b mr b b mr m r r r m r r r

b b b b b b m r r b m r r b m r r b m r r


    
 

      
 

 3 3

2 5 1 1 5 3 2 4 2 1 4 4 1 4 9 2 3 9

3 2 2 2 2 2

2 4 1 3 4 2 10 1 1 10 3 3 1 9 2 3

3 3 3 27 27

9 9 9 9

m b b r b b r b b mr b b mr m r r r m r r r

b b b b b b m r r b m r r b m r r b m r r


    


      
 

Then, the substitution of Eq. (65) and Eq. (75) into Eq. 

(64) yields 
 

 
   

   

3 2

1 7 1 8 8 2 2 4 33 2 2 4 2 3

1 11 102

2 4
3

2 2 1 2 2 2 311

10 10

27 3 9
1 9 81 sin(3 )

(1 ) sin( ) 18 (1 9 ) sin(3 )
4

q

T E H

m r r mr m r r
m l m c H A m

A m
m A m m m N N N A m

    
 




   

    
   
  

     
 

(76) 

 

As a result, asymptotic solutions of dimensionless 

transverse load can be achieved as 
 

1 2 3 4( );q q q q O       
 

(77) 

 

Next, two kinds of transverse loading, a uniform 

transverse loading and a sinusoidal transverse loading, are 

taken into account in the present work. 

For a uniform transverse loading, the expression of 

dimensionless transverse load is given by 
 

 
0

q q 
 

(78) 

 

For a sinusoidal transverse loading, the expression of 

dimensionless transverse load is given by 
 

 sinq q m 
 

(79) 

 

By employing the method of Galerkin to Eq. (77), we 

have 
 

 

 
   

 

       

   

 

3 2 2

1 7 1 8 8 2 2 4 32 2 2 4

1 112 1

10

2 2 2

2
2 2 2 2 2 1

1 11 1 11 1 10

2
4 2 2 1

1 11 10

2 2 4 2

1 1

1
sin( )

2 ( ) 1

( 1) 1 1 1 sin( )

1 4 cos(2 )

1 9 81

E H T

m

q

r m r r m r m r m
m l c H m

A m

m N N N m

m l m B c E m m m A

c E m m l m A

m l m c H

    

 



    

 

   
 



   

      

 

 

  
  
 

  
 
  

  

   

   

0

3 2

1 7 1 8 8 2 2 4 3 3

1 102

2 4
3

2 2 2 3 2 2 111

10 10

sin( ) d 0

27 3 9
sin(3 )

18 (1 9 ) sin(3 ) (1 ) sin( )
4

T E H

m

m r r mr m r r
A m

A m
m m N N N A m m A m



 

    





   



   


     

 
 
 
 
 
 
 
  
 
 

  
  
   

 
 
 
  



 

(80) 

 

After doing some mathematical manipulations, the two 

kinds of analytical solution of dimensionless transverse load 

can be obtained from Eq. (80). 

A uniform transverse loading 

 

 
   

 

3 2 2

1 7 1 8 8 2 2 4 32 2 2 4

1 112 1

10

2 2 2

3
2 2 2 2

31 11 1 11 1 11
1 2 11

104
2 2

1 11

1

4
2 ( ) 1

(1 )(1 ) ( )
4

( 1) 1 ( )

(1 4 )
6

E H T

m

r m r r m r m r m
m l c H mm

q A

m N N N m

m
m l m B c E mc E

A m
A

m
m l c E

    

 




 





     
   

     
    
 

 
       

     
  
  

5

2 2 1 3

10(1 )( )
16

m A

 

(81) 

 

A sinusoidal transverse loading 

 

 
   

 

3 2 2

1 7 1 8 8 2 2 4 32 2 2 4

1 112 1

10

2 2 2

2 2 2 2 2

1 11 1 11 1 11 2 4

1 2 211
3

10
2 2

1 11

1

2 ( ) 1

(1 )(1 ) ( )

( 1) 1 ( ) (12 4(1 4 )
3

E H T

m

r m r r m r m r m
m l c H m

q A

m N N N m

m m l m B c E mc E
A m

A mm
m l c E

    





 






     
   

     
    
 

      
 

      
  
 

2 1 3

10)( )A

 

(82) 

 

It should be pointed out that 𝐴10
1

 as the perturbation 

parameter in Eqs. (81) and (82) stands for the dimensionless 

maximum deflection, the value of which can be determined 

from the first equation of Eq. (65) when setting ξ = π / 2m. 

