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1. Introduction 

 
Graphen platelate has many applications in different 

industries due to the high hardness-to-weight and strength-
to-weight ratios and other better properties compared with 
traditional isotropic ones. These structures can be used in 
aircraft, helicopters, missiles, launchers, satellites and etc. 
During the last 5 decades the application of sandwich 
structures with light core and two thin factsheets have been 
extensively investigated. 

A new sinusoidal shear deformation theory was 
developed by Thai and Vo (2013) for bending, buckling, 
and vibration of functionally graded plates. A simple refined 
shear deformation theory was proposed by Thai et al. 
(2013) for bending, buckling, and vibration of thick plates 
resting on elastic foundation. Forced vibration response of 
laminated composite and sandwich shell was studied by 
Kumar et al. (2014) using a 2D FE (finite element) model 
based on higher order zigzag theory (HOZT). The study of 
composite and nanocomposite paltes was presented by Duc 
et al. (Duc and Minh 2010, Duc et al. 2013, 2015, 2018). 
Chung et al. (2013) investigated Polymeric Composite 
Films Using Modified TiO2 Nanoparticles. Nonlocal 
dynamic buckling analysis of embedded micro plates 
reinforced by single-walled carbon nano tubes was studied 
by Kolahchi and Cheraghbak (2017). Wang et al. (2018) 
investigated buckling of functionally graded GPLs 
reinforced cylindrical shells consisting of multiple layers 
through FEM. Temperature-dependent buckling analysis of 
sandwich nano composite plates resting on elastic medium 
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subjected to magnetic field was studied by Shokravi (2017). 
Li et al. (2018) investigated the static linear elasticity, 
natural frequency, and buckling behaviour of functionally 
graded porous plates reinforced by GPLs. GPL-reinforced 
titanium (Ti) composites (GPL/Ti) were prepared by Liu et 
al. (2018) using spark plasma sintering to evaluate a new 
type of structural material. Gao et al. (2018) studied free 
vibration of functionally graded (FG) porous nano 
composite plates reinforced with a small amount of GPLs 
and supported by the two-parameter elastic foundations 
with different boundary conditions. Polit et al. (2018) 
investigated thick functionally graded graphene platelets 
reinforced porous nano composite curved beams 
considering the static bending and elastic stability analyses 
based on a higher-order shear deformation theory 
accounting for through-thickness stretching effect. Transient 
dynamic analysis and elastic wave propagation in a 
functionally graded graphene platelets (FGGPLs)-
reinforced composite thick hollow cylinder were presented 
by Hosseini and Zhang (2018). The in-plane and out-of-
plane forced vibration of a curved nano composite micro 
beam were considered by Allahkarami et al. (2018). 
Vibration and nonlinear dynamic response of eccentrically 
stiffened functionally graded composite truncated conical 
shells in thermal environments were presented by Chan et 
al. (2018). Nonlinear response and buckling analysis of 
eccentrically stiffened FGM toroidal shell segments in 
thermal environment were studied by Vuong and Duc 
(2018). Large amplitude vibration problem of laminated 
composite spherical shell panel under combined 
temperature and moisture environment was analyzed by 
Mahapatra and Panda (2016). The nonlinear free vibration 
behaviour of laminated composite spherical shell panel 
under the elevated hygrothermal environment was 
investigated by Mahapatra and Panda (2016). Mahapatra et 
al. (2016b) studied the geometrically nonlinear transverse 
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bending behavior of the shear deformable laminated 
composite spherical shell panel under hygro-thermo-
mechanical loading. Nonlinear free vibration behavior of 
laminated composite curved panel under hygrothermal 
environment was investigated by Mahapatra et al. (2016c). 
The flexural behaviour of the laminated composite plate 
embedded with two different smart materials (piezoelectric 
and magnetostrictive) and subsequent deflection 
suppression were investigated by Dutta et al. (2017). Suman 
et al. (2017) studied static bending and strength behaviour 
of the laminated composite plate embedded with 
magnetostrictive (MS) material numerically using 
commercial finite element tool. Free vibration analyses of 
graphene reinforced singly and doubly curved laminated 
composite shell panels in thermal environment using finite 
element method were studied by Rout et al. (2019). 

In this work, buckling analyses of composite plate 
reinforced by GPLs is studied. The Halphin-Tsai model is 
used for obtaining the effective material properties of nano 
composite plate. The nano composite plate is modeled by 
Third order shear deformation theory (TSDT). The elastic 
medium is simulated by Winkler model. Employing 
nonlinear strains-displacements, stress-strain, the energy 
equations of plate are obtained and using Hamilton’s 
principal, the governing equations are derived. The 
governing equations are solved based on Navier method. 
The effect of GPL volume percent, geometrical parameters 
of plate and elastic foundation on the buckling load are 
investigated. 

 
 

2. Kinematics of different theories 
 
Fig. 1 shows a nanocomposite plate reinforced by GPLs 

resting on elastic medium. 
Based on Third order shear deformation theory (TSDT), 

the orthogonal components of the displacement vector can 
be written as (Reddy 2002) 
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Fig. 1 A nanocomposite plate reinforced by GPLs resting on 
elastic medium 

 

However, the strain–displacement relations can be given 
as 
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where c2 = 3c1. 