 

1

10 ;m

m

W
A W

L
 

 
(83) 

 

Consequently, the expressions of Eq. (81) and Eq. (82) 

can be, respectively, rewritten as 

 

 
   

 

3 2 2

1 7 1 8 8 2 2 4 32 2 2 4
2

1 112

2

2 2 2

3
2 2 2 2

21 11 1 11 1 11

4
2 2

1 11

1

4
2 ( ) 1

(1 )(1 ) ( )
4

( 1) 1

(1 4 )
6

m

E H T

m m

r m r r m r m r m
m l c H m WqL m

LS
m N N N m

m
m l m B c E mc E

W

Lm
m l c E

    

 





 



     
   

     
    
 

 
         

      
   

  
33 5

2 211 (1 ) ...
16

mWA m
m

L




 
   

   

(84) 

 

 
   

 

3 2 2

1 7 1 8 8 2 2 4 32 2 2 4
2

1 112

2

2 2 2

2 2 2 2 2
21 11 1 11 1 11

3
2 2

1 11

2 4

11

1

2 ( ) 1

(1 )(1 ) ( )

( 1) 1 2
(1 4 )

3

m

E H T

m m

r m r r m r m r m
m l c H m WqL

LS
m N N N m

m m l m B c E mc E
W

m Lm l c E

A m

    






 





     
   

     
    
 

         
      

   
 



3

2 2(1 ) ...
4

mW
m

L


 
  

   

(85) 

 
Besides, for static analysis of a PFGMTEEMs beam, m 

is always equal to 1. 

 

4.2 For a PFGMTEEMs beam with immovable 
clamped ends 

 

For boundary conditions of immovable clamped ends, 

asymptotic solutions of dimensionless displacement, 

dimensionless rotation angle, dimensionless electric 

potential aligned with dimensionless magnetic potential are 

approximated as 
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   

   

   

1 3 3 4

10 10

1 3 3 4

10 10

1 3 3 4

10 10

1 3 3 4

10 10

( ) 1 cos(2 ) 1 cos(6 ) ( );

( ) sin(2 ) sin(6 ) ( );

( ) 1 cos(2 ) 1 cos(6 ) ( );

( ) 1 cos(2 ) 1 cos(6 ) ( );

w A m A m O

B m B m O

C m C m O

D m D m O

     

      

      

      

    

  

    

    
 

(86) 

 

We substitute Eq. (86) into Eqs. (53)-(55) to arrive at 

 

 2 2 1 1 2 1 1

1 10 2 10 10 1 10 2(1 4 ) 2 4 0;m l r B m r A m C a D a    
 

(87) 

 

 2 2 1 1 2 1 1

3 10 4 10 10 2 10 3(1 4 ) 2 4 0;m l r B m r A m C a D a    
 

(88) 

 

 2 2 1 1 1 1

10 4 10 5 9 10 10 10(1 4 ) 2 2 0;m l B a A a r mC D r m    
 

(89) 
 

where 

 
2 2 2 2 3

1 33 11 2 33 11 3 33 11 4 6 8 5 7 84 ; 4 ; 4 ; 4 ; 8 2 ;a X m X a Y m Y a T m T a m r r a m r mr           
 

Via solving Eqs. (87)-(89), we get 

 
1 1 1 1 1 1

10 1 10 10 2 10 10 3 10; ; ;B A C A D A    
 (90) 

 

in which 

 
2 3 3 3 3

2 5 1 3 5 2 10 2 1 10 4 3 2 9 2 4 9

1 2 2 2 2 2

2 4 1 3 4 2 10 1 1 10 3 3 1 9 2 3 9

8 8 8 8

4 4 4 4

a a a a a a m r r a m r r a m r r a m r r

a a a a a a m r r a m r r a m r r a m r r


    
 

    
 

 

 3 3

3 5 1 2 5 3 3 4 2 2 4 4 10 1 4 10 2 3

2 2 2 2 2 2

2 4 1 3 4 2 10 1 1 10 3 3 1 9 2 3 9

2 2 2 8 8

4 4 4 4

m a a r a a r a a mr a a mr m r r r m r r r

a a a a a a m r r a m r r a m r r a m r r


    
 

    
 

 

 3 3

2 5 1 1 5 3 2 4 2 1 4 4 1 4 9 2 3 9

3 2 2 2 2 2

2 4 1 3 4 2 10 1 1 10 3 3 1 9 2 3 9

2 _ 2 2 8 8

4 4 4 4

m a a r a a r a a mr a a mr m r r r m r r r

a a a a a a m r r a m r r a m r r a m r r


    


    
 

 

The substitution of Eq. (86) and Eq. (90) into Eq. (56) 

yields 

 

 
   

 

3 2 2

1 8 7 2 2 4 3 82 2 2 4

1 1121 1

10

2 2 2

2 8 4 4
1 4 16

cos(2 )

8 ( ) 1 4

q

E H T

mr r m m r r m r
m l c H m

A m

m N N N m

   

 



     
   

     
    
   

(91) 

 

By substituting Eqs. (82) and (86) into Eq. (60), 𝜆9
2 is 

determined as 

 
2 4 2 2 1 2

1 11 1016 (1 16 )( ) cos(4 );q c E m m l A m    
 

(92) 

 

We substitute Eq. (86) into Eqs. (61)-(63), then doing 

some mathematical manipulations, obtaining 

 

 2 2 3 3 2 3 3

1 10 2 10 10 1 10 2(1 36 ) 6 36 0;m l r B m r A m C b D b    
 
(93) 

 

 2 2 3 3 2 3 3

3 10 4 10 10 2 10 3(1 36 ) 6 36 0;m l r B m r A m C b D b    
 
(94) 

 

 2 2 3 3 3 3

10 4 10 5 9 10 10 10(1 36 ) 6 6 0;m l B b A b r mC D r m    
 

(95) 
 

where 

2 2 2 2 3

1 33 11 2 33 11 3 33 11 4 6 8 5 7 836 ; 36 ; 36 ; 36 ; 216 6 ;b X X m b Y Y m b T T m b r m r b r m r m           
 

Via solving Eqs. (93)-(95), we get 
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in which 
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Then, the substitution of Eqs. (86) and (96) into Eq. (64) 

yields 
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As a result, asymptotic solutions of dimensionless 

transverse load can be achieved as 

 
1 2 3 4( );q q q q O       

 
(98) 

 

Similarly, two kinds of transverse loading, a uniform 

transverse loading and a sinusoidal transverse loading, are 

taken into account in the present work. 

For a uniform transverse loading, the expression of 

dimensionless transverse load is given by 

 

 
0

q q 
 

(99) 

 

For a sinusoidal transverse loading, the expression of 

dimensionless transverse load is given by 

 

 sinq q m 
 

(100) 

 

By employing the method of Galerkin to Eq. (98), we 

have 
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(101) 

 

After doing some mathematical manipulations, the two 

analytical solutions of dimensionless transverse load can be 

obtained from Eq. (101). 
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A uniform transverse loading 
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(102) 

 

A sinusoidal transverse loading 
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(103) 

 

It should be pointed out that 𝐴10
1  as the perturbation 

parameter in Eqs. (102) and (103) stands for the 

dimensionless maximum deflection, the value of which can 

be determined from the first equation of Eq. (86) when 

setting ξ = π / 2m. 
 

1

10 ;
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A W

L
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(104) 

 

Consequently, the expressions of Eq. (102) and (103) 

can be, respectively, rewritten as 
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(106) 

 

Besides, for static analysis of a PFGMTEEMs beam, m 

is always equal to 1. 
 

 

5. Results and discussion 
 

In the following section, authors use the above-derived 

analytical solutions to conduct a comprehensive analysis of 

the bending behaviors for the beams made of 

PFGMTEEMs. The results revealed in such work will be 

immensely useful to others in conducting relevant 

researches. 
 

5.1 Validation research 
 

To begin with, a comparison with work of other 

researchers is performed by authors, the purpose of which is 

 

Fig. 3 Comparison of nonlinear bending of Si3N4/SUS304 

FG beams with simply supported ends between ours 

and Zhang (2013) 

 

 

to validate the present analysis. Through a detailed 

literature review, there is no published data on static 

analysis of a functionally graded nanobeam subjected to 

multiple physical loads. So, as presented in Fig. 3, a 

functionally graded beam made of Si3N4 and SUS304 is 

studied by the present analytical model where a beam with 

L = 30h, T = 300K, E0 = 201.04×10+9 is subjected to simply 

supported ends. It is indicated from this figure that the 

results predicted by the present analysis show a good 

agreement with the results reported by Zhang (2013), which 

totally manifests that the present analysis is reasonable and 

reliable. 
 