Hence, the strain-stress of this theory can be written as 
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where, parameters Cij are elastic constant of composite plate 
where can be obtained by Halpin-Tsai micro mechanics 
model. Based on this model, we have (Halpin and Kardos 
1976) 
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and Ec, Em, EGPL are the effective Young’s moduli of the 
GPL/polymer nano composite, polymer matrix, and GPLs, 
respectively. The effects of the geometry and size of GPL 
reinforcements are described through parameter. 
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in which lGPL, wGPL and hGPL denote the length, width and 
thickness of the GPLs. The volume fraction of GPLs of the 
i-th layer can be obtained from GPL weight fraction fi and 
the mass densities of GPLs and polymer matrix, ρGPL and 
ρM, by 
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3. Motion equation 
 
For driving the motion equations, the Hamilton principle 

is used as follows 
 

0 WU   (13)
 

where δ is variation, δU is variation of potential energy and 
δW is variation of external work. 

The variation of potential energy for composite plate 
can be written as 
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The variation of external work, due to elastic medium 

load simulated by Pasternak model can be express as 
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Using the Hamilton principle and partial integral, the 

governing equations are computed as 
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where, the force and moment resultants can be defined as 
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Therefore, the governing equations of nano composite 
plate can be written as 
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4. Solution method 
 
Base on Navier method, the displacements of the 

composite plate with simply supported boundary condition 
can be written as 
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where, n is vibration mode number and ω is frequency. 
Substituting Eqs. (40)-(44) into Eqs. (29)-(33), the motion 
equations in matrix form can be expressed as 
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where [kij] is stiffness matrix. 
 
 

4. Numerical result and discussion 
 
In this section, a parametric study is done for the effects 

of different parameters on the nonlinear buckling load of 
the composite structure. 

Figs. 2 and 3 show the effect of different transverse to 
axial lode ratio and plate width on the buckling load versus 
mode number, respectively. As it is inferred with increasing 
transverse to axial lode ratio and plate width, the buckling 
load has reduction. It is because with increasing transverse 
to axial lode ratio and plate width, stiffness of system is 
decreased. In addition, increasing mode number, buckling 
load is increased. 

Fig. 4 illustrates the effect of plate thickness on the 
buckling lode versus mode number. It can be concluded 
with plate thickness increases, stiffness of system is 

 
 

Fig. 2 Dimensionless buckling load versus mode number 
for different transverse to axial lode ratio 

423



 
Rasool Javani, Mahmood Rabani Bidgoli and Reza Kolahchi 

 

Fig. 3 The effect of plate width on the dimensionless 
buckling load versus mode number 

 
 

Fig. 4 The effect plate thickens on the dimensionless 
buckling load versus mode number 

 
 

increased. It is because the buckling load is increased. 
Fig. 5 indicates the effect of spring constant of elastic 

medium on the buckling load with respect to mode number. 
It is observed that with increasing spring constant of elastic 
medium, the buckling load is increased. It is because 
stiffness of system is increased with enhancing spring 
constant of elastic medium. 

The effect of plate length on the buckling load as 
function of mode number is shown in Fig. 6. With 
increasing plate length, buckling load decreases. It is 
because stiffness of structure is decreased. 

Fig. 7 shows buckling load versus volume present of 
GPL for different transverse to axial lode ratio. As can be 
seen, the buckling load of micro composite structure with 
increasing transverse to axial lode ratio is decreased. 

Furthermore, with increasing the GPL volume percent, 
the buckling load is increased due to increase in the bending 
rigidity of the structure.The effect of volume percent of 
GPLs on the buckling load is shown in Fig. 8 for different 
length to thickness ratio of the GPLs (zeta). It is found that 
with increasing the zeta, the buckling load is decreased 

Fig. 5 The effect of spring constant of elastic medium on 
the dimensionless buckling load versus mode number

 
 

Fig. 6 The effect of plate length on the dimensionless 
buckling load versus mode number 

 
 

Fig. 7 Dimensionless buckling load versus volume percent 
of GPLs for different transverse to axial lode ratio 
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Fig. 8 The effect of volume percent of GPLs on the 
dimensionless buckling load for different length 
to thickness ratio of the GPLs 

 
 

Fig. 9 The effect of weight to thickness ratio of GPLs on 
the buckling load versus volume percent of GPLs 

 
 

Fig. 10 The effect of spring constant of elastic medium on 
the buckling load versus volume percent of GPLs 

due to the enhance in the stiffness of the structure. 
Fig. 9 shows the effect of weight to thickness ratio of 

GPLs (zetaw) on the buckling load versus volume percent 
of GPLs. As can be seen, with increasing zetaw, the 
buckling load is decreased. It is since with increasing zetaw, 
the stiffness is decreased. 

Fig. 10 indicates the effect of spring constant of elastic 
medium on the buckling load with respect to volume 
percent of GPLs. It is observed that with increasing spring 
constant of elastic medium, the buckling load is increased. 
It is because stiffness of system is increased with enhancing 
spring constant of elastic medium. 

 
 

5. Conclusions 
 
In this work, buckling analyses of composite plate 

reinforced by GPL restiong on elastic medium was 
presented. The elastic medium was simulated by Winkler 
model. The Halpin-Tsai model for considering effect of 
GPLs was used. The motion equations were calculated by 
TSDT, Hamilton’s principle and energy method. Using 
analytical method, the buckling load of the structure was 
obtained. The effect of GPL volume percent, geometrical 
parameters of plate and elastic foundation on the buckling 
load were investigated. Increasing volume percent of GPLs, 
buckling load was increased. Increasing spring constant of 
elastic medium, the buckling load was increased. In 
addition, with increasing zeta, buckling lode decreases. 
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