5.2 Parametric studies 
 

Next, a parametric analysis is carried out in detail. Here, 

the dimensionless load F shall be equivalent to 𝑞 𝐿4/(𝐸0𝐼) 

where E0 = 286×10+9 and 𝐼 =  𝑧2d𝐴
𝐴

, unless otherwise 

 

 

Table 2 Magneto-electro-thermo-elastic coefficients 

(Ebrahimi and Barati 2016a, b) 

Properties BaTiO3 CoFe2O4 

C11 (GPa) 166 286 

C55 (GPa) 43 45.3 

e31 (Cm-2) -4.4 0 

e15 (Cm-2) 11.6 0 

q31 (N/A m) 0 580.3 

q15 (N/A m) 0 550 

s11 (10-9C2m-2N-1) 11.2 0.08 

s33 (10-9C2m-2N-1) 12.6 0.093 

χ11 (10-6Ns2C-2/2) 5 -590 

χ33 (10-6Ns2C-2/2) 10 157 

d11 = d33 0 0 

α (10-61/K) 15.7 10 

k (w/mk) 3.2 2.5 

P (kgm-3) 5800 5300 
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specified. The material properties for BaTiO3 and CoFe2O4 

are listed in Table 2. 

Figs. 4(a)-(b) respectively present the effect of volume 

fraction index N on nonlinear bending of PFGMTEEMs 

beams subjected to simply supported ends and immovable 

clamped ends under uniform transverse loading where h = 

20 nm, b = h, μ = 1 nm, l = 2 nm, L = 20 h, γ = 0.1, T = 350 

K, V0 = 0.5 v, Ω = 0.02 A. It can be seen from both figures 

that the deflection of beams is steadily growing greater with 

the value of N becoming larger and larger. The reason is that 

the increase of N can result in the reduction in the value of 

total stiffness of beams. However, the difference between 

both figures is that the deflection of beams with simply 

supported ends is significantly larger than that with 

immovable clamped ends. That is because that as shown in 

Eqs. (50)-(51), for simply supported ends, the displacement 

and bending moment are constrained, but for clamped ends, 

both the displacement and the rotation angle are 

constrained. Thus, a conclusion can be drawn that when the 

stiffness of higher order boundary conditions becomes 

large, the deflection of beams is getting small. 

Figs. 5(a)-(b) respectively display the effect of porosity 

volume fraction γ on nonlinear bending of PFGMTEEMs 

beams subjected to simply supported ends and immovable 

 

 

 
 

clamped ends under uniform transverse loading in which h 

= 20 nm, b = h, μ = 1 nm, l = 2 nm, L = 20 h, N = 1, T = 350 

K, V0 = 0.5 v, Ω = 0.02 A. It is indicated from these curves 

that whatever boundary conditions a beam is subjected to, 

the deflection of beams always increases with the increment 

of porosity volume fraction, partly because as average 

porosity volume fraction is increased the stiffness of beams 

is going to decrease. 

Figs. 6(a)-(b) show the comparison of functionally 

graded beams subjected to different types of porosity 

distribution on nonlinear bending for beams with simply 

supported ends and immovable clamped ends under 

uniform transverse loading in which h = 20 nm, b = h, μ = 1 

nm, l = 2 nm, L = 20 h, N = 1, T = 350 K, V0 = 0.5 v, Ω = 

0.02 A. It is observed from both figures that the deflection 

of beams subjected to the present porosity distribution is 

obviously smaller than that subjected to the conventional 

porosity distribution when both types of porosity volume 

fraction γ are taken at the same value. From the perspective 

of common fabrication methods of FGMs, a porous beam 

has porosities spreading through the thickness due to defect 

during production, which is a random process. To be 

specific, owing to the effective material properties of FG 

beams being changed along the thickness, the material 

  

(a) Simply supported ends (b) Immovable clamped ends 

Fig. 4 The effect of volume fraction index N on nonlinear bending of PFGMTEEMs beams 

  

(a) Simply supported ends (b) Immovable clamped ends 

Fig. 5 The effect of porosity volume fraction γ on nonlinear bending of PFGMTEEMs beams 
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properties occupied by porosity are all different at different 

values of z. Nevertheless, as shown in Eq. (7), the material 

properties occupied by porosity are always equivalent to the 

average value of two materials in the conventional even 

porosity distribution. Consequently, the present even 

porosity distribution is much more suitable to the actual 

porosity distribution, which is better than the conventional. 

Fig. 7 presents the effect of strain gradient parameter l 

on linear and nonlinear bending of PFGMTEEMs beams 

under uniform transverse loading with different types of 

boundary conditions in which h = 20 nm, b = h, μ = 0, γ = 

 

 

 

 

0.1, L = 20 h, N = 1, T = 350 K, V0 = 0.5 v, Ω = 0.02 A. As 

shown in the figure, the dimensionless deflection of the 

beam always decreases with the increase of strain gradient 

parameter l, regardless of which type of boundary 

conditions we choose. However, differing from linear 

bending, the correlation between the dimensionless 

deflection of the beam and the dimensionless load presents 

a obvious nonlinear variation for nonlinear bending. Also, 

within the framework of the nonlinear theory, the load-

carrying capacity of beams can be improved, prominently. 

Therefore, for the problem of large deflection, it is not 

  

(a) Simply supported ends (b) Immovable clamped ends 

Fig. 6 Comparison of functionally graded beams subjected to different types of porosity distribution on nonlinear bending 

  
 

  

Fig. 7 The effect of strain gradient parameter l on linear and nonlinear bending of PFGMTEEMs beams with different 

types of boundary conditions 
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advise to choose linear theory to undertake the analysis, 

partly because the deflection of beams should not rise, 

infinitely, when the transverse load is large enough. 

Fig. 8 shows the effect of nonlocal parameter μ on linear 

and nonlinear bending of PFGMTEEMs beams under 

uniform transverse loading with different types of boundary 

conditions, where h = 20 nm, b = h, l = 0, L = 20 h, γ = 0.1, 

N = 1, T = 350 K, V0 = 0 v, Ω = 0 A. As vividly illustrated in 

this figure, for a small transverse load, the dimensionless 

deflection of beams can be increased with the nonlocal 

parameter μ becoming larger and larger, while for a 

 

 

 

 

considerable transverse load, the dimensionless deflection 

of beams can be reduced with the nonlocal parameter μ 

becoming larger and larger. The opposite trend is exhibited 

clearly in nonlinear bending whatever boundary conditions 

the beams are subjected to. The reason is that the nonlocal 

parameter μ has a direct influence on the transverse load 

rather than the effective stiffness of beams. This similar 

phenomenon can also be observed in Li et al. (2017) where 

bending of axially functionally graded beam was analyzed 

by using nonlocal strain gradient theory. It means that the 

nonlocal effect of static bending deformation is not only 

  
 

  

Fig. 8 The effect of nonlocal parameter μ on linear and nonlinear bending of PFGMTEEMs beams with different types 

of boundary conditions 

  

(a) The beam under dimensionless transverse load F = 0.5 (b) The beam under dimensionless transverse load F = 15 

Fig. 9 Variation of the dimensionless linear bending relevant to l/μ for the beams with simply supported ends 
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dependent on nonlocal parameter μ but also influenced by 

distributed transverse load. 

Figs. 9(a)-(b) reflects variation of the dimensionless 

linear bending relevant to l/μ for the beam under uniform 

transverse loading with simply supported ends where h = 20 

nm, b = h, l = 0, L = 20 h, γ = 0.1, N = 1, T = 350 K, V0 = 0 

v, Ω = 0 A. From this figure, we can know that when l/μ >1, 

the dimensionless deflection obtained by nonlocal strain 

gradient theory is smaller than that obtained by classical 

elasticity theory and the dimensionless deflection can be 

decreased with the increment of nonlocal parameter μ; when 

l/μ = 1, the dimensionless deflection obtained by nonlocal 

strain gradient theory is equal to that obtained by classical 

elasticity theory; when l/μ < 1, the dimensionless deflection 

obtained by nonlocal strain gradient theory is larger than 

that obtained by classical elasticity theory and the 

dimensionless deflection can be increased with the 

increment of nonlocal parameter μ. From the perspective of 

the effective stiffness, that is because that the effect of 

stiffness-softening is greater than the effect of stiffness-

hardening on the dimensionless deflection at a relatively 

smaller parameter l, however, is smaller than the effect of 

stiffness-hardening on the dimensionless deflection at a 

relatively bigger parameter l; both types of the effective 

 

 

 

 
stiffness variation cancel each other out with the result of 

parameter μ equivalent to the result of parameter l. 

Furthermore, through comparing Figs. 9(a) and (b), we have 

a good knowledge that the dimensionless deflection of 

beams under dimensionless transverse load F = 15 is 

distinctly larger than that under dimensionless transverse 

load F = 0.5. 

Fig. 10 reflects variation of the dimensionless nonlinear 

bending relevant to l/μ for the beam under uniform 

transverse loading with simply supported ends in which h = 

20 nm, b = h, l = 0, L = 20 h, γ = 0.1, N = 1, T = 350 K, V0 = 

0 v, Ω = 0 A. It can be seen from Fig. 10(c) that the 

variation of the dimensionless nonlinear bending is similar 

to the variation of the dimensionless linear bending when a 

beam is subjected to dimensionless transverse load F = 0.5. 

Nevertheless, when a beam is subjected to dimensionless 

transverse load F = 15, as presented in Fig. 10(d), the 

dimensionless deflection obtained by nonlocal strain 

gradient theory is always smaller than that obtained by 

classical elasticity theory. That is due to the fact that for a 

nan-structure subjected to a big transverse load, the 

nonlocal effect is mainly influenced by the distributed 

external load rather than the effective stiffness of structure. 

 

  

(a) The beam under dimensionless transverse load F = 0.5 (b) The beam under dimensionless transverse load F = 15 

Fig. 10 Variation of the dimensionless nonlinear bending relevant to l/μ for the beam with simply supported ends 

  

(a) The beam under dimensionless transverse load F = 0.5 (b) The beam under dimensionless transverse load F = 150 

Fig. 11 Variation of the dimensionless linear bending relevant to l/μ for the beams with immovable  clamped ends 
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Fig. 13 The effect of two kinds of transverse loading on 

the nonlinear bending of PFGMTEEMs beams 

with simply supported ends 

 

 

Figs. 11(a)-(b) and Figs. 12(c)-(d) reflect the variation of 

the dimensionless linear bending relevant to l/μ for the 

beam with immovable clamped ends and the variation of 

the dimensionless nonlinear bending relevant to l/μ for the 

beam under uniform transverse loading with immovable 

clamped ends, respectively. The conclusions can be drawn 

from these curves that the phenomena observed in analysis 

of beams with simply supported ends can also be observed 

in analysis of beams with immovable clamped ends, and the 

laws of nonlocal parameter, strain gradient parameter and 

the ratio of strain gradient parameter to nonlocal parameter 

related to beams subjected to simply supported ends are 

also appropriated for beams subjected to immovable 

clamped ends. 

In Figs. 13-14, the effect of two kinds of transverse 

loading on the nonlinear bending of PFGMTEEMs beams 

with different boundary conditions are plotted where h = 20 

nm, b = h, μ = 1 nm, l = 2 nm, L = 15 h, γ = 0.1, N = 1, V0 = 

0 v, Ω = 0 A, T = 300 K. It can be seen that the load-

deflection curves of PFGMTEEMs beams subjected to a 

sinusoidal load are lower than those of the same beams 

subjected to a uniform load. That is because the resultant 

force of the uniform transverse load is larger than that of the 

 

 

 

Fig. 14 The effect of two kinds of transverse loading on 

the nonlinear bending of PFGMTEEMs beams 

with immovable clamped ends 

 

 

sinusoidal transverse load at the same conditions. 

In Figs. 15-16, the effect of dimensionless temperature 

on the nonlinear bending of PFGMTEEMs beams under 

uniform transverse loading with different boundary 

conditions are plotted where h = 20 nm, b = h, μ = 1 nm, l = 

2 nm, L = 15 h, γ = 0.1, N = 1, V0 = 0 v, Ω = 0 A. We can 

see that as the dimensionless temperature continues to rise, 

the deflection of PFGMTEEMs beams becomes large, no 

matter which type of boundary conditions a beam is 

subjected to. That is because the total stiffness of beams is 

reduced by the rise of dimensionless temperature. 

The effect of external electric voltages on the nonlinear 

bending of PFGMTEEMs beams under uniform transverse 

loading with simply supported ends and immovable 

clamped ends are shown in Figs. 17 and 18, where h = 20 

nm, b = h, μ = 1 nm, l = 2 nm, L = 15 h, γ = 0.1, N = 1, T = 

300 K, Ω = 0 A. As is indicated in both figures, the 

deflection of beams is steadily growing considerable when 

the external electric voltage increasing continuously. That is 

due to the fact compressive forces are produced by applying 

positive voltages while tensile forces are produced by 

applying negative voltages. 

 

  

(a) The beam under dimensionless transverse load F = 0.5 (b) The beam under dimensionless transverse load F = 150 

Fig. 12 Variation of the dimensionless nonlinear bending relevant to l/μ for the beam with immovable clamped ends 

484



 

Nonlinear bending of functionally graded porous nanobeam subjected to multiple physical load based on... 

 

Fig. 15 The effect of dimensionless temperature on the 

nonlinear bending of PFGMTEEMs beams with 

simply supported ends 

 

 

 

 

Fig. 16 The effect of dimensionless temperature on the 

nonlinear bending of PFGMTEEMs beams with 

immovable clamped ends 

 

 

 

 

Fig. 17 The effect of external electric voltages on the 

nonlinear bending of PFGMTEEMs beams with 

simply supported ends 

 

 

Fig. 18 The effect of external electric voltages on the 

nonlinear bending of PFGMTEEMs beams with 

immovable clamped ends 

 

 

 

 

Fig. 19 The effect of initial magnetic potentials on the 

nonlinear bending of PFGMTEEMs beams with 

simply supported ends 

 

 

 

 

Fig. 20 The effect of initial magnetic potentials on the 

nonlinear bending of PFGMTEEMs beams with 

immovable clamped ends 
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The effect of initial magnetic potentials on the nonlinear 

bending of PFGMTEEMs beams under uniform transverse 

loading with simply supported ends and immovable 

clamped ends are shown in Figs. 19 and 20, where h = 20 

nm, b = h, μ = 1 nm, l = 2 nm, L = 15 h, γ = 0.1, N = 1, T = 

300 K, V0 = 0 v. It can be found that if initial magnetic 

potentials are improved steadily, the deflection of beams is 

going to decrease prominently. The reason is that compared 

with the external electric voltage, initial magnetic potential 

has the opposite effect on the stiffness of beams due to 

compressive and tensile forces being produced via applying 

negative and positive magnetic potentials respectively. 
 

 

6. Conclusions 
 

In this article, nonlinear bending of functionally graded 

porous nanobeam subjected to multiple physical load is 

studied within the framework of nonlocal strain graded 

theory. Firstly, the displacement functions regarding the 

physical neutral surface in conjunction with the novel 

formulation of the effective material properties of porous 

beams are employed to derive the nonlinear bending 

governing equations of PFGMTEEMs beams, which are 

much more suitable to the actual porosity distribution and 

material distribution. Then, the corresponding analytical 

solutions are obtained by using an improved perturbation 

method. Finally, some significant conclusions can be drawn 

through conducting a detailed parametric analysis. 
 

 The dimensionless deflection of beams becomes 

larger and larger with the increment of the content of 

BaTiO3. 

 The overall stiffness of beams is reduced by the 

augment of porosity volume fraction, thereby 

resulting in the increment in the dimensionless 

deflection. 

 The increase of strain gradient parameter l can 

improve the effective stiffness of beams. 

 The nonlocal effect of static bending deformation is 

not only dependent on nonlocal parameter μ but also 

influenced by distributed transverse load, especially 

for a big transverse load. 

 For linear and nonlinear bending obtained by 

nonlocal strain graded theory may be equal to ones 

obtained by classical elasticity theory and also may 

be smaller or bigger, which are dependent on 

nonlocal parameter, strain gradient parameter and the 

ratio of strain gradient parameter to nonlocal 

parameter. 

 No matter which type of boundary conditions a 

beam is subjected to, the rise of dimensionless 

temperature and the increment of external electric 

voltages can increase the dimensionless deflection of 

beams, but the increment of initial magnetic 

potentials can decrease the dimensionless deflection 

of beams. 

 

The above-obtained conclusions can provide theoretical 

references for optimization designs of structures made of 

FGMTEEMs under complicated conditions. Moreover, they 

are also immensely useful for others undertaking the 

analysis of porous nano-materials. 
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